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Vibration control capability of a combined tuned absorber and impact damper, under
a random excitation, is investigated numerically and experimentally. The effectiveness of
the optimal combined absorber and its sensitivity to variations of the clearance, restitution
coefficient and the mass ratio between the impact damper and tuned absorber are analyzed.
The performance of the combined absorber is compared to the corresponding optimal
conventional tuned absorber with viscous damping, with special emphasis on sensitivity to
tuning and damping of the tuned absorber.
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1. INTRODUCTION

A tuned vibration absorber is a classical passive controller of excessive vibrations around
the resonant frequencies of lightly damped structures [1]. The tuned absorber is simply a
single-degree-of-freedom mechanical oscillator attached to the primary structure and tuned
to the frequency to be controlled. This results in significant attenuation of the vibration
amplitudes of the primary system at the tuning frequency. However, the combined primary
and absorber system has now two resonance frequencies, one on either side of the
considered resonance frequency of the primary system. The frequency response of this
two-degree-of-freedom system would not pose a practical problem, if it could be ensured
that the frequency of excitation is virtually constant at the tuning frequency. This
expectation is unrealistic, when considering random vibrations of civil engineering
structures, which are induced mainly by wind-load and seismic action. Hence, a
supplementary technique to attenuate vibrations at both resonances is necessary to ensure
the reliability of the tuned absorber.

An effective reduction of the excessive oscillations at these two resonance frequencies
can be obtained by introducing adequate viscous damping in the conventional tuned
absorber. This corresponds to the well-known Tuned Mass Damper (TMD) [1–3]. The
TMD is successfully used in several civil engineering structures, such as towers and bridges,
in which viscous damping of the TMD is introduced by different hydraulic mechanisms.
These mechanisms can be rather complicated and demand continual maintenance to ensure
presence of the desired damping. A comparatively cheap and maintenance free system to
enhance the performance to a tuned absorber is the impact damper.

An impact damper [4–6] is basically a lumped mass colliding intermittently with the
structure to be controlled. The impact damper considered here is a small rigid ball placed
in a container attached to a resonant primary structure. A small clearance is left between
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the container and the impact damper. Impacts may occur as soon as the displacement of
the primary system exceeds the clearance. Every collision produces some energy dissipation
and some exchange of momentum between the colliding bodies. Energy dissipation is
sometimes helpful in attenuating the excessive vibration amplitudes of the primary
structure, but the important control mechanism is the exchange of momentum during
collisions. For an adequate choice of clearance, the primary structure and impact damper
move in opposite directions before collision. The direction of motion of the smaller impact
damper is reversed after a collision, whereas the velocity of the primary structure is only
reduced due to its larger inertia. As a result of the reduced velocity, the primary system
attains a smaller displacement amplitude than it would have without impacts. Here, the
impact damper is therefore introduced into the tuned absorber to control its oscillations
and thereby indirectly reduce the excessive vibrations of the primary structure [7, 8]. The
optimal effectiveness and the sensitivity to parameter variations of this combined tuned
absorber and impact damper is investigated.

2. THE EXPERIMENTAL MODEL

2.1.   

The plane three-floor steel frame presented in the picture and sketch of Figure 1 was
available and therefore chosen as the primary structure to be controlled. Such a frame
structure could represent a flexible tower-like building. The test frame is composed of steel

Figure 1. The experimental test frame and its dimensions, in mm.
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T 1

Modal parameters of the frame

Modal shape
ZXXXXXXXXXCXXXXXXXXXV

Resonance frequency Modal damping First floor Second floor Third floor

f1 =6·25 Hz z1 =0·15% nT
1 = { 0·356 0·757 1·000}

f2 =20·8 Hz z2 =0·18% nT
2 = {−1·044 −0·543 1·000}

f3 =38·3 Hz z3 =0·12% nT
3 = { 1·296 −1·479 1·000}

stripes with a 5×100 (mm2) cross-section. The columns, floors and bottom U-profile are
assembled by yielding these to corner steel elements with the same cross-section. These
corner pieces enhance the stiffness against angular bending in the corners. The bottom
U-profile is rigidly fixed to the floor of the laboratory.

