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In the present paper the dynamics of a non-smooth friction oscillator under self-
and external excitation are investigated. The rich bifurcational behaviour
predicted by numerical simulations is compared to experimental results. In order
to predict the period and amplitude of the friction induced vibrations, the friction
force can be modelled by means of friction characteristics. A more detailed look
at the non-smooth transition points of the trajectories shows that an extension of
the friction model is necessary. For that purpose a bristle model, a friction contact
with tangential stiffness and damping and a stochastic friction model are
investigated.

7 1998 Academic Press

1. INTRODUCTION

In everyday life one becomes aware of friction only at such times as when
somebody slips on polished stairs or falls to the pavement having slipped on ice.
A detailed analysis shows that friction results in a nonsmooth non-linearity which
is abundant in nature, machines, structures, transportation systems and other
processes. The economic losses due to friction and wear have been estimated at
5% of gross national product.

In driven systems friction often leads to stick–slip vibrations. This non-linear
effect shows up in many kinds of engineering systems and also in everyday life.
Examples are the stick–slip oscillations of the string of a violin, a singing wine
glass, creaking doors or grating brakes (see Figure 1).

If somebody looses his footing on the ice, from one moment to the next his
motion seems to obey different laws. Similar to this case also for friction induced
self-sustained oscillations different equations are valid for the stick and the slip

Figure 1. Examples of stick–slip vibrations.

0022–460X/98/380435+25 $30.00/0 7 1998 Academic Press



Mass

Belt

F
b

c

  u(t)
  x(t)

0,

m

v0

.   .436

Figure 2. Model of a friction oscillator with self- and external excitation.

mode. Caused by the switch between these two equations, dynamical systems with
friction are often called non-smooth systems where the friction characteristic is a
set-valued mapping which yields discontinuities in the accelerations. So, usual
dynamical systems theory for smooth systems is not applicable to a frictional
system.

Already a one-degree-of-freedom self-excited friction oscillator shows a robust
limit cycle, which yields noise and wear for the examples shown in Figure 1. The
robust limit cycle of stick–slip vibrations can be broken up by an external
harmonic excitation. The resulting system behaviour can exhibit rich bifurcational
behaviour and also chaos. For chaotic trajectories of the stick–slip oscillations the
energy shows a broad band spectrum. For the given examples this would lead to
a reduced noise level and smaller amount of wear.

In the following the dynamical behaviour of a friction oscillator with
simultaneous self- and external excitation will be analyzed by numerical
simulations and experiments.

2. NUMERICAL INVESTIGATION OF A FRICTION OSCILLATOR

2.1.      

The mechanical model of a friction oscillator with simultaneous self- and
external excitation is shown in Figure 2.

The following notation is used: mass m, spring constant c, displacement of mass
x(t), excitation u(t)= u0 cos Vt, damping constant b, normal force FN , belt speed
v0. The friction force, in the following denoted by FR , depends on the relative
velocity vr = v0-ẋ between the belt and the mass. For u(t)=0 one has the case of
pure self excitation. Then the oscillator can be used as a model for bowed
instruments for example. The moving belt serves as an energy source and replaces
the bow. The mass-spring-damper system models the vibrating string. The energy
is transferred from the belt to the oscillator by means of friction with a decreasing
characteristic (colophony), cp. [1]. For u(t)$ 0 an additional external excitation
is given.
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The equation of motion reads

mẍ(t)+ bẋ(t)+ cx(t)=FR (vr )+ cu0 cos Vt. (1)

Using the normalized time

t=v0t, v=X c
m

, (*)'=
d(*)
dt

=
(*� )
v0

, vr = v0 −v0x', (2)

and the damping ratio D= b/(2zcm) as well as the frequency ratio h=V/v0 the
system equation (1) can be transformed to

x0(t)+2Dx'(t)+ x(t)=
FR (vr )

c
+ u0 cos ht. (3)

For the following numerical investigations it is assumed that D=0 and v0 =1
(rad/s). For the description of the friction force a suitable friction model has to
be formulated.

2.2.  

Friction characteristics are a common way to describe the dependence of the
friction force on the relative velocity. During the slip mode (vr $ 0) the friction
force can be determined via the friction coefficient m(vr ).

