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A finite element formulation combined with a new material model has been
developed for the traditional multilayer beam incorporating viscoelastic material
having non-linear behavior. The viscoelastic material was confined between the
stiff layers and worked as a damping layer. A non-linear dynamic analysis in the
time domain was carried out for the multilayer beam subjected to dynamic
loadings. In the analysis the boundary conditions for the beam are either simple
or clamped and the exerted loadings include transient impulse loading, harmonic
excitation and a random type process. The non-linear responses in the time
domain for the multilayer sandwich beam containing the viscoelastic material were
compared to one without the viscoelastic material. The time domain dynamic
behavior for the multilayer beam with variant boundary conditions, dimensions
and loading types is also discussed.
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1. INTRODUCTION

When structures are subjected to dynamic loadings tremendous amounts of energy
are input into the structural system usually. In order to mitigate the vibration and
so avoid serious damage, viscoelastic material, which has substantial energy
absorption ability, can be incorporated in the structural system. An example is the
sandwich beam with viscoelastic core between the stiff layers, which was first
introduced by Swallow [1] as early as 1939. Since then a number of investigations
on the design formulation for the three layer damped sandwich beam have been
carried out by many researchers. Kerwin [2] suggested a complete and simplified
formula for the estimation of loss factor dependent on the wavelength of bending
waves, the thickness of the constraining layer, and elastic moduli of the plate,
damping layer and constraining layer. Ungar and Kerwin [3] then correlated the
loss factors to energy concepts. Di Taranto [4] derived a sixth order complex
homogeneous differential equation for a free vibrating finite-length sandwich
beam. Di Taranto and Blasingame [5, 6] continued Kerwin’s work and published
the dependency between the damping (in terms of loss factor) and the frequency
for selected laminated beams. Mead and Markus [7] continued the work and
developed a sixth order differential equation in terms of transverse displacement
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for the forced vibration of the sandwich beam under specific ‘‘damped normal
loadings’’. Mead [8] later made a comparison of these equations for the flexural
vibration and the loss factors. In this research the analytical formulations for the
sandwich beam were accurate for the elastic system with linear damping in the
fairly high frequency range.

Lately, due to the frequent occurrence of major earthquakes which have caused
extensive damage to buildings, bridges and other civil structures, a viscoelastic
material suitable for low frequency applications in civil building systems, has been
developed. As presented in the results of experimental testing for this viscoelastic
material [9–12], non-linear behavior was observed in the stress–strain relationship,
particularly during the higher frequency loading test (still lower than about 10 Hz).
As was shown by the results, the stress was not only dependent on the loading
frequency but the strain ratio. During the large strain cycling, temporary lowering
of the shear modulus because of material softening induced by the heat built-up
was found. This effect is reversed after the heat is dissipated and the temperature
returns to its original ambient value. Therefore, it is not suitable to use traditional
complex models to describe this non-linear behavior for the viscoelastic material.
To overcome this problem an analytical material model for this viscoelastic
damper, which can accurately describe the mechanical behavior, was developed by
Lee and Tsai [13, 14].

By using this model, evaluations have been made for some typical structural
systems which were incorporated with the damping devices [15–18] and good
results in dynamic performances were obtained. It is the purpose of this study to
combine this non-linear material model with the multilayer beam system
containing the viscoelastic material, and to study further its non-linear dynamic
behavior in the time domain when subjected to a variety of loadings and boundary
conditions.

