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The problem of vertical non-linear vibrations of a single-span suspension bridge
due to a random stream of moving vehicles is considered. The inertia forces of
car bodies and vehicle suspensions are taken into account because each vehicle
is idealized by a set of viscoelastic oscillators. Vehicle arrivals at the bridge as well
as the vehicle types and the masses of the truckloads are assumed to be random
variables. The bridge model is defined as flat and geometrically non-linear. The
numerical simulation method is developed to determine expected values and
standard deviations of the bridge response. Solutions for the bridge deflections,
the tension of cables and bending moments at the girder are presented and
compared with results which have been calculated in simplified cases when a train
of concentrated forces moving in the dynamic or static conditions idealizes
vehicular traffic loads.
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1. INTRODUCTION

In recent literature on probabilistic dynamics of highway bridges, the moving load
model is mostly assumed to be an infinite stream of moving forces which arrive
at the span at random times and have random values. The inertia forces of car
bodies, the vehicle springing and the distances between the vehicle axles are
neglected. Thus, analytical methods have been developed to determine the
probabilistic characteristics of the bridge response. For instance, this approach has
been presented by Tung [1, 2], Iwankiewicz and Śniady [3], Sieniawska and Śniady
[4], Zibdeh and Rackwitz [5]. Also Bryja and Śniady [6, 7] have approached the
stochastic dynamic problem of a highway suspension bridge from this point of
view.

In this paper the simulation method is applied to probabilistic dynamic analysis
of a single-span suspension bridge under the action of traffic loads. The bridge
model is defined as flat yet the geometrical non-linearity of the construction is
considered. The highway traffic load is modelled by a set of viscoelastic oscillators
corresponding with vehicles’ axles. So, the vertical inertia forces and suspensions
of multi-axle road vehicles are taken into account. The inter-arrival times of the
moving vehicles are regarded as random variables. It is also assumed that the
vehicle types and the masses of the truckloads are random. The expected values
and standard deviations of the dynamic bridge response due to a random infinite
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stream of moving vehicles have been determined by the use of the simulation
method. Solutions are presented for the tension of cables, bridge deflections and
bending moments at the bridge beam. In comparison, calculations are performed
for the simplified cases in which vehicles are modelled by forces moving under
dynamic or quasi-static conditions.

2. BASIC ASSUMPTIONS

The bridge model is regarded as a single-span prismatic beam which is simply
supported and underslung by means of vertical hangers to two whipped cables (see
Figure 1). The cables are anchored at their ends and movable at their supporting
points on the undeformable pylons. The dead load curve of the cable within the
span of the beam forms a parabola z(x)=4x(l− x)f/l2, the other segments being
rectilinear. The mass of the bridge m is assumed to be uniformly distributed and
constant along the length of the span. In the paper the vertical vibrations of the
bridge are considered with account taken of the cables geometrical non-linearity.

The integro-differential equation of vertical vibrations w(x, t) under the live
load p(x, t) has the form

EJwIV(x, t)−2H(t)w0(x, t)

+
16kf
l2 g

l

0

w(x, t) dx+ cẇ(x, t)+mẅ(x, t)= p(x, t), (1)

as was defined by Bryja and Śniady [6, 7]. EJ is the flexural rigidity of the beam,
m is the mass of the bridge, c denotes the damping coefficient and ( · )'= 1/1x,
( : )= 1/1t. The stiffness factor of a single cable is defined as

k=(8f/l2)(EcAc /Lc ), Lc =g(L)

cos−3 b dx, (2)

where Ec is the cable’s modulus of elasticity and Ac is the cable’s cross-section area.
H(t) denotes the all-horizontal component of the cable tension which is the sum

Figure 1. Model of a bridge.
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of the initial (dead-load) value H0 =mgl2/16f and the vibrational increment DH(t)
defined by the integral

DH(t)= k g
l

0

w(x, t) dx, H(t)=H0 +DH(t). (3)

The increment of the cable tension is a function of displacements w(x, t) so
equation (1) is non-linear.

The problem of non-linearity is to be solved here by a numerical method based
upon the assumption that equation (1) is considered as linear within each
sufficiently short space of time (time step). At each time step the increment of the
cable tension, expressed as DH(t)= hH0 is initially predicated by the parabolic
extrapolation of the parameter h defined by the formula

h(i) = 3hi−1 −3hi−2 + hi−3. (4)

After solving equation (1), the increment of tension and corresponding parameter
hi are obtained from the relationship (3). The predicated value h(i) is determined
by values calculated in previous time steps: hi−1, hi−2, hi−3.