FR (vr )= m(vr )FN sgn (vr ). (4)

During the stick mode (vr =0) the friction force reads FF = c(x− u) and is
bounded by

=FR == m(v0x'= v0)FN . (5)

Figure 3 shows three different friction characteristics (in the following denoted by
I, II and III). The friction coefficient m(vr )= =FR (vr )=/FN is plotted as a function
of the relative velocity.

For friction characteristic I the friction coefficient does not differ during the
stick mode and the slip mode. Friction characteristic II is the well-known friction
characteristic of Coulomb–Amontons and friction characteristic III is a spline

Figure 3. Used friction characteristics. I: m0 = m(vr $ 0)=0·25; II: m0 =0·4, m(vr $ 0)=0·25; III:
mIII(vr )=0·3/1+1·42=vr =+0·1+0·01v2

r .
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Figure 4. Phase portraits for free vibrations of the friction oscillator.

approximation of a measured friction characteristic, cf. [2]. In general the friction
characteristic is not known in advance and changes with time. For that reason in
the following the system behaviour is analyzed for the different friction
characteristics.

2.3.         

In Figure 4 the system behaviour of the friction oscillator without self- and
external excitation (u0 =0, v0 =0) is shown for different initial conditions and for
the friction characteristics, I–III. With increasing time a point on the trajectories
in the phase plane travels to the right in the upper half plane (x'q 0) and to the
left in the lower half plane (x'Q 0). After a short time the mass sticks on the
ground in the region of the thick line [−m(vr =0)FN /cE xE m(vr =0)FN /c]. For
characteristics II and III there exists a dead zone, which is caused by the decrease
of the friction characteristics.

2.4.         

In the case of pure self excitation (u0 =0, v0 $ 0) one can observe stick–slip
vibrations for the friction oscillator. Figure 5 shows the phase portraits for the
friction characteristics I–III. For characteristics I and II during the slip mode the
solution is represented by arcs of circles corresponding to the solution of the linear
equation. Due to the decreasing characteristic for friction characteristic III self
excitation occurs. As a typical feature of systems with friction the transients for
the three characteristics decay very fast if the initial values lie outside the limit
cycles, cf. Figure 5.

Figure 5. Phase portrait for self excited vibrations of the friction oscillator.
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Figure 6. Friction oscillator with external excitation (friction characteristic II, FN /c=10 [m],
u0 =8 [m]). (a) h=0·75, (b) h=0·50, (c) h=0·25, (d) h=0·20.

2.5.       

 

The harmonically excited linear oscillator with a non-smooth friction
characteristic (u0 $ 0, v0 =0) exhibits qualitatively different types of motions. For
small amplitudes u0 of the excitation,

u0 E m(vr =0)FN /c,

displacements in the range

−m(vr =0)FN /c+ u0 Q xQ m(vr =0)FN /c− u0

are stable equilibrium positions. For larger values of the excitation amplitude
depending on the bifurcation parameter h the friction oscillator shows motions
without stop [Figure 6(a)], motions with one stop [Figure 6(b)], motions with two
stops [Figure 6(c)] and motions with four stops [Figure 6(d)], where stop means
ẋ(t)=0 for a finite time. The qualitative change of the system behaviour for small
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Figure 7. Bifurcation diagram showing the transition points from stick to slip for different
excitation frequencies (friction characteristic II, FN /c=10 [m], u0 =8 [m]).

changes of one system parameter can be summarized by means of a bifurcation
diagram (see Figure 7). This plot shows the displacement x of the mass at the stop
as a function of the frequency ratio h. Obviously for hq 0·55 no regions of sticking
exist in the range investigated. The number of stops increase with decreasing h.
Further numerical investigations can be found in references [3, 4]. The previous
investigations show non-linear effects, so a robust limit cycle for self excitation and
a sensitive parameter dependence for the external excitation occur. Because of the
non-linearity of the system these two effects cannot be superposed. In the following
the system behaviour for simultaneous self- and external excitation (u0 $ 0, v0 $ 0)
is investigated.

