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In this paper, a numerical scheme for modelling the straight-through resonator with
mean flow based upon the boundary integral equation method is developed. The approach
can be applied to both short and long resonators with perforated center tube, and the
results agree well with the experimental measurements reported in the literature without
mean flow. The two effects, i.e., the convection effect, and the change in acoustic impedance
of the perforated tube and of mean flow velocity on the acoustic performance of a
straight-through resonator, are both considered. Further, other parameters such as
porosity, tube thickness, and hole diameter are also investigated.
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1. INTRODUCTION

The resonator is a widely used component in the contemporary automotive exhaust system.
The effect of the perforated center tube in the concentric-tube resonator is to regulate the
mean flow and also increase the silencing performance. In the past, the analysis of
concentric-tube resonator has been performed by the Helmholtz resonator theory [1],
which can treat a low frequency and low porosity resonator well. But it is not suitable for
a resonator with a long perforated tube or a high porosity tube. Further, the flow velocity
is also not included. In 1978, Sullivan and Crocker [2, 3] initially derived the coupled
equations of sound propagation in the perforated center tube and the outer cavity. They
obtained a close form solution but the resonator configuration should have been
acoustically long in one direction. Later, under the assumption of plane wave propagation,
Jayaraman and Yam [4] and Thawani and Jayaraman [5] proposed a decoupling method
for the coupled equations derived by Sullivan and Crocker. In order to decouple the
equations, they assumed that the mean flow velocities in the center tube and the outer
cavity are the same which is contrary to the physical law. Munjal et al. [6] and Peat [7]
also broached the generalized decoupling method and numerical decoupling method
respectively to solve the coupling equations. All the methods mentioned above are based
upon the assumption of plane wave propagation. Wang [8] proposed a boundary element
approach to extend to a higher order mode and complex boundary surface analysis. The
convection effect of mean flow on the performance of a resonator, however, is not included.

In the present work, a boundary element method to analyze the concentric-tube
resonator with mean flow is developed. The four-pole parameters evaluated by the present
method can be used to predict the acoustic performance of a resonator. The influences of
mean flow, including the convection effect and the change on acoustic impedance of the
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perforated tube, are taken into consideration. Further, the effects of the porosity, tube
thickness and the hole diameter are also investigated.

2. GOVERNING EQUATIONS

The straight-through resonator considered is shown in Figure 1. To simplify the
numerical process, the resonator is considered to be made up of two acoustic control
volumes; one is the center tube and the other is the outer cavity. The two control volumes
couple with each other via the perforated surface. From Sullivan’s experiment [9], it can
be understood that most of the medium flows straight through the center tube and only
a little mass flows into the outer cavity at the fore stage of the perforated surface and flows
out at the end part. It is, therefore, assumed in the present study that the mean flow only
exists in the centre tube.

The velocity potential F of the acoustic wave propagated in the two control volumes
should be governed by

92FI −
1
c2 0 1

1t
+V · 91

2

FI =0 in the center tube (1)

and

92FII −
1
c2

1FII

1t2 =0 in the outer cavity, (2)

where V is the mean flow velocity and c is the sound speed in the stationary medium.
Assume that sound propagation is a harmonic motion (eivt) and also the mean flow velocity
is in the x direction. Then equations (1) and (2) can be rewritten as

92fI + k2fI −2ikM
1fI

1x
−M2 12fI

1x2 =0 (3)

and

92fII + k2fII =0, (4)

where k=v/c is the wave number, v is the angular frequency, and M= =V=/c is the mean
flow Mach number. fI and fII, dependent on the space only, denote the acoustic velocity

Figure 1. The configuration of the straight-through resonator. Long resonator L=257·2 mm; short resonator
h=66·7 mm.
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potential amplitudes in the center tube and the outer cavity, respectively. The complex
equation (3) is transformed into a Helmholtz equation in order that the numerical
implementation for the Helmholtz equation can be applied to equations (3) and (4)
directly. By applying the Prandtl–Glauert transformation [10]

x̃=
x

z1−M2
, ỹ= y, z̃= z (5)

and f	 I =fI e−i:x̃, equation (3) is converted to a Helmholtz equation and is expressed as

9	 2f	 I + k	 2f	 I =0, (6)

where

:=
kM

z1−M2
and k	 =

:

M
.