2. THE ANALYTICAL MODEL OF THE VISCOELASTIC MATERIAL

In order to predict adequately the behavior of a structural material subjected
to dynamic loading, an analytical model must be capable of representing the
typical material characteristics and adequately describing the dynamic behavior.
By utilizing the molecular theory and Bagley and Torvic’s [19, 20] fractional
derivative viscoelastic model, a non-linear analytic model has been derived and
modified using the available experimental results. The constitutional formula,
having a fractional derivative form, is presented as

t(t)=G'g(t)+G0Da(g(t)), 0Q aQ 1, (1)

where t and g are the stress and strain of the material, G' and G0 represent the
shear modulus corresponding to the storage and the loss energy respectively.
According to the model derived by Lee and Tsai [13, 14], the modulus degradation
and the thermal effect are taken into consideration. Considering a temperature
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difference DT=T−T0 from the referred temperature T0, the material elastic
moduli are given by

G'=G0=A0 exp[b1DT+ b2=DT=+ b3 sgn (DT)]$1+B0 exp0−b g t dg1%,
(2)

where B0 and b are coefficients to account for the energy absorption ability of the
material; A0 is the coefficient corresponding to the original modulus of the
material, and b1–b3 are coefficients corresponding to the thermal effect. All of these
unknown coefficients are material-dependent and determined by the experimental
data. The fractional derivative is accordingly presented as

Da(g(t))=
1

G(1− a)
d
dt g

t

0

g(t)
(t− l)a dl, 0Q aQ 1, (3)

where G(1− a) is the gamma function.
To apply the fractional derivative model to the time-domain analysis, a

numerical scheme using the finite element method is proposed. For the linear
variation of the strain between two time steps, (n−1)Dt and nDt, a constitutive
law for the viscoelastic damper at time step nDt can subsequently be written as

t(nDt)=$G'+
G0(Dt)−a

(1− a)G(1− a)%g(nDt)+ tp (nDt). (4)

The previous time effect of the strain, tp (nDt), is defined as

tp (nDt)=
G0Dt−a

(1− a)G(1− a) 0Wn
0g(0)+ s

n−1

i=1

Wn
i g(iDt)1, (5)

where Wn
0 and Wn

i are functions corresponding to time step n:

Wn
0 = (n−1)1− a +(−n+1− a)n−a

and

Wn
i =−2(n− i)1− a +(n− i+1)1− a +(n− i−1)1− a.

A typical force–displacement relationship representing the mechanical behavior
of the viscoelastic damper is shown in Figure 1, where (a) represents the
experimental data and (b) shows the results of analytical simulation from the
model. It is observed that a great amount of energy can be absorbed during each
cycle of hysteretic motion of the material and this mechanical behavior is
adequately simulated by the analytical model.
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3. GENERAL THEORY OF MULTILAYER SANDWICH BEAMS WITH
VISCOELASTIC LAYER

A five-layer sandwich beam, incorporating viscoelastic damping material as
shown in Figure 2, where the top, middle and the bottom layers were stiff materials
separated by layers of viscoelastic material. Following previous theories developed
for the multilayer sandwich beam [21–23], a multilayer sandwich beam with
viscoelastic material in the shear layer has been derived here by using the analytical
constitutive model for the viscoelastic material. For the ith stiff layer, the
relationship between bending moment Mi and vertical displacement w is given by

Mi =−EiIi d2w/dx2, i=1–3, (6)

and the relationship between axial force Ni and axial displacement ui is given by

Ni =Eibiti dui /dx, i=1–3, (7)

where Ei and Ii are the elastic modulus and the moment of inertia of the ith stiff
layer respectively.

Figure 1. Typical force–displacement relationship for the damping material: (a) experimental
data; (b) analytical results (after Lee and Tsai, 1994).
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Figure 2. Five layer sandwich beam: (a) indication of deformation; (b) general forces; (c) nodal
displacement in the typical element (redrawn after Khatua and Cheung, 1973).