2.6.        - 

 

The system behaviour for a fixed set of bifurcation parameters u0, FN /c and h

is represented by the phase trajectories. Figure 8 shows different types of phase
plane plots. In contrast to the system with pure self excitation the system with
additional external excitation exhibits one-periodic solutions [Figure 8(a)],
two-periodic solution [Figure 8(b)], higher-periodic solutions and also chaotic
system behaviour [Figure 8(c)]. For a more global examination of the bifurcational
behaviour of the system, representative points of the trajectories for each set of
bifurcation parameters have been extracted. In the bifurcation diagram the
displacement xA (transition point from stick to slip) is plotted as a function of the
bifurcation parameter h. Figure 9(II) shows the results for friction characteristic

Figure 8. Phase portraits (friction characteristics III). (a) h=0·9, FN /c=10 [m], u0 =0·5 [m]; (b)
h=1·15, FN /c=10 [m], u0 =0·5 [m]; (c) h=1·915, FN /c=10 [m], u0 =1·0 [m].
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Figure 9. Bifurcation diagrams (friction characteristic II, III) FN /c=10 [m], u0 =0·5 [m].

II and Figure 9(III) for friction characteristic III. In the bifurcation diagrams one
can distinguish one-periodic and higher-periodic solutions. For large excitation
amplitudes u0 also period doubling cascades have been found, e.g., [5, 6].

In order to give an overview of the system behaviour depending on two
bifurcation parameters, parameter maps have been calculated, cf. Figure 10. The
periodicity of the solutions is visualized by a colour code. In the parameter map
regions of one-periodic orbits are marked in light grey, regions of five- or
higher-periodic orbits including chaos are represented in black. So, for each set
of bifurcation parameters FN /c and h for fixed u0 =0·5, the corresponding system
behaviour can be determined. Parameter maps for fixed FN /c and variation of h

and u0, showing the well-known Arnold tongues can be found for example in
reference [6].

Comparing the results gained for the different friction characteristics shows that
the global bifurcational behaviour is similar. For small values of h the limit curves
of the lowest two light grey regions are nearly identical. However, for high values
of h and FN /c the tongues of high-periodic motions disappear for friction
characteristic II. The number of tongues characterizing orbits of constant
periodicity is smaller for characteristic II than for characteristic III.

3. FURTHER INVESTIGATIONS

In general bifurcation and stability analysis for smooth non-linear systems is
done by means of numerical tools such as BIFPACK or PATH. In order to apply
those tools for the non-smooth friction oscillator the friction characteristics have
to be smoothed [1, 7]. A verification of this smoothing procedure for stiff
smoothing functions has been done comparing the bifurcation behaviour of the
original non-smooth and the smoothed system. It turns out that both results agree
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very well if the smoothed friction characteristic has a steep slope in the origin.
Furthermore, it is possible to reduce the dynamics of the friction oscillator to a
one-dimensional map. This mapping approach is based on a Poincaré map that
determines the points in which the trajectories leave the stick plane in the
three-dimensional state space. The reason for the reduction of the dynamics is an
additional equation for the end of the stick phase. This equation gives a relation
between the three state variables.

In reference [5] it has been shown that the mapping approach is very helpful
to gain insight into the different routes to chaos like period doubling and
intermittency. Additionally, bifurcation analysis and the determination of
Lyapunov exponents has been done for the non-smooth system.

In addition, the cell mapping approach has been applied [8]. Results are the
domains of attraction for co-existing solutions and the transient times for different
initial conditions.

Figure 10. Parameter maps (friction characteristic II, III): u0 =0·5 [m].
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Different techniques for the analysis of time series [9] of non-smooth mechanical
systems have been tested in references [10] and [6]. Also, signal and model-based
algorithms have been applied for the determination of the embedding dimension
using the method of False Nearest Neighbours, the Lyapunov exponents and for
the reconstruction of the attractor.

In the following the chosen models for the system and the friction force will be
verified by means of experiments.

4. EXPERIMENTAL SETUP

For the experimental investigation of the friction oscillator a one-degree-of-free-
dom oscillator has been chosen consisting of the pendulum, 1, which is supported
by two air-pressurized bearings, 2 and 3 [see Figure 11(a)]. Additionally to the
rotational degree of freedom (axis j) the pendulum can be moved horizontally in
the direction of j. The pendulum is equipped with two springs, 4, [Figure 11(b)].
In the case of the experimental investigations, the self excitation is done by means
of a rotating shaft, 5, with disk, 6, instead of the belt. The shaft is supported by
two bearings, 7. (So, in order to investigate metal as contact material the model
Figure 2 with a translational degree of freedom has been transformed to a
rotational oscillator). In the setup Figure 11(b) the shaft does not have any contact
with the pendulum and the air bearings. The pendulum is connected to the
cylindrical friction body, 9, by means of the support unit, 8, [Figure 11(c)]. The
whole pendulum with the friction body is pulled by additional ropes and dead
masses fixed at the traverse, 10, in direction of j and pressed against the rotating
disk. Changing the friction body, 9, and the disk connected with the shaft different
friction materials can be investigated. All contact forces, i.e., the friction and the
normal forces, are measured directly by means of a three component force
transducer.