Equations (4) and (6) are the governing equations for the sound propagation in a
straight-through resonator with mean flow.

3. NUMERICAL IMPLEMENTATION

In order to transform the differential equations into the boundary integral equations,
the Green second identity and Gauss theorem are applied to the Helmholtz equation and
their adjoint obtains

C(b)f(b)=gS $G(a, b)
1f

1n
(a)−

1G(a, b)
1n(a)

f(a)% dS(a), (7)

where S is the surface of the acoustical control volume and n denotes the unit outward
normal vector. G is the fundamental solution of the non-homogeneous Helmholtz equation
and is expressed as

G(a, b)=
e−ikr(a,b)

r(a, b)
, (8)

where k represents the wave number in the Helmholtz equation and r is the distance
between the points of a and b. The coefficient C(b) is the solid angle at point b and can
be expressed as [11]

C(b)=−gS

1

1n(a) 0 1
r(a, b)1 dS(a). (9)

By applying the processes mentioned above to equations (4) and (6), two Helmholtz
boundary integral equations, the same as that of equation (7), are obtained. To regularize
the singularity of integration when the point a approaches b, the method used in reference
[11] is also adopted in the present study. The boundary surface of each control volume
is divided into two parts, where DS is a small region which contains the point b, and So

denotes the remaining surface. If a strong singularity term

f(b) gDS

1

1n(a) 0e−ikr(a,b)

r(a, b)1 dS(a) (10)
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is added to both sides of the Helmholtz integral equation, the boundary integral equations
for the transformed center tube and outer cavity can be written as

−fj(b) gSj
o

1

1n(a) $ 1
r(a, b)% dS(a)+gSj

o

fj(a)
1

1n(a) $e−ikr(a,b)

r(a, b)% dS(a)

+ fj(b) gDSj 6 1

1n(a) $e−ikr(a,b)

r(a, b)%−
1

1n(a) $ 1
r(a, b)%7 dS(a)

+ gDSj

1

1n(a) $e−ikr(a,b)

r(a, b)%[fj(a)−fj(b)] dS(a)

= gSj
o

1fj

1n
(a)$e−ikr(a,b)

r(a, b)% dS(a)+gDSj

1fj

1n
(a)$e−ikr(a,b)

r(a, b)% dS(a)

j= I, II. (11)

Figure 2. Comparison of the transmission loss of a short resonator without mean flow. (a) Present method.
(b) Results of reference [2]: cavity length=66·7 mm; cavity O.D.=76·2 mm; cavity I.D.=50·8 mm;
porosity=3·7%.
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The quantities, such as the velocity potential fj, the wave number k, the outward unit
normal vector n, and the distance r, in equation (11) represent f	 I, k	 , ñ, r̃ on the center
tube transformed domain for j= I and denote fII, k, n, r on the outer cavity for j= II,
respectively. The integration of the weak singularity, the second term on the right side can
be treated by a polar co-ordinate transformation.

By performing the numerical integration on the discretized elements of S	 I, the surface
of the transformed center tube, and of SII, the surface of outer cavity, the velocity potential
and its gradient on the boundary can be related by

[A	 ]I{f	 }I =[B	 ]I61f	
1n	 7

I

for the transformed center tube (12)

and

[A]II{f}II =[B]II61f

1n7
II

for the outer cavity. (13)

Figure 3. Comparison of the transmission loss of a long resonator without mean flow. (a) Present method.
(b) Results of reference [2]: cavity length=257·2 mm; cavity O.D.=76·2 mm; cavity I.D.=50·8 mm;
porosity=3·8%.
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Figure 4. Comparison of results of the plane wave theory (----) and the present method (——) for the
performance of a resonator with mean flow velocity M=0·05.

