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1. 

Filamentary composite materials are commonly used in several fields of modern technology.
This fact has prompted the need of a sound understanding of the static and dynamic

behaviour of anisotropic structural elements.
In the case of plates or slabs of generalized anisotropy executing small amplitude,

transverse vibrations one must make use of approximate analytical or numerical methods
in a great majority of situations. Excellent analytical and experimental studies have been
performed in this problem area [1–5].

In view of the difficulty in satisfying natural boundary conditions, e.g. null bending
moments normal to hinged edges or zero Kirchhoff force in the case of a free edge,† it
seems that the Rayleigh–Ritz method constitutes one of the most appropriate techniques
for dealing with transverse vibrations of anisotropic plates. As it will be shown in the next
section, another inherent difficulty when dealing with the energy functional corresponding
to vibrating anisotropic plates is the fact that ‘‘popular’’ coordinate functions, when
solving isotropic and orthotropic plate problems, may yield null contributions when
performing the required integrations over the rectangular domain and depending upon the
boundary conditions.

The present paper deals with some numerical experiments when determining the
fundamental frequency of transverse vibration of the anisotropic plates shown in Figure 1
when edge 2 is free and for the following combinations of boundary conditions for the
remaining edges: (a) edges 1, 3 and 4 simply supported; (b) edges 1, 3 and 4 clamped; and
(c) edges 1 and 4 simply supported, edge 3 clamped.

2.        

Using Lekhnitskii’s standard notation [7] and in the case of normal modes the governing
functional is expressed as
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† This condition is, in general, seldom satisfied when using beam functions or polynomial coordinate
functions in the case of isotropic and orthotropic plates [6].
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Figure 1. Anisotropic plates executing transverse vibrations considered in the present study. (a) Case (a), (b)
Case (b) and (c) Case (c).

where W(x, y) is the plate displacement amplitude and v is the circular frequency
corresponding to one of the normal modes of the plate. The present study is concerned
with the determination of the fundamental frequency coefficient V1 =zrh/D22v1 a2 of the
rectangular plates shown in Figure 1.

If one approximates W(x, y) by an expression of the type

W(x, y)2WI (x, y)=$s
N

j=1

AjXj (x)% Y(y) (2)

one observes that for cases (a) (b) and (c) (Figure 1) and since Y(o)=Y(b)=0, the term
containing D1s in expression (1) vanishes once the integration
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is performed.
In an analogous fashion, when considering case (b), one has
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and this implies that
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Accordingly the contribution of D2s disappears for this arrangement of boundary
conditions.

It becomes quite clear then that a functional relation of type (2) will not describe
appropriately the physical phenomenon under study and that it will be convenient to use
a function WII (x, y) where at least some of the intervening terms do not lead to situations
(3) or (6). Some examples will be shown in the next section.

3.  

Determinations of V1 have been performed for cases (a), (b) and (c) of Figure 1 for the
following anisotropic mechanical characteristics [1]: D11/D22 =0·21396, D12/D22 =0·3249,
D16/D22 =0·1690, D2s /D22 =0·5117, Dss /D22 =0·3387.

Case (a). Following reference [8] one employs

WI (x, y)=0s
N
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b

(7a)

with g1 q 1,
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with g1 q 1 and Nq 1 and where the gs are Rayleigh’s optimization parameters.
Case (b)

W1(x, y)=0s
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with g1 q 1,
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Case (c)

WI (x, y)=0s
N

j=1

Aj sin
px
agj1(y2 − 5

3y
2 + 2

3y
4) (9a)

with g1 q 1,
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with g1 q 1 and Nq 1.
Substituting expressions (7), (8) or (9) in the governing functional and requiring that

1J
1Aj

[W]=0 (10)
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T 1

Values of V1 for the anisotropic configuration shown in Figure 1(a)

a/b=5/2 3/2 1 2/3 2/5

Isotropic plate [6] 63·287 24·009 11·685 6·0937 3·008
WI (1 term)* 63·676 24·150 11·725 6·087 2·984
WI (2 terms)* 63·660 24·138 11·71 6·080 2·981
WI (3 terms)* 63·000 23·650 11·40 5·92 2·93

WII (2 terms)† 62·673 23·036 10·619 5·318 2·690
WII(3 terms)‡ 61·662 22·497 10·496 5·020 2·448

* WI (x, y)= s Aj sin
px
g1a

sin py
b

with g1 q 1.

† WII (x, y)=A1 sin px
g1a

sin py
b

+A2(x− y) sin px
g2a

sin py
b

.

‡ WII (x, y)=0A1 sin px
g1a

+A2 sin px
g2a

+A3(x− y) sin px
g3a1 sin py

b
.

one obtains a homogeneous, linear system of equations in the Aj s. A determinantal
equation is finally obtained from the non-triviality condition, its lowest root being the
fundamental frequency coefficient V1 =zrh/D22v1a2. Since V1 is an upper bound, by
minimizing it with respect to the optimization parameters gj , one obtains an optimized
value of V1.

Tables 1, 2 and 3 depict values of fundamental frequency coefficients for cases (a), (b)
and (c) of Figure 1, respectively. The first line of each table contains the eigenvalues of
isotropic plates, for comparison purposes.

In all cases the fundamental frequencies of the anisotropic structural elements have been
computed using (1) WI with one, two and three terms and (2) WII with two and three terms.
One immediately observes the fact that the use of the functional relation WII influences

T 2

Values of V1 for the anisotropic configuration shown in Figure 1(b)

a/b=5/2 3/2 1 2/3 2/5

Isotropic plate [6] 141·106 51·783 24·020 11·880 6·024
WI (1 term)* 141·963 52·166 24·108 11·642 5·260
WI (2 terms)* 141·241 51·517 23·567 11·246 5·036
WI (3 terms)* 140·889 51·356 23·529 11·243 5·022

WII (2 terms)† 141·88 52·092 24·040 11·571 5·156
WII(3 terms)‡ 140·253 50·558 22·735 10·610 4·643

* WI (x, y)=$s
J

j=1

Aj sin2 px
agj%(y2 −2y3 + y4), j=1, 2.

† WII (x, y)=0A1 sin2 px
g1a

+A2(x− y) sin2 px
g2a1(y2 −2y3 + y4).

‡ WII (x, y)=0A1 sin2 px
g1a

+A2 sin2 px
g2a

+A3(x− y) sin2 px
g3a1(y2 −2y3 + y4).
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T 3

Values of V1 for the anisotropic configuration shown in Figure 1(c)

a/b=5/2 3/2 1 2/3 2/5

Isotropic plate [6] 97·806 36·150 16·865 8·2400 3·6907
WI (1 term)* 100·69 38·067 18·162 9·053 4·089
WI (2 terms)* 100·519 37·871 17·987 8·930 4·034
WI (3 terms)* 100·443 37·787 17·920 8·891 4·024

WII (2 terms)† 99·334 36·523 17·351 8·754 4·030
WII(3 terms)‡ 98·287 36·265 16·868 8·214 3·661
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† WII (x, y)=A1 sin px
g1a

(y2 − 5
3y

3 + 2
3y

4)+A2 sin px
g2a

(x− y)(y2 − 5
3y

3 + 2
3y

4).
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4).

considerably the determination of the frequency coefficients, specially for the cases (a) and
(b) considered in Tables 1 and 2.
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