The vertical deflections of the bridge are assumed to be of sine series form,

w(x, t)= s
n

qbn (t) sin (npj)= qT
b (t)s(j), (5)

in which qb =col (qb1, qb2, . . . , qbnb ), s=col (sin pj, sin 2pj, . . . , sin nbpj), j= x/
l$ [0, 1] and the symbol ( · )T denotes the transposition operator. Upon taking the
variations of solutions in the form of vector 1w= s(j), the equations of Galerkin’s
method can be formulated as

$EJ g
l

0

ssIVT dx−2H0(1+ h) g
l

0

ss0T dx+16kf
l2 g

l

0

s0g
l

0

sT dx1 dx%qb

+0c g
l

0

ssT dx1q̇b +0m g
l

0

ssT dx1q̈b =g
l

0

sp dx. (6)

As a result the set of ordinary differential equations is obtained in the matrix form

Bb q̈b +Db q̇b +Kbqb =Fb , (7)

where

Kb =
EJ
2l3

{d4}+
H0

l
(1+ h){d2}+64kfggT, Bb =

ml
2

I, Db =2a1v1Bb ,

Fb =g
l

0

sp dx,

I=diag (1, 1, . . . ), {d}=diag (p, 2p, . . . ), g=col 01p , 0,
1
3p

, 0, . . .1.
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Figure 2. Single oscillator.

Figure 3. Load pattern of a bridge.

Damping properties of the bridge are taken according to the viscous damping
model: Db = mBb . The damping coefficient is estimated as m=2a1v1, in relation
to the fraction of the critical damping a1 regarded for the first mode of vibrations
with natural circular frequency v1.

The theoretical model of a road vehicle is assumed to be a set of viscoelastic
oscillators. A single ith oscillator is shown in Figure 2, the traffic load model—in
Figure 3. The inertia forces of the car body are taken into account whereas the
inertia forces of unsprung masses Mi are neglected. Goi =(Moi +Mi )g denotes the
part-weight of a vehicle (counted for a single axle). The distances between
oscillators are equal to the distances between vehicle axles. The vehicles arrive at
the bridge in the static equilibrium state and move at a constant velocity v. The
pavement irregularities are neglected.

The dynamic response of a bridge under a semi-infinite random stream of
vehicles is considered. Traffic flow is characterized by three basic random
parameters: q—time interval between two successive vehicles, K—type of a
vehicle, Mt—truckload mass. Usually the arrival process is assumed to constitute
the stationary Poissonian process with the intensity l [8, 9]. It allows unreal cases
when q:0 or q:a. In this paper the random variable q has the probability
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Figure 4. Probability density function of random variable q (time interval between two vehicles);
(-----) the Poissonian distribution, (—) the bi-cut exponent distribution.

density function p(q) in the form of the bi-cut exponent distribution [10] shown
in Figure 4 and defined by the formula

p(q)=6rl e−lq

0
for
for

qmin Q qE qmax

qE qmin or qq qmax7, (8)

where r=1/(e−lqmin −e−lqmax), qmin = dmin /v, qmax = dmax /v. The symbols dmin , dmax

denote the minimum and the maximum distance between vehicles at velocity v.
The distances between successive vehicles are equal to dj = vqj , j=1, 2, . . . . The
sequences of random numbers qj satisfying formula (8) are generated by making
use of the Neumann elimination method [11].

The road vehicle type K is a discrete random variable with the probability
density function in the form of jump distribution illustrated in Figure 5, where Pj

denotes the probability of the event when a vehicle of the jth type arrives at the
bridge, nK is the number of vehicle types. Successive vehicles are of the types Kj ,
j=1, 2, . . . . The sequences of random numbers Kj are generated by use of the
method of inversion of distribution function [11].

Figure 5. Jump distribution of random variable K (vehicle type).
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The truckload mass Mt for successive vehicles varies randomly in the continuous
interval [0, Mt,max ]. Mt,max is the maximum mass determined for every vehicle type.
It is assumed that Mt = zMt,max , where the truckload rate z is a random continuous
variable with the uniform probability distribution in the interval [0, 1]. Successive
vehicles have the truckload mass Mt,j = zjMt,max,j , j=1, 2, . . . . To generate
sequences of random numbers zj the standard numerical procedure may be
adopted.