The external excitation of the base of the spring (Figure 2) is transformed to
a force excitation which can be done without rigid body contact by means of a
magnetic excitation, cf. reference [11]. Measurements during the free oscillations
of the pendulum without friction contact lead to a damping coefficient DQ 0.005
including the material damping of the springs and the damping of the air bearings.
During the measurements the displacement and the velocity of the end point of
one arm of the pendulum are sensed by a laservibrometer. Incorporating the
geometric properties and the identified system parameters the system equation can
be transformed to equation (1). For the following results the transformed
parameters are given in the legend of the figures. If not specified elsewhere the axes
are scaled in the following way: time t in [s], forces in [N], displacement in [mm]
and velocity in [mm/s].

5. DETERMINATION OF THE FRICTION MODEL

In order to determine an appropriate friction model in the first step the
rotational degree of freedom is fixed by means of an additional pair of air bearings.
The disk is driven with constant velocity. For a set of measurements with different
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velocities the friction coefficient is calculated by the ratio of the measured time
dependent friction force and the normal force. This time dependent friction force
exhibits a random feature which—in a first approximation—can be supposed to be
Gaussian (see also references [7, 12]). The mean value (solid line) and the standard
deviation (dashed line) are plotted for different relative velocities [see Figure 12(a)].

The friction characteristic decreases for increasing relative velocity. In order to
avoid a change of the contact conditions the contact has been cleaned during the
time consuming tests which results in small jumps of the mean values. In order
to compare the friction characteristics with those given in the literature and to
insert them into the simulation software a curve fit has also been done. Here a
fit with an exponential function of the form

m̃(vr )= b0 + b1 eb2vr (6)

Fig. 11(a), (b).
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Fig. 11(c).

Figure 11. Experimental setup.

seems to be most accurate. A comparison of the friction characteristics for
different contact materials and normal forces can be found in reference [7].

6. EXPERIMENTAL RESULTS

6.1.  

The results of the measurements for the friction oscillator performing free
oscillations are plotted in Figure 13. In the friction characteristic for the friction
materials steel–steel there is no jump at the transition point from stick to slip.
Corresponding to the results from the simulation Figure 4(I) this means that there
is no dead zone in the phase curves (see Figure 13). Due to the non-smooth model
for the friction force all the displacements in the range of the thick line are stable
equilibrium positions. In the measured force signal [Figure 13(c)], the sign of the
friction force jumps for a change of the relative velocity (t=0·23 [s], t=0·35 [s]).

Figure 12. Measurements (materials: steel-brass): (a) friction characteristic, (b) spline-approxi-
mation. Key: . . . , mean value; ——, exponential function; - - - -, polynomial function.
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Figure 13. System behaviour: Free oscillations (materials: steel–steel): (a) measurement, (b)
simulation, (c) friction force (FN =18 [N], c=3956 [N/m], b=0·768 [Ns/m], m=6·08 [kg]).

After a short slip phase, for tq 0·35 [s] the friction body sticks to the disk. The
friction force oscillates around a mean value of 3[N] which is equal to the spring
force in the equilibrium position, see section 7.

In the following the disk is driven with constant angular velocity.

6.2.      

The amount of energy transferred by self excitation from the driven disk to the
oscillator depends on the magnitude of the decrease of the friction characteristics
between sticking and slipping. Like the model shown in Figure 2 the experiments
are damped, so in order to get self excitation the energy transferred from the disk
to the oscillator must be larger than the energy dissipated during one period of
the oscillations. Measurements have shown, that the decrease of the friction
characteristics for the friction materials steel–polyurethane is larger than that for
the materials steel–aluminum, steel–brass and steel–bronze, So, this pair of
materials leads to the largest limit cycle amplitude. Additionally, the contact area
is treated with colophony.