The shear strain in the jth viscoelastic layer is given by

gj =(ui+1 − ui )/hj +(Cj /hj ) dw/dx, j=1, 2, (8)

where

Cj = hj + 1
2(ti+1 + ti ). (9)

Correspondingly if the viscoelastic material was applied in these shear layers and
the non-linear material behavior in the time domain was taken into account, in
the discrete time domain for time step nDt the shear force in the jth shear layer
can be written in terms of the shear strain, time increment and the non-linear shear
modulus as

Vj (nDt)= (G'j +G0j (Dt)−a/(1− a)G(1− a))bjhjgj (Dt)+Vjp (Dt), j=1, 2, (10)

where Vjp represents a previous non-linear effect of the material. Now through the
substitution of the shear strain (equation (8)) into equation (10) and after the
combination with equations (6) and (7), again at time step nDt in the discrete time
domain the relationship between the nodal force vector and the strain vector is
given in a matrix form by

s(nDt)=De(nDt)+ sp (nDt), (11)

where the nodal force vector is

M1(nDt)

N1(nDt)

V1(nDt)

M2(nDt)
G
G

G

G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

G

G

J

j

s(nDt)=
N2(nDt)

(12)

V2(nDt)

M3(nDt)

N3(nDt)
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the strain vector is represented as

−dw2(nDt)/dx2

du1(nDt)/dx

g1(nDt)

−dw2(nDt)/dx2

G
G

G

G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

G

G

J

j

e(nDt)=
du2(nDt)/dx

,
(13)

g2(nDt)

−dw2(nDt)/dx2

du3(nDt)/dx

and D is a diagonal matrix with elements

D11 =E1I1

D22 =E1b1t1

D33 = (G'1 +G01 Dt−a/G(2− a))b1h1

D44 =E2I2g
G

G

G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

G

G

J

j

Djj = D55 =E2b2t2
.

(14)

D66 = (G'2 +G02 Dt−a/G(2− a))b2h2

D77 =E3I3

D88 =E3b3t3

The force vector corresponding to the previous effect of the shear induced by the
viscoelastic material is given by

sp (nDt)= (0, 0, V1p (nDt), 0, 0, V2p (nDt), 0, 0)T, (15)

where through equation (5)

Vkp (nDt)=
hkbkG0k Dt−a

(1− a)G(1− a) 0Wn
0gk (0)+ s

n−1

i=1

Wn
i gk (iDt)1, k=1, 2. (16)

4. FINITE ELEMENT FORMULATION OF A DAMPED MULTILAYER
SANDWICH BEAM

A typical element for the beam incorporated with viscoelastic material is derived
here. The displacements for a typical element at nodal points 1 and 2 are X1(t)
and X2(t) respectively:

a1(t) a6(t)

a2(t) a7(t)

X1(t)= a3(t) , X2(t)= a8(t) , (17, 18)G
G

G

G
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J

j
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G
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G
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j
a4(t) a9(t)

a5(t) a10(t)



   607

where a1(t) and a6(t) are transverse displacements and a2(t) and a7(t) are rotations
at node 1 and node 2 respectively; a3(t)–a5(t) and a8(t)–a10(t) are axial
displacements corresponding to three stiff layers at node 1 and node 2 respectively
as shown in Figure 2(c).

Now the strains are further related to the displacements as

e(t)=LU(t), (19)

where L is an operational matrix and U is the displacement field vector. The
displacement field vector is related to the nodal displacements by

U(t)=NX(t), (20)

where

X(t)=6X1(t)
X2(t)7, N=[N1, N2], (21, 22)

with

N1 =

G
G

G

K

k
G
G

G

L

l

1−3(x2/L2)+2(x3/L3)
0
0
0

x−2(x2/L)+ x3/L2

0
0
0

0
1− x/L

0
0

0
0

1− x/L
0

0
0
0

1− x/L

,

(23)

and

3(x2/L2)−2(x3/L3) −x2/L+ x3/L2 0 0 0

0 0 x/L 0 0G
G

G

K

k

G
G

G

L

l

N2 = 0 0 0 x/L 0
. (24)

0 0 0 0 x/L

Therefore, the strains in terms of the nodal displacements at time step nDt in the
discrete time domain become

e(nDt)=LU(nDt)=LNX(nDt)=BX(nDt). (25)