3. ESTIMATION OF THE BRIDGE RESPONSE CUMULANTS

By applying the method presented by Klasztorny and Langer [12], the matrix
equation of motion of the bridge and moving load system can be formulated in
the form

Bq̈+Dq̇+Kq=F, (9)

where

B(t)=$Bb

0 b S{Mo}
{Mo} %, D(t)=$ Db

−{co}ST b 0
{co}%, F(t)=$SGo

0 %,
K(t)=$ Kb

−{ko}ST − (v/l){co}CT{d} b 0
{ko}%. (10)

The vector of generalized co-ordinates q=col (qb , qo) consists of the ‘‘permanent’’
subset qb relating to the bridge and the ‘‘ephemeral’’ subset
qo = col (qonr , . . . , qoi , . . . , qonl ) which describes the vibrations of the oscillators
directly acting on the bridge at the moment t. The diagonal matrices
{Mo}=diag (Monr , . . . , Moi , . . . , Monl ), {ko}=diag (konr , . . . , koi , . . . , konl ),
{co}=diag (conr , . . . , coi , . . . , conl ) and column matrix Go =
col (Gonr , . . . , Goi , . . . , Gonl ) contain the oscillators’ parameters. Columns of
matrices S(t)= [Snr , . . . , Si , . . . , Snl ] and C(t)= [Cnr , . . . , Ci , . . . ,Cnl ] are
function vectors of the form

Si (t)=6s(ui (t)/l)
0

for
for

ui $ [0, l]
ui ( [0, l]7, Ci (t)=6c(ui (t)/l)

0
for
for

ui $ [0, l]
ui ( [0, l]7, (11)

where ui (t)= vt− ai , c=col (cos pj, cos 2pj, . . . , cos nbpj).
By making use of the Newmark method in the unconditionally stable variant,

the equation of motion (9) has been solved numerically for the random samples
of traffic load. Let U(t) denote the bridge response in question—either deflection
w(x, t) or bending moment M(x, t)=−EJw0(x, t) at the beam cross-section, or
the vibrational increment of the cable tension DH(t). So, one has

U(t)= 8 sT(j)qb (t)
(EJ/l2)sT(j){d2}qb (t)

2klgTqb (t)

for
for
for

w(x, t)
M(x, t)
DH(t) 9. (12)
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In order to calculate the probabilistic parameters of the bridge random response,
the following hypothesis has been formulated—the bridge response U(t) is a
stationary ergodic randomprocess for t�0. This hypothesis is going to be confirmed
by numerical analysis. Based on the ergodic properties, it can be stated that
probabilistic parameters of the response process U(t) can be determined from their
empirical counterparts obtained by time-averaging of one simulated process sample
[13].

For such a process U(t), the first and second order moments are defined by
well-known formulae [13, 14],

m1(U, t)=
1
t g

t

0

U(t) dt ——:
t:a

E[U(t)]=const, (13)

m2(U, t)=
1
t g

t

0

U2(t) dt ——:
t:a

E[U2(t)]=const, (14)

in which E[ · ] denotes the expected value. In the case considered the response U(t)
is calculated from equation (12) by using the numerical solution of equation (9)
obtained for the random sample of traffic load. The long enough observation time
t is equally spaced with the step h=Dt�t. Thus, the process U(t) is randomly
simulated at equidistant time points tj = jh, j=1, 2, . . . . The steady state values of
the mean and variance are equal to

E[U]=m1(U, tn )3
1
n

s
n

j=1

U(tj ), (15)

Var [U]=m2(U, tn )−m2
1 (U, tn ), m2(U, tn )3

1
n

s
n

j=1

U2(tj ), (16)

where tn = nh�0.