The measured phase curve, Figure 14(a), for pure self excitation consists of a
stick line representing constant velocity and the part of an ellipse during the slip
mode. In contrast to the simulations, see section 2, the velocity during the stick
mode oscillates slightly due to asynchronisms of the angular velocity of the driving
shaft and small play in the gear box. For the transition from slip to stick there
are small overshoots of the velocity signal.

Due to the stochastic component of the friction coefficient the transition point
from the stick to slip differs slightly. So, in contrast to the simulations the system
behaviour for the measurements is not periodic. In Figure 14(b) the time
dependent friction force is plotted. For the transition from stick to slip (t=0·9
[s]) the friction force jumps. The next jump occurs for the transition from slip to
stick (t=1·0 [s]). This jump in the contact force results in decaying oscillations
of the friction force. The period of those oscillations equals the period of the
transients in the velocity signal. Figure 14(c) shows the identified friction
characteristic that exhibits a decrease for the transition from stick to slip.

For pure self excitation there is no bifurcational behaviour. In order to carry
out experiments for the bifurcational behaviour of the friction oscillator external
excitation is done by means of the magnetic excitation.



–20

–40

0

–1.0 –0.5 0.0

x

0.5 1.0

x•

(a)

5

0

10

0.0 0.5 1.0

t

1.5 2.0

F
R

(b)

0.5

1.0

–10 0 10

vr

20 30 40

(c)

    447

6.3.        

 

The numerical simulations of the system behaviour in Figure 6 have revealed
the bifurcational behaviour of the friction oscillator with pure external excitation.
The results from the experiments are shown in Figure 15. The bifurcational
parameter is the excitation frequency. One can observe motions without stop
[Figure 15(a)], motions with one stop [Figure 15(b)], motions with two
stops [Figure 6(c)] and motions with four stops [Figure 6(d)]. The results are
qualitatively similar to the results gained from the simulations, cf. Figure 6. For
the sticking mass a high frequency oscillation can be observed in the velocity
signal.

The corresponding bifurcation diagram under variation of the frequency ratio
h is presented in Figure 16. One can observe the bifurcation structure from
solutions with one stop to solutions with multiple stops. A comparison with the
bifurcation diagram from simulations (Figure 7) shows again a good agreement.
The only difference is, that in the experiment the stochasticity of the friction force
results in a cloud of points instead of a single point as in the simulations.

6.4.    

A comparison of the results from measurements and simulations shows that the
global system behaviour of the friction oscillator, i.e., the amplitude and the period
of the oscillators, can be predicted by the simulations. The stochastic component
of the friction coefficient, however, has not been included in the simulations yet.
Moreover, the transients in the transition regimes from slip to stick do not occur
in the simulations. A more detailed insight in the dynamics in this regime is given
in the following. (System parameters Figures 17–19: m=6·08 [kg], b=0·786
[Ns/m], c=3956 [N/m], FN =5 [N], u0 =0·65 [mm]).

Figure 17 shows the experimental results for the system with pure external
excitation and two stops during one period of the excitation. Due to the
oscillations at the beginning of the stick phase, cp. the small twiggles in the phase
curves Figure 17(a) for ẋ=0 and the oscillations of the friction force [Figure
17(b)], the transition of the friction coefficient takes place in the range of
−vH Q ẋQ vH (here vH 1 1·5 [mm/s]) instead to ẋ=0. The transition shows a

Figure 14. System behaviour for pure self excitation (materials: steel–polyurethane): (a) phase
plane plot, (b) friction force, (c) friction characteristic.
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Figure 15. Friction oscillator with external excitation (experiments). (a) h=0·5, (b) h=0·44, (c)
h=0·28, (d) h=0·18.

dynamic with limited stiffness. With an increase of the excitation frequency, cf.
Figures 18(a) and (b), vH and the hysteresis increase.

Due to the fact that the relative displacement and the relative velocity are sensed
directly at the friction contact the dynamics of the pendulum cannot be responsible
for the dynamics of the friction characteristic. A comparison of these results for
the materials steel–polyurethane with the experimental results for stiffer contact
materials (steel–aluminum) shows that the frequency of the transients is larger for
the stiffer contact material [Figure 19(b)]. As a consequence the hysteresis is much
smaller for the stiffer material. Results similar to those in Figure 19(b) can also
be found in references [13] and [2].
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These phenomena cannot be predicted by the model Figure 2. The following
investigations have been initiated by the work in reference [13]. Thus, in the
following the mechanical model will be extended so that both phenomena, the
stochastic component of the friction coefficient and the dynamics of the friction
characteristics, can be predicted.