With the following relations

f	 I =fI e−i:x̃,
1f	 I

1ñ
=e−i:x̃01fI

1n
1n
1ñ

−i:fIñx1, (14, 15)

equation (12) can be converted to the real physical domain and is expressed as

[A]I{f}I =[B]I61f

1n7
I

for the center tube, (16)

Figure 5. The effect of porosity on the transmission loss for a short resonator without mean flow: ——,
s=0·02; –––, s=0·03; — —, s=0·04; – --–, s=0·05.
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where AI
lm =A	 I

lm e−i:x̃ +B	 I
lm e−i:x̃i:(ñx )m , and BI

lm =B	 I
lm e−i:x̃m 1nm /1ñm . To evaluate the

performance of a resonator, the velocity potential and its gradient should be converted
to pressure and normal velocity initially by

p= r0(ivf)+ r0V
1f

1x
, (17)

and

un =−
1f

1n
(18)

Therefore, equations (13) and (16) are rewritten as

[H]I{p}I =[G]I{r0cun}I, [H]II{p}II =[G]II{r0cun}II, (19, 20)

where

HI
ij =AI

ij

GI
ij =(−ik)BI

ij −AI
ijM cos (n, x)I

j .g
G

G

G

G

F

f

HII
ij =AII

ij

GII
ij =(−ik)BII

ij

Since the center tube and the outer cavity are coupled to each other via the common
perforated surface, equations (19) and (20) must be solved simultaneously. Suppose the
nodal points on the center tube are divided into three groups, group 1: nodes on the inlet
and the outlet, group 2: nodes on the common perforated surface, and group 3: nodes on
all of the remaining surface. Similarly, the nodes on the outer cavity are partitioned into
two parts, one includes the nodes on the common surface and the other contains all of
the remaining nodes. Therefore, equations (19) and (20) become

&H11 H12 H13

H21 H22 H23

H31 H32 H33'
I

8pin,out

pc

pother9
I

= &G11 G12 G13

G21 G22 G23

G31 G32 G33'
I

8r0cunin,out

r0cunc

r0cunother9
I

, (21)

Figure 6. The effects of porosity on the transmission loss for a long resonator without mean flow. Key same
as Figure 5.
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$H11 H12

H21 H22%
II

6 pc

pother7
II

=$G11 G12

G21 G22%
II

6 r0cunc

r0cunother7
II

. (22)

The perforated surface is equivalent to an acoustic impedance surface and the boundary
conditions on this surface can be expressed as

uI
nc =(pI

c − pII
c )/r0cj, uII

nc =(pII
c − pI

c )/r0cj, (23, 24)

where r0c is the characteristic impedance of the medium and j is the specific acoustic
impedance. Further, the other parts of the wall of the resonator are assumed to be hard,
i.e.,

unother =0. (25)

Substituting equations (24) and (25) into equation (22) and eliminating the term {pother}II

gives the relationship between {pc}I and {pc}II and is expressed as

{pc}II =[TR]{pc}I, (26)

where

[TR]= [HII
12(HII

22)−1(HII
21 −G11

21/j)− (HII
11 −GII

11/j)]−1[HII
12(HII

22)−1(−GII
21/j)+GII

11/j]. (27)

Therefore, by means of equations (23), (25) and (26), equation (21) can be rewritten as

&H
I
11 HI

12 −GI
12/j+GI

12/j[TR] HI
13

HI
21 HI

22 −GI
22/j+GI

22/j[TR] HI
23

HI
31 HI

32 −GI
32/j+GI

32/j[TR] HI
33'8p

I
in,out

pI
c

pI
other9= &G

I
11

GI
21

GI
31'{rcuI

nin,out}. (28)

When the boundary conditions are specified, the pressure and normal velocity distribution
on the center tube can be obtained and consequently the transmission loss of the resonator
can also be evaluated.

Figure 7. The effect of mean flow velocity on the transmission loss for a short straight-through resonator: ——,
M=0·05; ----, M=0·1; –––, M=0·2; – --–, M=0.
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Figure 8. The effect of mean flow velocity on the transmission loss for a long straight-through resonator. Key
same as Figure 7.