Substitution of equations (15) and (25) into equation (11) and using the virtual
work principle leads to the stiffness matrix and the previous time effect vector for
the finite element formulation as

Ke =gLe

BTDB dx, Fe
p(nDt)=gLe

BTsp (nDt) dx (26, 27)
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In the discrete time domain at time step nDt and taking into account the
previous time effect for the viscoelastic material in the shear layers, the dynamic
equation of motion for the beam element with mass Me, damping coefficient Ce,
and stiffness Ke, subjected to loading Pe(nDt) can be written as

MeX� (nDt)+CeX� (nDt)+KeX(nDt)=Pe(nDt)−Fe
p(nDt), (28)

where the mass matrix is

Me =gLe

NTmN dx, (29)

obtained through the diagonal matrix m represented by the material densities such
as rs , density of stiff layer and rc , density of core layer of which the elements are

m11 =0s
3

i=1

rsiti + s
2

i=1

rcihi1b
g
G

G

G

G

F

f

m22 = (rs1t1 + 1
2rc1h1)bmjj =

m33 = [rs2t2 + 1
2(rc1h1 + rc2h2)]b

, (30)

m44 = (rs3t3 + 1
2rc2h2)b

and the damping matrix Ce may be obtained through the linear combination of
mass matrix and stiffness matrix or solely from the mass matrix as customary
application due to the uncertainty of the system damping.

Having obtained the equations of motion and the forces exerted on the
structural system, the analysis can be carried out by using step-by-step integration
schemes for non-linear structural systems such as Newmark-b method [24],
Wilson’s method [25] etc.. In this study the Newmark method using an average
acceleration operator was adopted due to its numerical stability advantage.

5. NUMERICAL RESULTS AND DISCUSSION

In the numerical analysis, a typical five-layer sandwich beam having viscoelastic
layers between the stiff layers was modelled and analyzed in the time domain. The
boundary conditions at both ends of the beam were assumed to be simply
supported firstly and then clamped. For the simply supported condition,
transverse constraint was applied to all layers at both supported ends while axial
constraint was applied to the middle stiff layer at one end, and to the top and
bottom stiff layers at the other end. For the clamped boundary condition the
transverse and axial displacement and the rotation were assumed to be constrained
at the ends. The loading was assumed to be concentrated and exerted on the
middle point of the beam. The magnitude of the loading was arbitrarily chosen
so that a small displacement was produced. The loading types adopted in the
analysis include transient impulse loading, harmonic excitation and alternately
applied random excitations.
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The geometrical dimensions for the beam and each layer of the material
were adopted from Khatua and Cheung’s example [23] as: b=1·00 in,
h1 = h2 =0·40 in, t1 = t2 = t3 =0·02 in. The material properties, assumed to be
constant, were: the elastic modulus Es =10×106 psi for the stiff layers and the
shear modulus G3 =48 psi for the core layers. The viscoelastic material used in the
analysis has coefficients as following: B0 =1, a=0·75, b=0·001, b1 =−0·089,
b2 =0·0153, and b3 =0·12. In order that the original stiffness is compatible with
that of the beam for which the non-linear viscoelastic behavior for the cores was
ignored, the coefficient A0 correlated to the shear modulus of the viscoelastic
material is given to be Gs /2.

To be able to reflect the damping effect that has solely resulted from the
viscoelastic material, the system damping was ignored in the analysis. The analysis
was focused on the response of the displacement, velocity and acceleration induced
by the input loading and the effect of response reduction when the viscoelastic
damping layers were applied. The results were obtained by carrying out the
calculation for the coupled MDOF non-linear system, and are plotted and
presented in the figures. The analysis was categorized into six groups: five examples
corresponded to five sets of loading that were applied to the multilayer sandwich
beam with either clamped or simple boundary conditions at the supports, and one
additional example corresponded to the dimensional effect when the thickness of
the layers was varied. The first loading is a transient impulse loading. The second,
the third and the fourth loadings are harmonic of which the frequency applied is
either resonant with, or lower than or higher than the dominant frequency of the
beam. The fifth loading is a broad band random process.