7. EXTENDED MODELS

7.1.  

For the contact of two rough technical surfaces the external forces lead to elastic
and plastic deformations of the contacting asperities. The results presented in
section 6.4 suggest that stiffness and damping for the deformations tangential to
the slip plane have to be taken into account. Simplified models of single asperity
contacts can be found in references [14] and [15]. Here the bristle model is used,
cf. reference [16]. Instead of two elastic bunches of asperities this model supposes
one bunch of rigid bristles and one bunch of elastic bristles with stiffness kB ,
(Figure 20). The dependence of the friction coefficient on the relative velocity is
modelled by means of the number of active bristles during the stick mode (MH )
and the slip mode (MG ). (A more detailed description of this model and the
parameters is given in reference [7]).

Figure 16. Bifurcation diagram showing measured transition points from stick to slip for different
excitation frequencies (experiments, cf. simulations Figure 7).

Figure 17. Dynamics at the transition from stick to slip (materials: steel–polyurethane), excitation
frequency: V=11·5 [1/s], (a) phase plane plot, (b) friction force and (c) friction characteristic.
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Figure 18. Change of the friction characteristic with a variation of the excitation frequency
(materials: steel–polyurethane): (a) V=37·7 [1/s], (b) V=62·8 [1/s].

Figure 19. Dynamics of the friction contact during the stick–slip motion (materials:
steel–aluminum; excitation frequency: V=10·5 [1/s]): (a) phase plane plot, (b) friction force and (c)
friction characteristic.

Figure 21(a) shows the system behaviour resulting from the simulations on the
basis of the bristle model. Comparable to the measurements presented in reference
[11] the maxima of the friction force vary from one transition point to another.
The maximum of the friction force which equals the spring force depends on the
position of the bristles at the start of the stick phase and varies from one transition
point to the next [Figure 21(b)]. During the slip mode the friction force exhibits
a stochastic component since due to the large displacements the contact for single

Figure 20. Bristle model.
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Figure 21. System behaviour of the friction oscillator with the bristle model: (a) friction force,
(b) spring force and (c) friction force.

bristles are broken again and again and new contacts for statistically placed
bristles have to be calculated. The stiffness (and the introduced damping) of the
bristles leads to the transients at the transition from slip to stick, see Figure 21(c)
and compare the experimental results, [7].

Figure 22. Bifurcational behaviour of the friction oscillator with the bristle model, cf. Figure 9
(II): MH =24, MG =15, (a) mB =0·0005, (b) mB =0·001, (c) mB =0·002.
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Figure 23. Bifurcation diagram of the friction oscillator with external excitation and simplified
stochastic friction model, cf. Figure 16.

In the following the influence of the mean value for the stochastic bristle location
mB for each new bristle contact is studied. As expected for a small value of the
mean value mB the bifurcational behaviour approximates the results for the
deterministic model Figure 9(II), see Figure 22(a). With an increase of the
parameter mB the points of the periodic solutions in Figure 9(II) are spread to a
cloud of point, see Figures 22(b) and (c).

So, by means of the bristle model the phenomena discussed in section 6.4 can
be predicted. However, the determination of a large number of transition points
for each bristle leads to large computation times during integration. In the
following the effect of the stochastic component and the dynamics of the friction
characteristic will be separated and two simple models will be presented leading
to smaller CPU-times than those required for the bristle model.

7.2.    

The friction coefficient can be divided into a deterministic and a stochastic
component:

m(vr )= mD (vr )+ m̃(vr ). (7)

Figure 24. Model of the friction oscillator with contact damping bR and contact stiffness cR .
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Figure 25. Free oscillations for impulse excitation of the sticking contact (materials: (a)
steel–aluminium, (b) steel–polyurethane).

With the system parameter from sections 2 and 6 and a Gaussian distribution of
the stochastic component m̃(vr ) (zero mean value and standard deviation s=0·02)
the system behaviour for pure self excitation equals the results from the
measurement (see Figures 16 and 23).

7.3.         