The vibrations of the frame are considered to be restricted to be in its plane, due to its
relatively low stiffness here. The three lowest natural modes have anti-symmetric mode
shapes corresponding to an in- and out-of-phase movement of the three floors of the
structure, as presented in Table 1. The next three natural frequencies 60, 81 and 97 Hz
of the frame have symmetric mode shapes, characterized by the zero horizontal
deflection of all floors. The next anti-symmetric modes have natural frequencies well
over 100 Hz. A horizontal excitation of the first floor stimulates therefore practically only
the three first anti-symmetric modes. Within an adequate low frequency band the frame
can therefore be approximated by a three-degree-of-freedom system. The modal
parameters presented in Table 1 are estimated by a standard modal analysis of the
measured frequency responses of the frame. The details of the experimental set-up are
presented in section 2.3.

2.2.       

The tuned absorber is built as a cantilevered mass attached to a floor of the frame by
a set of two steel strips, allowing a practically horizontal movement of the absorber in the
plane of the frame. Two collision plates can be fixed on the cantilevered mass at different
positions, so that the distance between the two parallel plates can be varied with increments
of 1 mm. The cantilevered mass and collision plates were built in aluminium to keep their
mass low. A steel ball is used as the impact damper. The motion of the impact damper
is kept free of external forces between impacts by suspending it into the gap between the
two collision plates as a pendulum. The height of the pendulum is chosen to be
considerably longer than the clearance to obtain a virtually pure translation of the ball.

2.3.   -

The first floor of the test-frame is excited by a ‘‘white noise’’ force in a frequency
band of width 6·25 Hz, centered on the fundamental frequency of the frame at 6·25 Hz.
This is experimentally obtained by fixing a soft spring between the first floor and a shaker
head, whose oscillations are controlled by the signal analyzer. The force level is
experimentally set at an r.m.s. value of 1·5 N and corresponds to a one-sided power
spectral density level of S0 =0·057 N2s/rad. The force and the acceleration of each floor
and tuned absorber are measured, Fourier transformed and stored by the signal analyzer
via the force transducer and accelerometers, respectively. The experimental set-up is shown
in Figure 2.
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3. THE NUMERICAL MODEL

3.1.   

The stiffness matrix K of the test frame can be accurately measured from a simple static
experiment, which results in

K= 8 193·7
−116·9

24·4

−116·9
175·2

−85·1

24·4
−85·1

65·49×103 N/m. (1)

The concentration of mass at each floor is not very high, so that a diagonal mass matrix
evaluated from the mass distribution would be a rough approximation. Alternatively, the
mass and damping matrices are fitted to the experimentally evaluated modal parameters,
by solving the inverse eigenvalue problem, suggested in reference [9]. The excitation of the
frame is restricted to the application of a force at the first floor of the frame. This procedure
results in the following matrices:

M= 86·44
0·03
0·10

0·66
5·55
1·06

0·36
−0·37

5·539 kg, F= 8F(t)
0
0 9 N, (2, 3)

C= 8 3·04
−0·55
−0·40

−0·56
2·18

−0·83

−0·29
−1·00

1·519×10−2 Ns/m. (4)

The resulting synthesized mass matrix is not perfectly diagonal, due to the relatively
distributed mass of the frame. These matrices are not meant to describe a three-mass
system in series (with spring and dampers connecting the masses), but should be considered
as a synthetic system, built up to have the same response as the experimental structure.
The numerical simulation of the model, based on the presented matrices M, C, K and F,
shows, as expected, a good match with the experiments.

Figure 2. The experimental set-up: 1. ‘‘exciter body’’, Brüel & Kjaer 4802 with ‘‘big table head’’, Brüel & Kjaer
4848; 2. ‘‘Power amplifier’’ Bruel & Kjaer 2708; 3. ‘‘signal analyzer’’, Brüel & Kjaer 2035 with 2× ‘‘4-channel
input module’’, Brüel & Kjaer 3023; 4. personal computer; 5. ‘‘conditioning amplifier’’, Brüel & Kjaer 2626; 6.
soft spring; 7. ‘‘force transducer’’, Brüel & Kjaer 8200; 8. ‘‘accelerometer’’, Brüel & Kjaer 4503.
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Figure 3. Model of the combined tuned absorber and impact damper.