5.1.       

In this analysis an impulse loading was assumed to be suddenly exerted on the
middle point of the multilayer sandwich beam, of which both ends were simply
supported. The loading duration was assumed to be 0·01 s. Figures 3–5 show the
comparison of the time domain response of the transverse displacement, velocity
and acceleration for the middle node of the beam with respect to the beam in which
the viscosity of the core layer was not taken into account. Figure 6 shows the
comparison of the response for the rotation of the middle point, and Figure 7

Figure 3. Comparison of the transverse displacement response (transient impulse loading, simply
supported). Key: ——, no viscoelastic layer; ——————, with viscoelastic layer.
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Figure 4. Comparison of the transverse velocity response (transient impulse loading, simply
supported). Key as for Figure 3.

Figure 5. Comparison of the transverse acceleration response (transient impulse loading, simply
supported). Key as for Figure 3.

Figure 6. Comparison of the rotation response (transient impulse loading, simply supported). Key
as for Figure 3.

shows the relative axial displacement comparison between the top and the middle
stiff layer, where during the early loading stage the damped reaction was largely
due to the release of the axial constraint at the ends but which became small
subsequently. It is observed from the analytical results that the responses for each
case decayed gradually due to the non-linear viscosity damping effect. According
to the transverse displacement response the initial amplitude drop is about 43%
compared to the beam with a similar stiffness but without viscosity. The damping
factor estimated from the logarithmic decrement method is about 5·30% between
the first and the second peak, and 4·20% between the second and the third peak.
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5.2.        

In this analysis both of the multilayer sandwich beam with the simple support
and the beam with clamped ends were analyzed when resonant harmonic loading
was applied. For the simply supported beam the resonant frequency is 0·635 Hz
while for the clamped beam the resonant frequency is 0·822 Hz. Figures 8 and 9
show the comparison of the response of the displacement and velocity respectively
at the middle point for the simply supported beam, while Figures 10 and 11 show
the same responses for the beam with clamped boundary conditions. A phase

Figure 7. Comparison of the axial displacement response (transient impulse loading, simply
supported). Key as for Figure 3.

Figure 8. Comparison of the transverse displacement response (resonant harmonic loading,
simply supported). Key as for Figure 3.

Figure 9. Comparison of the transverse velocity response (resonant harmonic loading, simply
supported). Key as for Figure 3.
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Figure 10. Comparison of the transverse displacement response (resonant harmonic loading,
clamped boundary condition). Key as for Figure 3.

Figure 11. Comparison of the transverse velocity response (resonant harmonic loading, clamped
boundary condition). Key as for Figure 3.

Figure 12. Comparison of the axial displacement response (resonant harmonic loading, simply
supported). Key as for Figure 3.

difference between the displacement and the velocity response is shown. The
response amplitudes were magnified when the viscosity of the material was
ignored, whereas, as indicated by the heavier curves, the magnification was
lessened by the viscoelastic damping effect. Figure 12 showed the comparison of
the axial displacement response for the top stiff layer relative to the middle stiff
layer for the simple beam system. It shows that during the early loading stage the
damped reaction was relatively larger when compared to the one without damping
effect, but it remained about the same while the reaction of the undamped beam
escalates continually in the later loading stage.
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5.3.        



In this analysis a loading of 0·2 Hz frequency, which is relatively lower than the
resonant frequency, was applied for both the simple beam and clamped beam
system. Figures 13–15 show the comparison of the time domain response of the
transverse displacement, velocity and acceleration for the middle point of the
simple multilayer sandwich beam. Figures 16–18 show a comparison of the
response of the transverse displacement, velocity and acceleration for the middle
point of the clamped multilayer sandwich beam. Similarly to the resonant

Figure 13. Comparison of the transverse displacement response (low frequency harmonic loading,
simply supported). Key as for Figure 3.