A simple approach can be gained gathering all the bristles to one single spring
(stiffness cR ) and a damper (damping coefficient bR ), cf. Figure 24 and reference
[13]. The same model has been investigated in reference [17]. However the contact
stiffness and damping has been introduced for reasons of the regularization of the
non-smooth problem.

If the absolute displacement of the single asperity in Figure 24 is denoted by
y, the system equation for the sliding block reads

mẍ+ bẋ+ bR (ẋ− ẏ)+ cx+ cR (x− y)= cu. (8)

The equation of motion for the asperity is given by

bR (ẏ− ẋ)+ cR (y− x)=FR . (9)

The friction force during the slip mode (ẏ$ 0) reads

FR = m(vr )FN sign (v0 − ẏ) (10)

Figure 26. System response of the model with contact stiffness and damping for pure self
excitation (materials: steel–polyurethane): m=6·08 [kg], c=3956 [N/m], b=0·768 [Ns/m],
cR =150 000 [N/m], bR =150 [Ns/m], m0 =0·4, m=0·25, FN =25·0 [N], v0 =0·0025 [m/s].



20

0

–20
5.55.0 6.0 6.5 7.0

t

x•

(a)
20

0

–20
–0.5 0.0 0.5

x

x•

(b)

2

0

–2
5.55.0 6.0 6.5 7.0

t

F
R

(c)
0.5

0.0

–0.5
–10 0 10

x•

(d)

20

0

–20
–0.5 0.0 0.5

x

x•

(a)
2

0

–2
5.55.0 6.0 6.5 7.0

t

F
R

(b)

0.0

–0.2

0.2

–10 0 10

x•

(c)

.   .454

Figure 27. System response from simulations for pure external excitation (materials:
steel–polyurethane): m=6·08 [kg], c=3956 [N/m], b=0·768 [Ns/m], cR =150 000 [N/m], bR =400
[Ns/m], m0 =0·4, m=0·4, FN =5·0 [N], V=10·50 [1/s], u0 =0·00065 [m], cf. Figures 15(c) and 17.

during the stick mode (ẏ=0) the friction force equals

FR = bR (ẏ− ẋ)+ cR (y− x). (11)

The transition point from stick to slip is reached for FR = m0FN , the slip mode
finishes for ẏ= v0. The still unknown stiffness cR and the damping bR can be
measured applying a small impulse to the block, i.e., the pendulum in our
experiments. (For the model in Figure 2 during the stick mode the displacement
should equal zero!). Figure 25 shows the transient response of the systems for two
different contact materials. From the frequency of the resulting oscillations the
contact stiffness can be evaluated, while the decay of the oscillations determines

Figure 28. System response from simulations for pure external excitation (materials:
steel–aluminum): m=6·08 [kg], c=3956 [N/m], b=0·768 [Ns/m], cR =400 000 [N/m], bR =150
[Ns/m], m0 =0·25, m=0·25, FN =5·0 [N], V=10·50 [1/s], u0 =0·00065 [m], cf. Figure 19.
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Figure 29. Phase plane plots of the friction oscillator for simultaneous self- and external
excitation, (measurement): (a) V=13·8 [1/s], (b) V=15·3 [1/s], (c) V=18·7 [1/s].

the damping. Figure 26 shows the results from the simulations on the basis of the
identified contact parameters for pure self excitation.

One can see the overshoots of the friction force and the velocity known from
the measurements, (Figure 14). The dynamics of the friction characteristic in the
region of the transition from slip to stick can be predicted by means of the
extension of the model. In Figure 27 (Figure 28) the results from the simulation
for pure external excitation and the materials steel–polyurethane (steel–aluminum)
are plotted, cf. also Figures 15(c) and 17 (Figure 19).

By means of the introduced extensions of the model Figure 2 the observed
phenomena can be predicted. In the following the chosen model will be verified
for the simultaneous self- and external excitation. Due to the sensitivity of the
system responses to small changes to the parameters or changes to the initial

Figure 30. Probability p of a transition point from stick to slip for: (a), (c) deterministic friction
model (section 7.3) and (b), (d) stochastic friction coefficient (s=0·015).
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conditions the comparison of the bifurcation diagrams from measurements and
simulations is a very sensible tool for the verification of the chosen model.