3.2.       

Passive dynamic vibration absorbers are most effective, when attached where the
vibration amplitude of the structure is the largest. The top floor of the frame should
therefore be chosen to control the fundamental mode of the frame optimally.

The impact damper studied in this paper is considered to follow a translation trajectory
without contact with the container between collisions. Impacts are considered
instantaneous, as the duration of an impact is considerably shorter than the time between
two consecutive collisions. These assumptions have generally been made in previous
publications investigating this type of impact damper, because they lead to relatively simple
experimental and numerical models [4–8].

The tuned absorber is a simple single-degree-of-freedom (1-d.o.f.) oscillator. The
practically unavoidable damping of this system is considered to be viscous for convenience.
The combined tuned absorber and impact damper is schematically presented in Figure 3,
where ui represents the displacement of the floor to which the system is attached. In this
case, the third floor is considered.

In between impacts, the 5-d.o.f. combined system is described by the following set of
linear differential equations:

M11 M12 M13 0 0 C11 C12 C13 0 0

M21 M22 M23 0 0 C12 C22 C23 0 0
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+ K31 K32 K33 + k4 −k4 0 u= 0 . (5)

0 0 −k4 k4 0 0

0 0 0 0 0 0

Here m4, c4 and k4 are the parameters of the tuned absorber, m5 is the mass of the impact
damper and Mij , Cij and Kij refer to the system matrices in equations (1), (2) and (4).

The collisions are idealized as discontinuous processes governed by the conservation of
momentum, and the definition of the coefficient of restitution. The velocities of m4 and m5

just before and immediately after a collision are thereby related by the equations

u̇+
4 =

(1− he)
(1+ h)

u̇−
4 +

h(1+ e)
(1+ h)

u̇−
5 , u̇+

5 =
(1+ e)
(1+ h)

u̇−
4 +

(h− e)
(1+ h)

u̇−
5 , (6)
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where h is the mass ratio m5/m4 and the restitution coefficient e is defined by

e=−(u̇+
5 − u̇+

4 )/(u̇−
5 − u̇−

4 ). (7)

The superscripts − and + refer to states just before and immediately after a collision,
respectively.

As the system with the absorber is linear between impacts, its behavior can be simulated
by a numerical integration until contact between m4 and m5 is found. The fourth order
Runge–Kutta integration method, with time steps smaller than 1/40 of the lowest
excitation period, is chosen. An impact is assumed when the relative distance between m4

and m5 is found to be less than 10−6 of the clearance d. The bisection procedure is used
to locate an impact. At impact, the velocities of m4 and m5 are changed according to
equations (6), leaving all other parameters unchanged. The integration is then resumed
with new initial conditions until another impact is detected.

3.3.   

Numerically, the ‘‘white noise’’ excitation is simulated by using the trigonometric
polynomial [10]

P(t)=X2S0
2v

2n+1 $12 sin U0 + s
n

k=1

sin 0k v

n
t+Uk1%, (8)

where v is the maximal cyclic frequency of the excitation band set at 2p×12·5 Hz, n is
the number of frequencies in the sum, set here at 800 to match the signal from the analyzer
used in the experiments, S0 is the one-sided power spectral density S0 =0·057 N2s/rad,
corresponding to the experimental force level set at an r.m.s. value of 1·5 N, and U0,
U1 . . . Un are mutually independent random variables, that are uniformly distributed on
the interval [0,2p].