Figure 14. Comparison of the transverse velocity response (low frequency harmonic loading,
simply supported). Key as for Figure 3.

Figure 15. Comparison of the transverse acceleration response (low frequency harmonic loading,
simply supported). Key as for Figure 3.
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Figure 16. Comparison of the transverse displacement response (low frequency harmonic loading,
clamped boundary condition). Key as for Figure 3.

Figure 17. Comparison of the transverse velocity response (low frequency harmonic loading,
clamped boundary condition). Key as for Figure 3.

Figure 18. Comparison of the transverse acceleration response (low frequency harmonic loading,
clamped boundary condition). Key as for Figure 3.

harmonic loading examples, a general reduction on the amplitudes of each
response was obtained. This reduction appeared to be more effective on the
acceleration responses for both of the simply supported and clamped beams. For
the case without consideration of the viscoelastic behavior, the responses in the
simply supported multilayer sandwich beam were generally larger than those in
the beam with clamped boundary conditions during the low frequency harmonic
loading. For the cases in which the viscoelastic behavior was taken into
consideration, the displacement vibration was generally in accordance with the
motion of loading, and the high frequency motions of the velocity and the
acceleration were also transformed into a similar but flattening vibration motion
during the later loading stage.
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5.4.        



In this analysis, a loading at 2·0 Hz, relatively higher than the resonant
frequency, was applied for both the simple beam and clamped beam system.
Figures 19–21 show the comparison of the time domain response of the transverse
displacement, velocity and acceleration respectively at the middle point of the
multilayer sandwich beam with simply supported boundary condition. Figures 22
also shows the comparison of the response of the transverse displacement for the
same beam but with a clamped boundary condition. In this analysis a general

Figure 19. Comparison of the transverse displacement response (high frequency harmonic
loading, simply supported). Key as for Figure 3.

Figure 20. Comparison of the transverse velocity response (high frequency harmonic loading,
simply supported). Key as for Figure 3.

Figure 21. Comparison of the transverse acceleration response (high frequency harmonic loading,
simply supported). Key as for Figure 3.
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Figure 22. Comparison of the transverse displacement response (high frequency harmonic
loading, clamped boundary condition). Key as for Figure 3.

Figure 23. Force–displacement relationship for the axial responses (high frequency harmonic
loading, simply supported).

reduction in the amplitudes of each response was obtained. For the cases in which
the viscoelastic behavior was taken into consideration, the vibration motion of the
velocity and the acceleration were generally in accordance with the loading motion
and the displacement also adopted a similar motion during the later loading stage.
Figure 23 presents a force–displacement relationship for the axial responses of a
simply supported beam with consideration of viscoelastic behavior, where a typical
mechanical behavior of viscoelastic material was observed.

5.5.       

In the random loading analysis a broad band random process shown in Figure
24 was applied to the multilayer sandwich beam system with the clamped
boundary condition. The random process with zero mean and spectral density
Sp (v) as shown in Figure 25, was obtained from the Monte Carlo technique [26],
and expressed as a form of the sum of cosine functions:

P(t)=z2 s
N

j=1

Aj cos (vjt−fj ), (31)
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where

Aj =z2Sp (vj )Dv , vj =(j− 1
2)Dv,

and fj are random angles uniformly distributed between 0 and 2p. It is noticed
in Figure 25 that the broad band spectral density for the random process is in a
frequency range between 0–20 Hz which covers the general frequencies of typical
civil buildings. Figures 26 and 27 show a comparison of the response on the
displacement and velocity respectively. Again, as indicated in the results a

Figure 24. Normalized random process as loading input.

Figure 25. The broad band spectral density.

Figure 26. Comparison of the transverse displacement response (random loading, clamped
boundary condition). Key as for Figure 3.
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Figure 27. Comparison of the transverse velocity response (random loading, clamped boundary
condition). Key as for Figure 3.