4. TRANSMISSION LOSS

A straight-through resonator can be regarded as a linear acoustic system with an inlet
and outlet. Thus, the evaluation of the transmission loss of a resonator is the same as that
of a simple expansion muffler [11]. The four-pole matrix between the inlet and the outlet
of an acoustic system is expressed as

6 p
rcun7in

=$A B
C D%6 p

rcun7out

, (29)

Figure 9. The effect of porosity on the transmission loss for a short resonator with mean flow velocity M=0·1:
——, s=0·02; ----, s=0·03; –––, s=0·04; – --–, s=0·05.
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where A, B, C, D are the four-pole parameters and are obtained from

A=
pin

pout bunout

=0, B=
pin

rcunout bpout

=0 (30, 31)

C=
rcunin

− pout bunout

=0, D=
rcunin

− rcunout bpout

=0. (32, 33)

As long as the four-pole parameters are determined, the transmission loss of a
straight-through resonator with mean flow can be easily obtained. Since the cross-section
area of the inlet and the outlet are the same, the transmission loss is calculated by [12]

TL=20 log10 0b A+B+C+D
2 b1. (34)

5. ACOUSTIC IMPEDENCE OF A PERFORATED TUBE

In the present study, the center tube and the outer cavity of a resonator are regarded
as an acoustical control volume individually. The only connection between these two
volumes is through the drilling holes on the center tube. The characteristic of the
perforated surface is equivalent to an acoustic impedance which can be determined
experimentally [2, 13]. The acoustic impedance is assumed to be constant along the
perforated tube since the drilling holes are uniformly distributed on the perforated surface.
To simplify the effort, the empirical formulae of specific acoustic impedance proposed by
Sullivan and Crocker [2] and Rao [13] for stationary media and grazing flow are used.

For the case of perforates in stationary media [2]

j=
1
s

[6×10−3 + ik(t+0·75dh )], (35)

where s denotes the porosity, t is the thickness of the perforated tube and dh is the hole
diameter.

Figure 10. The effect of porosity on the transmission loss for a long resonator with mean flow velocity M=0·1.
Key same as Figure 9.
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Figure 11. The effect of the tube thickness on the transmission loss for a short resonator with mean flow
velocity M=0·1: ——, t=0·5 mm; ----, t=1·0 mm; –––, t=1·5 mm.

For the case of perforates with grazing flow [3]

j=
1
s

[7·337×10−3(1+72·23M)+ i2·2245×10−5(1+51t)(1+204dh )f ], (36)

where M is the mean flow Mach number in the center tube and f is the sound frequency
to be analyzed. It should be noted that t and dh in equation (33) must be in meters (m).

6. NUMERICAL RESULTS

The dimensions of the straight through resonators to be considered are shown in
Figure 1. The default values of the other parameters adopted in the present study are
expressed as follows: the tube thickness is 0·81 mm; the porosity is 0·037; the diameter of
the drilling hole is 2·49 mm; and the mean flow velocity is 0·1 Mach.

Figure 12. The effect of the tube thickness on the transmission loss for a long resonator with mean flow velocity
M=0·1. Key same as Figure 11.
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6.1.      

Two resonators, measured by Sullivan and Crocker [2], are initially chosen for analysis
in order to verify the accuracy of the present method. Figures 2 and 3 show the
comparisons of the transmission loss of a short resonator (6·67 cm) and a long resonator
(25·72 cm), respectively. It can be seen that the agreement is good. This confirms that the
present method predicts the transmission loss of a resonator accurately. Further, the other
straight-through resonator used as a component in an actual diesel engine exhaust muffler
is analyzed by the plane wave theory [7] and the present method. The dimensions of this
resonator are: length 16 cm, inner and outer diameters 10 and 22 cm, tube thickness 2 mm,
hole diameter 3 mm and porosity 0·09818. The results obtained by these two methods are
shown in Figure 4. It is seen that the plane wave model predicts a better performance in
the high frequency range. However, the non-plane wave occurs at lower frequencies as that
predicted by the present method and thus the performance becomes poor at higher
frequencies. This phenomenon reveals that a more complicated approach than that of the
plane wave model is required in predicting the performance of a resonator.