The experimental ‘‘white noise’’ excitation in a frequency band of width 6·25 Hz,
centered on the fundamental frequency of the frame at 6·25 Hz, can be simulated by
including only the elements of the sum in equation (8) corresponding to 200Q kE 600.
This limitation of the ‘‘white noise’’ excitation to a frequency band around the resonance
frequency considerably reduces the computation time. As the fundamental mode
considered is low damped and well separated from the others (v2 e 3v1), it can be
considered as a single one in the case of the linear tuned mass damper [3, 11]. By exciting
only within a frequency band around the fundamental frequency, the eventual influence
of higher modes on the non-linear combined absorber is practically eliminated. In this
paper, therefore, only the control of a single natural frequency is considered. This case is
more general, as the effect of higher modes is specific to the structure considered. In
reference [12] the response of the experimental frame with optimal combined absorber
around its fundamental frequency is found to be unaffected by its higher modes.

4. EXPERIMENTAL RESULTS AND NUMERICAL SIMULATIONS

The experimental and the simulated response of the third floor of the frame without the
absorber has an r.m.s. displacement of sx0 1 7·7×10−4 m. This value is chosen as the
reference for the cases studied.

By measuring both the acceleration of the tuned mass and that of its attachment point
on the third floor, it is simple to analyze the relative oscillations of the tuned absorber as
that of a simple 1-d.o.f. system subjected to a ground motion. A standard modal analysis
of the frequency response of the absorber estimates the natural frequency and damping
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ratio of the tuned absorber. The stiffness k4 of the springs is calculated from this identified
natural frequency and the weighted mass of the cantilevered absorber and part of the steel
strips. The parameters are found at m4 =0·250 kg, c4 =0·08 Ns/m and k4 =372 N/m. This
linear model of the tuned absorber is found to be reasonably accurate.

The restitution coefficient is evaluated experimentally from the measured relative
rebound of a pendulum after impact with a fixed collision plate. For relative velocities over
2 m/s before impact, the coefficient of restitution for the impact of a steel ball on an
aluminum plate is found to be nearly constant around 0·3. The computational calculations
show that the velocities before impact are mostly concentrated under 0·2 m/s, for which
the restitution coefficient for the impact of a steel ball on an aluminum plate is evaluated
to be approximately 0·7. The steel ball chosen as the impact damper has a mass of
66·7×10−3 kg corresponding to a mass ratio to the tuned absorber, h=m5/m4 =27%.

The frequency response of the experimental system is collected, Fourier transformed and
averaged by the signal analyzer. The numerically simulated responses of the system were
also processed by the same signal analyzer, as if these were measured experimental data.
Figure 4 presents both the numerical and the experimental frequency responses for selected
non-dimensionalized clearances d/sx0, where d and sx0 are, respectively, the clearance and
the r.m.s. displacement of the primary system without absorber.

The system with tuned absorber alone in Figure 4(h), corresponds to the case of infinite
clearance (d/sx:a), where collisions never occur. Reducing the clearance increases the
number of collisions and the effectiveness of the combined absorber. This results in the
reduction of the two peaks, as observed when comparing Figure 4(h) with Figures 4(g),
4(f) and 4(e). A further decrease of the clearance can result in such a large reduction of
the oscillations of the tuned absorber, that the oscillations of the primary structure appear
(see Figue 4(d)). Smaller clearances increase the number of impacts, so that several impacts
can be observed on the same side before collision with the opposite side. The control
effectiveness from the momentum transfer between impact damper and the tuned absorber
is thereby deteriorated (see Figure 4(c)). A further reduction of the clearance leads to the
carrying of the impact damper by the tuned absorber for short periods (see Figure 4(b)),
converging towards the added mass situation for zero clearance presented in Figure 4(a).
This last case corresponds to a system with an off-tuned tuned absorber.

The experimental and computational frequency responses presented in Figure 4 are in
good concordance. The computational model seems to be quite accurate, even in the
vicinity of the optimal clearance (see Figure 4(d)), where the shape of the frequency
response undergoes a radical change, which is sensitive to any parameter inaccuracy.

The r.m.s. displacements of these responses are calculated and non-dimensionalized by
the r.m.s. displacement of the primary system without absorber sx0. These relative r.m.s.
displacements are presented in Figure 5 for different non-dimensional clearances. The
concordance between the numerical and experimental results is satisfactory, considering
the difficulties in defining a ‘‘constant’’ coefficient of restitution at low impact velocities.