Figure 28. Comparison of the transverse displacement response (ignoring viscoelastic behavior,
transient impulse, simply supported). Key: ——, original; ——, core layer doubled; ——————, stiff layers
doubled.

Figure 29. Comparison of the transverse displacement response (with viscoelastic behavior,
transient impulse, simply supported). Key as for Figure 28.

reduction in both the displacement and velocity responses was observed when the
viscoelastic material was incorporated into the beam system.

5.6.           



In this analysis, in order to observe the influence of dimensional factors on the
dynamic behavior of the multilayer sandwich beam, the thickness of the stiff layers
and the core layers were doubled alternately when subjected to a transient impulse,
and the results were compared to the original beam as indicated in the first
example. While the viscosity of the core was ignored, Figure 28 represents the
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displacement responses when the thickness of the core and the stiff layers was
increased respectively, compared to the displacement of the original sandwich
beam. As illustrated in the figure, the amplitudes and the periods for the
displacement response were both reduced due to the increase of the system
stiffness. Figure 29 shows the same comparison of the displacement responses
when the non-linear viscoelastic material behavior was taken into consideration.
This figure also shows an initial reduction in the amplitude and period whereas
a gradual decay in the amplitude with respect to the time was observed
subsequently. By taking away the stiffness effect, for the beam with doubled
thickness of the core layer, the initial amplitude drop due to the non-linear
viscoelastic effect is about 53% compared to the beam with a similar stiffness but
without viscosity. The damping factor estimated from the logarithmic decrement
method is about 8·75% between two consecutive peaks. For the beam with
doubled stiff layer thickness, the initial drop of the amplitude is about 54% and
the damping factor is 8·70% between two consecutive peaks.

6. CONCLUDING REMARKS

As was shown in the analysis, the analytical method developed here could
accurately describe the behavior of the viscoelastic material and provide a
non-linear view in the time domain for the dynamic behavior of the multilayer
sandwich beam system combined with the viscoelastic core layer. According to the
numerical analytical analysis for the multilayer sandwich beam with viscoelastic
core layer, no matter whether the loading is transient, resonant, harmonic or
random type a general reduction in the responses of the displacement, velocity and
acceleration was observed.

In the harmonic loading analysis during the low frequency input, the motion
of the displacement was generally in accordance with the loading motion, and the
motion of the velocity and acceleration was also transferred into a similar motion
but with a phase difference and flattened amplitude in the latter loading stage.
During the relatively high frequency input a similar phenomenon was observed:
the response of the velocity and the acceleration was generally in accordance with
the motion of loading while the displacement was transferred into a similar
vibration motion only during the later loading stage. The reduction effect due to
viscoelastic layers appears to be better for the acceleration response in the lower
frequency loading case while the reduction effect is better for the displacement
response when subjected to higher frequency loading.

The beam with clamped boundary condition, as expected, showed a stiffer
mechanic behavior when the material characteristics of the viscoelastic core layers
were ignored, but when the viscoelastic behavior of the core layers was counted,
a similar dynamic behavior was found for both of the clamped beam and the
simply supported beam. From the force–displacement relationship for the relative
axial responses of a simple supported beam with viscoelastic layer, the typical
mechanical behavior of viscoelastic material was observed.

In the dimensional effect analysis, when comparing the effects of thickness
variation of the initial drop of the amplitude is about 10% higher for the beam
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with doubled thickness of either stiff or core layers. The damping factor is about
the same for the beam with doubled thickness of either the viscoelastic core-layer
or the stiff-layer during the early loading stage, which is consistent with Kerwin’s
[2] observation for the sandwich beam at much higher frequencies. But the
damping decayed during the later loading stage due to the non-linear deterioration
characteristics of the material. However, the decaying phenomenon is insignificant
when the thickness of either the viscoelastic core-layer or the stiff-layer is doubled.
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