The effect of porosity for a short resonator is analyzed and shown in Figure 5. It is seen
that the magnitude and the corresponding frequency of the main noise reduction peak are
raised as the porosity is increased. Similar results are also found in the long resonator, as
shown in Figure 6. However, the transmission loss curves become more complicated.

6.2.      

The resonators to be considered are the same as those mentioned above, long and short
straight through resonators. The dimensions are shown in Figure 1. The effect of mean
flow velocity on the performance of a short and a long straight-through resonator are
shown in Figures 7 and 8, respectively. From these two figures it is seen that the mean
flow has a strong effect on the performance of a resonator. For the short resonator, the
magnitude of the main noise reduction peak is reduced obviously when the mean flow
velocity increases, as shown in Figure 7. However, in Figure 8, the performance of a long
resonator is increased as the mean flow velocity is increased for frequencies below about
2300 Hz, which corresponds to the frequency of the resonance peak in Figure 3. It is also

Figure 13. The effect of the hole diameter on the transmission loss for a short resonator with mean flow velocity
M=0·1: ——, d=2 mm; ----, d=3 mm; –––, d=4 mm; –--–, d=5 mm.
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Figure 14. The effect of the hole diameter on the transmission loss for a long resonator with mean flow velocity
M=0·1. Key same as Figure 13.

seen that the resonance peak at about 2300 Hz is inapparent and the performance is
reduced as the mean flow velocity is increased for frequencies higher than 2300 Hz.

The other parameter to be investigated is porosity. Figure 9 shows the transmission loss
curves of a short resonator with different porosities. The magnitude and the corresponding
frequency of the main peak are raised as the porosity is increased. For a long resonator
with mean flow, however, the main peak is not obvious and the performance is reduced
as the porosity is increased in the frequency range analyzed, as shown in Figure 10. The
effect of the center tube thickness is also studied. From practical consideration, only
thicknesses of 0·5, 1 and 1·5 mm are analyzed. Figures 11 and 12 show the performance
curves of the short and the long resonators, respectively. It is seen that the influence of
the tube thickness on the transmission loss is inapparent. The final parameter studied is
the diameter of the drilling hole. Figure 13 shows the transmission loss curves of a short
resonator with different drilling hole diameters. The frequency and the magnitude of the
main noise reduction peak are both reduced as the hole diameter is increased. But for a
long straight-through resonator the performance is improved as the drilling hole diameter
is increased, as shown in Figure 14.

7. CONCLUSION

A boundary element approach for a straight-through resonator with mean flow has been
developed. The numerical results of a short and a long resonator without mean flow
compared to those published in the literature are good. For a straight-through resonator
without mean flow, the porosity is the most important parameter to affect the acoustic
performance. Either for a short or for a long straight-through resonator, the frequency
of occurrence of the main noise reduction peak is increased as the porosity is increased.

For a straight-through resonator with mean flow, the number of parameters to affect
the acoustic performance is increased. These include mean flow velocity, porosity, tube
thickness and drilling hole diameter. From the results of the numerical analysis, it can be
seen that the tube thickness and the drilling hole diameter do not have a significant
influence on the acoustic performance of a straight-through resonator. For a short
resonator, the effects of porosity are to raise the frequency and the magnitude of the main
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noise reduction peak, but the extent of the influence is not as obvious as that in the case
without mean flow. However, for a long resonator, the increase in porosity just reduces
the performance in the desired frequency range. The mean flow velocity also produces a
significant effect on the performance of a straight-through resonator. For a short
resonator, the increase in mean flow velocity will reduce the transmission loss of the main
peak markedly but the corresponding frequency is virtually unaffected. The increase in
mean flow velocity also eliminates the sharp main noise reduction peak for a long
resonator. However, the transmission loss is increased markedly for frequencies below the
peak frequency. Finally, it is noted that the results for a resonator with mean flow have
to be verified by further experiments.
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