4. NUMERICAL EXAMPLE AND CONCLUSIONS

The algorithm presented above has been applied to the single-span suspension
bridge with the following design parameters that are denoted in Figure 1:
l=300 m, l0 =315 m, l1 =98 m, f=30 m, b1 =0·61 rad, m=12 000 kg/m,
EJ=1·98×1011 Nm2, EcAc =2·2×1010 N. The first natural frequency of the
bridge is v1 =2·188 rad/s and the damping coefficient is taken as a1 =0·01. The
bridge is subjected to the random stream of two-axle road vehicles modelled by
two oscillators. Irrespective of the speed, vehicles arrive with expected rate l which
is equal to 0·5 s−1 and the extreme distances between vehicles are: dmin =5 m,
dmax =300 m. Five classes of vehicles with the following arrival probabilities are
distinguished: K=1 (automobiles), P1 =0·05; K=2 (delivery trucks), P2 =0·10;
K=3 (buses), P3 =0·10; K=4 (trucks), P4 =0·45; K=5 (heavy trucks),
P5 =0·30. The average parameters of vehicles belonging to these classes are
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T 1

Average parameters of vehicles of the five classes

K Mvf (kg)
Mf (kg)

Mvb (kg)
Mb (kg) Mt,max (kg) o= ef /e

e (m)
kf (kN/m)
cf (kNs/m)

kb (kN/m)
cb (kNs/m)

1 700
80

600
90 400 0·80

2·75
36
2·0

50
2·2

2 1000
300

900
580 2500 0·90

3·70
156
5·0

636
9·6

3 3100
850

2500
1300 6000 0·75

5·15
250
11·1

300
11·0

4 2700
700

1700
1500 8200 0·82

4·00
406
13·2

1000
16·5

5 3600
800

4400
2600 12 000 0·95

5·75
510
17·1

1900
36·6

Figure 6. Model of a two-axle vehicle.

Figure 7. Exemplary stabilization histories of bridge response moments (first and second order).
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Figure 8. Expected value and standard deviation of the bridge deflection at a quarter of span;
QS—random stream of moving forces, quasi-static response; MF—random stream of moving forces,
dynamic response; MO—random stream of oscillators, dynamic response. -----, QS; – – –, MF; ——,
MO; – –w– –, QS; – –q– –, MF; —e—, MO.

derived from reference [15] and given in Table 1. Symbols Mvf , Mvb and Mf , Mb

denote respectively sprung and unsprung vehicle masses divided between two axles
(front and back). The other denotations correspond to the quantities which are
shown in Figure 6. Masses and weights of two oscillators (front and back)
modelling a vehicle should be calculated from the expressions

Mof =Mvf +Mt (1− o), Mob =Mvb +Mto,

Gof =(Mof +Mf )g, Gob =(Mob +Mb )g, (17)

where g=9·81 m/s2.

Figure 9. Expected value and standard deviation of the midspan bridge deflection; QS—random
stream of moving forces, quasi-static response; MF—random stream of moving forces, dynamic
response; MO—random stream of oscillators, dynamic response. Key as in Figure 8.
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Figure 10. Expected value and standard deviation of the bending moment at a quarter of span
of the bridge beam; QS—random stream of moving forces, quasi-static response; MF—random
stream of moving forces, dynamic response; MO—random stream of oscillators, dynamic response.
Key as in Figure 8.

The response of the bridge due to the described load is supposed to be a
stationary ergodic random process for t�0. Figure 7 shows exemplary
stabilization histories of the first and second order moments calculated from
equations (15) and (16) in the interval [0; 3000 s] for the passage speed of vehicles
v=30 m/s. It could be seen that moments get constant. So, from a practical point
of view the hypothesis concerning the response process can be acceptable.

The steady state values of the mean (E[ ]) and standard deviation (D[ ]) for
different types of the bridge response are plotted against the passage speed in

Figure 11. Expected value and standard deviation of the bending moment at midspan of the
bridge beam; QS—random stream of moving forces, quasi-static response; MF—random stream of
moving forces, dynamic response; MO—random stream of oscillators, dynamic response. Key as in
Figure 8.
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Figure 12. Expected value and standard deviation of the cable tension increment; QS—random
stream of moving forces, quasi-static response; MF—random stream of moving forces, dynamic
response; MO—random stream of oscillators, dynamic response. Key as in Figure 8.

Figures 8–12. The bold and fine continuum lines denote results determined for the
random stream of moving oscillators modelling the traffic flow (MO-model). For
comparison purposes, two simplified models of the traffic load have been
considered: the first one in the form of a semi-infinite stream of forces Goi ,
i=1, 2, . . . moving in the dynamic conditions (MF-model) and the second in
which forces Goi move in the quasi-static conditions (QS-model). The matrix
equations of motion for these load models can be easily obtained from equation
(9).