8. COMPARISON OF THE SIMULATIONS BASED ON THE EXTENDED
MODEL WITH THE EXPERIMENTS FOR SIMULTANEOUS SELF- AND

EXTERNAL EXCITATION

The simultaneous self- and external excitation is done by means of driving the
disk with constant velocity and exciting the pendulum by magnetic forces.
Depending on the bifurcation parameters, here the excitation frequency and the
disk speed, different types of motions can be observed. In the following we want
to compare the bifurcational behaviour observed in the experiment with the results
of our simulations based on the model Figure 24. The identified system parameters
are: m=5·632 [kg], b=0·768 [Ns/m], c=5610 [N/m], v0 =0·001 [m/s],
u0 =0·0005 [m], FN =14 [N]; materials: steel–polyurethane. The ‘‘one-periodic’’
solution Figure 29(a) shows oscillations in the transition regime from slip to stick
due to the tangential contact stiffness. Because of the stochastic component of the
friction coefficient the displacement for the transition from stick to slip is not
constant. Figures 29(b) and 29(c) show higher periodic orbits.

The stochasticity of the measured signals is handled in the following way: The
displacements in the transition regime xA ,min Q xQ xA,max are divided into K classes
of the width B=(xA,max − xA,min)/K. So, the probability p of a transition point from
stick to slip in the Lth class results from the ratio of the number of transition
points in the class L to the number of measured transition points (here 0300),
see Figure 30. Due to the non-linearity the probability distribution in Figure 30(d)
is not Gaussian.

Following this way of handling the measured data a bifurcation diagram has
been measured, [Figure 31(a)]. In this diagram with the excitation frequency as
bifurcation parameter the probability is visualized by means of the given colour
code. Black marked regions correspond to transition domains with high
probability, a transition point in the light grey marked regions occurs with low
probability.

In Figure 31(a) there are three islands with a small transition domain. Two
islands overlap for 7 [1/s]QVQ 9 [1/s]. For Vq 9 [1/s] the transition domain of
the first island is left and the solution jumps completely to the domains in the
second island. For Vq 16 [1/s] the transition from stick to slip takes place in the
interval between x=0·1 [mm] and x=0·5 [mm]. The results from the simulations
[Figure 31(b)] also predict the three islands that are inclined, so the displacements
decrease for increasing V. For V=9·75 [1/s] there is a higher periodic solution
with overlapping islands. In the range of Vq 16·5 [1/s] the transition from stick
to slip takes place in the interval between x=0·1 [mm] and x=0·45 [mm]. A more
detailed insight into the different solutions and a discussion of the winding number
can be found in reference [5].

So, by means of the proposed extensions of the mechanical model and the
friction model it is possible to describe the bifurcational behaviour observed in the
experiments.
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Figure 31. Bifurcation diagram of the friction oscillator with simultaneous self- and external
excitation: (a) measurement, (b) simulation (cR =4 000 000 [N/m], bR =400 [Ns/m], m0 =0·8,
m=0·55, FN =14 [N], u0 =0·0005 [m], s=0·015).

9. CONCLUSIONS

Based on a linear model for the mechanical oscillator and a non-smooth friction
model for the contact, the dynamics of the non-smooth system have been
investigated numerically for pure self excitation, pure external excitation and
simultaneous self- and external excitation. In the presence of the external
excitation rich bifurcational behaviour can be observed, which shows a sensitive
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dependence on the bifurcation parameters. The results for the three types of
excitation have been verified experimentally, also bifurcation diagrams have been
measured for the friction oscillator with external excitation and simultaneous
self- and external excitation. For the prediction of the period and the amplitude
of the solutions in the investigated parameter region the simple model of a friction
oscillator is accurate enough and easy to implement to the numerics. However, a
more detailed look shows that stochastic features of the signal and oscillations at
the non-smooth transition points observed in the experiments cannot be predicted.
More accurate are the simulation results on the basis of a bristle model proposed
in reference [6] that models the elastic and plastic deformations of the contacting
asperities. The solution procedure for the bristle model, however, demands large
computation times. More efficient are two simplified models comprising the
required stochastic features and the dynamics in the transition regimes. The first
one, also investigated in reference [13], reduces the large number of bristles to one
tangential contact spring and damper; the second simplification adds a stochastic
component to the deterministic friction coefficient. The choice of the appropriate
model has to obey the well-known rule that the model should be complex enough
to cover the phenomena, but should be as simple as possible.
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