In Figure 5, an ordinate of 1 would correspond to the case where the r.m.s. displacement
of the frame is unaffected by the introduction of the absorber. A reduction of the r.m.s.
displacement of the frame of about 70% can be observed over a wide range of clearances.
The introduction of the impact damper clearly enhances the effectiveness of the lightly
damped absorber for clearances over d/sx0 =5. The flatness of the experimental and
numerical curves in Figure 5 shows an advantageous robustness of the combined absorber
against changes in the non-dimensional clearance.

The numerical model of the tuned absorber and that of the impact damper seems to
be accurate, when comparing the experimental and numerical results obtained here for a
relatively high value of the coefficient of restitution. A similar experimental investigation
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Figure 4. The numerical (——) and experimental (. . .) frequency responses of the displacement of the third
floor per unit force applied on the first floor of the frame with combined absorber on the third floor for chosen
clearances. d/sx0: (a) 0, (b) 4·7, (c) 7·3, (d) 12·5, (e) 17·7, (f) 24·2, (g) 43·6, (h) a.
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Figure 5. Numerical (*) and experimental (w) relative r.m.s. displacement for chosen clearances. The tuned
absorber without impact damper (d/sx0:a) is presented by (–––) for comparison.

with a lower coefficient of restitution would be necessary to validate the model in general,
as plastic deformation is expected in the case of low coefficients of restitution. Materials
such as different metals, Plexiglas and neoprene rubber lined plates have been considered
for the collision plates in order to have a wide range of restitution coefficients, but this
was only possible for relative velocities over 2 m/s.

The lowest coefficient of about 0·15 was attained for steel-lead collisions, but
corresponded to approximately 0·75 for relative velocities under 0·2 m/s. Low coefficients
of restitution can be difficult to achieve in practice, if the relative velocities at impact are
low. If one considers a specific pattern of the impacts around resonant oscillations, then
these relative velocities seem to increase with an increasing resonance frequency and with
an increasing oscillation amplitude. In the case of controlling civil engineering structures,
which have typically natural frequencies under 1 Hz, low impact velocities are expected
and high restitution coefficients will have to be considered.

5. NUMERICAL OPTIMIZATION AND PARAMETER SENSITIVITY ANALYSIS

The numerical model describes the absorber by the impact damper parameters m5 and
e and the tuned absorber parameters m4, c4 and k4. The elaborated computational model
is used to optimize the combined absorber and investigate its sensitivity to a variation of
its parameters away from optimum.

In order to evaluate the effect of the introduction of an impact damper as the only
damping mechanism of the combined absorber, the viscous damping of the tuned absorber
is disregarded in the following numerical models. The effect of damping in the absorber
will be investigated at the closure of this section.

5.1.    

The impact parameters regarded for optimization are the clearance d, which is
non-dimensionalized with the r.m.s. displacement of the third floor of the frame without
absorber as d/sx0, the mass ratio h between the impact damper and the tuned absorber,
and the restitution coefficient e.
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Figure 6. Relative r.m.s. displacement for chosen clearances and mass ratio h for a restitution coefficient of
(a) 0·3 and (b) 0·7. h values: *, 0·13; w, 0·25; +, 0·50; ×, 0·75.

The general variation of the effectiveness of the combined absorber with the clearance
is similar, for any parameter choice presented in Figures 6 and 7 as well as the special
experimental case in Figure 5. The introduction of the combined system can reduce the
r.m.s. displacement of the third floor of the frame by nearly 80% at clearances d/sx0 1 6,
if the restitution coefficient can be set as low as 0·3.