T 2

Comparison of results for the non-linear and linear problems

MODEL
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

E[U(j)] QSa MFb MOc

or D[U(j)], ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV
unit of measure Linear Non-linear Linear Non-linear Linear Non-linear

E[w(0·25)], m 0·013688 0·013679 0·013690 0·013681 0·013695 0·013686
E[w(0·5)], m 0·018976 0·018957 0·018976 0·018957 0·018977 0·018958
E[M(0·25)], MNm 0·313583 0·313713 0·313764 0·313865 0·314607 0·314736
E[M(0·5)], MNm 0·383490 0·382557 0·383492 0·382551 0·382999 0·382082
E[DH], MN 0·306435 0·306213 0·306433 0·306210 0·306507 0·306283

D[w(0·25)], m 0·020704 0·020599 0·028558 0·028166 0·029074 0·028863
D[w(0·5)], m 0·012985 0·012957 0·013370 0·013337 0·013458 0·013423
D[M(0·25)], MNm 1·854669 1·845315 2·557026 2·521334 2·608602 2·587765
D[M(0·5)], MNm 1·124079 1·120856 1·197407 1·191951 1·212169 1·206059
D[DH], MN 0·150665 0·150463 0·152893 0·152649 0·154095 0·153835

a Random stream of moving forces, quasi-static response.
b Random stream of moving forces, dynamic response.
c Random stream of oscillators, dynamic response.
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Curves concerning the expected values of bridge responses do not differ for three
considered models of moving vehicles (see Figures 8–12). It means that the
dynamic and quasi-static solutions are practically the same. However, for the
standard deviations, the dynamic effects are substantial and increase with the
speed, rapidly for vq 30 m/s. It should also be noted, that the last comment refers
to the sensitive point of the structure—at a quarter of the span. For the cable
tension, midspan deflection, and midspan bending moment, standard deviations
in the dynamic and quasi-static problem differ only slightly.

The numerical results reached for two dynamic models (moving forces—MF
and moving oscillators—MO) are illustrated in Figures 8–12 by curves flowing into
one another. In other words, the effect of the vehicles’ springing as well as vehicles’
inertia forces is negligible. So, the simplified model of the traffic load (MF-model)
is sufficient. This is a significant remark because it means that the usually applied
numeric-analytical approach [6, 7] using the traffic model in the form of the train
of concentrated forces is well founded. On the other hand, only the simulation
technique makes investigation of the above-mentioned effects possible.

Figures 8–12 show that along with the increase of vehicle speed the expected
value of the bridge responses decreases, especially for bridge deflections and the
cable tension in comparison to the bending moments. The standard deviation of
the quasi-static responses also decreases but in the dynamic conditions it grows.
Expected values are greater than standard deviations only for the midspan
deflection and for the increment of cable tension. This is the result of the slight
sensitivity of the bridge responses mentioned above.

All the solutions presented above relate to the non-linear response of the bridge.
The linear solutions can be easily determined in the same way, after the
substitution of h=0 into equation (7). Table 2 contains an exemplary comparison
between results obtained for v=30 m/s when the problem is considered as linear
and non-linear. Practically there is no difference between them.

From the results presented in Table 2, it follows that the influence of the
geometrical non-linearity of the structure can be omitted for the cases considered.
A similar conclusion has been formulated by the authors in reference [6].

As a final note, it should be stated that the simulation method, applied in the
stochastic problem of highway suspension bridge vibrations, enables the
description of the vehicular traffic in a more adequate way. It means that some
special properties of the traffic load, such as, inertia, springing or multiaxiality of
vehicles can be taken into account. Moreover, the process of vehicle arrivals can
be formulated in the form which corresponds better with reality than it does in
the case when the analytical approach is developed. Obviously, the probabilistic
analytical calculus in the range of non-linear problems is very troublesome. In the
case presented, when the numerical simulation method was applied, determining
the solutions with effects of structural non-linearity was not difficult. Nevertheless,
when the higher order moments are necessary the efficiency of such a simulation
approach decreases because of numerical difficulties. So, one can note that the
simulation method should be preferred for the numerical estimation of special load
effects or structure effects which can not be taken into account by analytical
techniques.
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