The results presented in Figure 6 show a relatively low sensitivity to a variation of the
mass ratio around the optimal h=0·25, for restitution coefficients of both 0·3 and 0·7.
This trend was also observed experimentally by varying the size and thereby the mass of
the suspended impact damper. A much lower mass ratio would, however, reduce the
momentum transfer between the impact damper and tuned absorber, reducing thereby the
effectiveness of the combined absorber. A mass ratio higher than optimum, but still under
1, would increase this impulse transfer, reducing the relative oscillations of the tuned
absorber to a minimum. This would result in unwanted excessive vibrations at the

Figure 7. Relative r.m.s. displacement for chosen clearances and restitution coefficients but for h=0·25. e
values: ×, 0·1; *, 0·2; w, 0·3; +, 0·4, l, 0·7.
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Figure 8. Relative r.m.s. displacement for different non-dimensional clearances obtained by changing (*) the
level of excitation for d=4·5 mm or (w) the clearance d for an r.m.s. amplitude of the excitation force of 1·5 N
(h=0·25, e=0·3).

resonance of the main structure with added mass, corresponding to the immobilized tuned
absorber.

Figure 7 shows that a low restitution coefficient e between 0·1 and 0·3 has nearly the
same optimal effectiveness for clearances d/sx0 1 6. A higher restitution coefficient
increases the velocity of the impact damper and reduces the energy dissipation at each
collision in general. To maintain a similar optimal impact pattern, this results in a shift
of the optimal clearance to higher values as well as a reduction of the effectiveness of the
combined absorber. Very low restitution coefficients are practically unattainable and
problematic, because of material deformation. A restitution coefficient of e=0·3 is
therefore the most suitable choice as the optimum.

The numerical case studies were conducted for a constant excitation level corresponding
to a r.m.s. force of sp =1·5 N resulting in a r.m.s. displacement of the third floor of the
frame of sx0 =770×10−6 m. The optimal parameters are found to be h=0·25, e=0·3
and d1 6×770×10−6 m1 4·5 mm. A variation of the excitation level will proportion-
ally change the response sx0 of the uncontrolled linear frame and thereby the
non-dimensionalized clearance d/sx0, for a constant d. The relative r.m.s. response of the
third floor of the frame with combined absorber for different excitation levels, is presented
in Figure 8. The relative r.m.s. response of the third floor corresponding to a variation
of the clearance d for a constant load level from Figures 6 and 7 is also presented in Figure
8 for comparison. Both curves are in good concordance, which confirms that the quotient
d/sx0 is a non-dimensional parameter for the combined absorber.

5.2.    

The optimal parameters of the conventional tuned mass damper TMD are presented and
evaluated for the considered primary structure, in order to compare it to the optimal
combined absorber.

5.2.1. The optimal tuned mass damper
The natural frequency and viscous damping ratio are the main optimization parameters

of a TMD. Analytical expressions for these optimal parameters are presented in references
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T 2

Optimal parameters of the TMD, where n is the mass ratio between
the tuned absorber and the main 1-d.o.f. system

Optimal tuning frequency Optimal damping ratio

gopt
m =X1+0·5n

(1+ n)2 zopt
2 =X n(1+0·75n)

4(1+0·5n)(1+ n)

[3] and [11] for a TMD attached to an undamped 1-d.o.f. system under white noise
excitation.

The formulas in Table 2 are used to evaluate the optimal TMD parameters for the
experimental frame, by regarding its oscillations around the fundamental frequency as that
of a simple 1-d.o.f. system. This is acceptable because of the minimal influence of the higher
modes around the fundamental frequency of the frame and the low damping of this
fundamental mode [11]. This 1-d.o.f. system is based on the modal mass of the frame at
the attachment point of the absorber.

Based on the mass matrix M given in equation (2), and the eigenvectors given in Table
1, the modal mass of the frame at the point of attachment of the absorber is evaluated
as [3, 11]

m1,eff =(1/n3
1 )2{n1}T[M]{v1}=10·3 kg, (9)

where n3
1 is the value of the fundamental eigenvector corresponding to the point of

attachment of the absorber (third floor).

5.2.2. The viscous tuned mass parameters
The essential parameter for the performance of a tuned absorber is its frequency tuning

to the primary structure. The natural frequencies fabs of the tuned absorbers are varied by
choosing different values for the stiffness k4. The tuning frequencies of both optimal
TMD’s presented in Table 3 are varied in the same way and the corresponding r.m.s.
displacement responses of the different absorbers are presented in Figure 9 for comparison.
Figure 9 shows that the optimal tuning frequency of a TMD is lower than that for the
combined absorber. The reason for a higher optimal frequency of the tuned absorbers
within the combined absorbers is to compensate the added mass effect of the impact
damper. In this case, the optimal tuning frequencies of these tuned absorbers are found
to be both around 6·6 Hz. On the other hand, the optimal effectiveness of the combined
absorber with a high restitution coefficient (0·7) is about 5% less than that corresponding
to one with the lower restitution coefficient (0·3).

T 3

Optimal TMD parameters for two different mass ratios

Mass Optimal Stiffness Optimal Damping
Absorber mass ratio n frequency k4 damping coefficient c4

mabs =m4 2·4% 6·14 Hz 372 N/m 7·7% 1·5 Ns/m
=0·250 kg

mabs =(1+ hopt )m4 3·0% 6·11 Hz 461 N/m 8·6% 2·1 Ns/m
=0·3125 kg
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Figure 9. Relative r.m.s. displacement for different natural frequencies of the tuned absorber within the
combined absorber (m4 =0·25 kg, m5 = hopt m4) with a restitution coefficient (w) e=0·3 and (×) e=0·7 and
the optimal tuned mass dampers with a mass of (+) mabs =m4 and (*) mabs =m4 (1+ hopt ).

Figure 10. Relative r.m.s. displacement for different damping ratios of the tuned absorber within the combined
absorber (m4 =0·25 kg, m5 = hopt m4) with a restitution coefficient (w) e=0·3 and (×) e=0·7 and the optimal
tuned mass dampers with a mass of (+) mabs =m4 and (*) mabs =m4 (1+ hopt ).

The introduction of an impact damper into an undamped tuned mass m4 has practically
the same effectiveness (80% reduction at optimum), as the introduction of a viscous
damping to the conventional tuned absorber. Unfortunately, the introduction of the
impact damper into the tuned absorber adds mass to the absorber. The performance of
the combined absorber should therefore be compared to that of the optimal TMD with
a mass corresponding to the sum of the mass of the tuned mass and impact damper. In
this case, the effectiveness of the conventional TMD at optimum is enhanced to a 82%
reduction. On the other hand, the combined absorbers are more robust to variations of
the frequency tuning.



. . 212

The effect of the presence of the viscous damping z2 in the optimal tuned absorbers in
both the conventional TMD and the combined absorbers is presented in Figure 10. In the
case of the conventional TMD, the presence of damping is critical to its effectiveness. An
unexpected loss of pressure in a hydraulic damper often used as viscous elements in TMDs
is unacceptable. On the other hand, the unavoidable presence of a light damping in the
tuned absorber within the optimal combined absorber with a high restitution coefficient
(e=0·7) enhances rapidly its effectiveness. It is also interesting to notice that the
introduction of the impact damper would reduce the effectiveness of the optimal TMD.

6. CONCLUSION

A combined tuned absorber and impact damper has been investigated by numerical
simulations and experimental observations. The optimal mass ratio between the impact
damper and tuned absorber was found to be 25%, with a low sensitivity to variations of
this mass ratio. The restitution coefficient seems to be optimal around 0·3, but the
effectiveness and sensitivity of the combined absorber for higher and more practical
restitution coefficients around 0·7 are satisfactory. The clearance is found to be directly
proportional to the excitation level, if the primary system can be considered linear-elastic.
The tuned absorber within the combined absorber should be tuned to a frequency slightly
higher than the optimal tuning frequency of the corresponding TMD. The combined
absorber is found to be more robust than the corresponding TMD to variations of the
tuning of the tuned absorber.

Such a combined absorber optimized for a given critical excitation level is almost as
effective as that of the corresponding TMD. A lower excitation amplitude would not affect
the performance of the TMD, but would somewhat reduce the effectiveness of the
combined absorber to a still very satisfactory level.

The investigated combined absorber seems to be a cheap alternative to the Tuned Mass
Damper, although its practical use may be limited by the geometric requirement to suspend
the impact damper in the tuned absorber. A further study of a combined absorber based
on an impact damper rolling directly in its cavity is being made, and is promising.
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