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It is well-known that an absorptive obstacle installed on the edge of a noise
barrier improves sound shielding efficiency without increasing the height of the
barrier. This paper examines the sound shielding efficiency of a noise barrier with
an acoustically ‘‘soft’’ cylindrical edge. ‘‘Soft’’ indicates that the sound pressure
at the surface is zero; however, it is difficult to produce a soft surface using
traditional materials. The authors previously reported that the ‘‘Waterwheel
cylinder,’’ which consists of acoustic tubes arranged radially, approximates a soft
surface cylinder. In the present study, a noise barrier with a Waterwheel cylinder
installed on the edge of the barrier is investigated. Results of numerical
simulations indicated that the Waterwheel cylinder improves the sound shielding
efficiency of a noise barrier. The improvement is strongly frequency dependent;
it exceeds 10 dB in a certain frequency range of an octave, but the Waterwheel
decreases the noise shielding efficiency in another frequency range. The frequency
characteristics of the Waterwheel’s effect are related to its cross-sectional shape.
The Waterwheel improves the efficiency much better in the effective frequency
range of an octave as compared with an absorbing cylinder. All numerical
calculations were carried out assuming an unrealistic two-dimensional sound field,
but results of scale model experiments indicate that the calculations predict very
accurately the efficiency of noise barriers in a three-dimensional sound field.
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1. INTRODUCTION

Several methods to improve the efficiency of a noise barrier without increasing the
barrier height have been developed. Some of these methods are based on the idea
of reducing the velocity potential around the edge of the barrier. It is well-known
that the edge potential can be regarded as an imaginary line source for a diffracted
field in the back of the barrier. Thus, suppression of the edge potential reduces
the imaginary source, and consequently the diffracted field behind the barrier also
decreases. Based on this concept, an absorptive obstacle installed on the barrier’s
edge has been proposed. According to one report, the installed absorber reduces
the edge potential and improves the sound shielding efficiency of the noise
barrier [1].
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If one considers the edge potential as an imaginary source, additional
suppression of the potential should further improve the sound shielding efficiency.
Therefore, an obstacle with an ‘‘acoustic soft surface’’ [2] on the barrier’s edge is
expected to be effective. The characteristic impedance of a ‘‘soft surface’’ is
sufficiently less than that of air, and consequently the surface sound pressure is
much less than that on the absorptive surface. It has been theorized that a barrier
with a soft cylindrical edge [3] and a barrier that is soft only around the edge [4]
are efficient. These barriers are not widely used despite their significant effect
because it is very difficult to obtain materials with an impedance significantly less
than that of air. The authors have previously shown that the ‘‘Waterwheel
cylinder’’ approximates a soft surface cylinder and that the sound shielding
efficiency of a half plane improves with the Waterwheel installed on the edge [5].
This paper discusses the efficiency of a noise barrier sitting on the ground, with
and without the Waterwheel cylinder.

2. DEVELOPMENT OF AN ACOUSTICALLY SOFT CYLINDER

As mentioned above, it is rather difficult to produce a soft surface. A soft surface
can be produced, however, when the reflected wave has the same amplitude as that
of the incident wave and the phase difference between them is equal to p. To
produce a soft surface, Fujiwara proposed that one-quarter wavelength acoustic
tubes be arranged in a plane [2]. Based on a similar notion, an obstacle was
constructed whose cross-sectional shape is shown in Figure 1, to produce a soft
surface cylinder [5]. This obstacle is referred to as a ‘‘Waterwheel cylinder’’ because
of the shape of its cross-section, and use the concept of ‘‘the surface of the
Waterwheel cylinder,’’ which consists of open ends of tubes arranged radially.

Due to interference between the incident and reflected (travelling within a tube)
waves, the sound pressure and the impedance on the surface of the Waterwheel
depend on the wavelength of the incident wave. For example, if the tube depth
corresponds to half of the wavelength, the Waterwheel’s surface is almost
acoustically hard because the phase difference is zero. That is, the Waterwheel
cannot achieve a soft surface at all frequencies.

Figure 1. Development of a soft surface cylinder with the Waterwheel.
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Figure 2. Frequency characteristics of the surface sound pressure on the isolated Waterwheel
floating in a free field [5]: (a) at receiver R1, (b) at receiver R2. ——, the Waterwheel cylinder; - - - -,
a rigid cylinder of the same diameter.

In the authors’ previous report, numerical and experimental analyses of the
sound field around the Waterwheel [5] were performed. Figure 2 shows typical
examples of the frequency characteristics of the sound pressure level on the
Waterwheel surface. It was found that the Waterwheel achieves a soft surface at
a much higher frequency than expected. That is, the surface sound pressure of the
Waterwheel whose channel depth is 170 mm vanishes at the frequencies
600+1000n Hz (n=0, 1, 2, . . . ) approximately, while the depth corresponds to
a quarter of the wavelength at 500 Hz. Because of interference, the acoustic
properties of the Waterwheel’s surface are unavoidably frequency dependent.
Although it is obvious that the ‘‘acoustically soft’’ situation is obtained at the
mouth of channels at a certain frequency, one cannot easily estimate the frequency
that cancels the surface sound pressure because the channel is not rectangular, i.e.,
the mouth is larger than the bottom. Furthermore, it was found that the sound
shielding efficiency of a half plane with the Waterwheel is also strongly frequency
dependent. As a consequence, it is expected that the efficiency of the noise barrier
on the ground is frequency dependent, corresponding to the surface sound
pressure of the Waterwheel.
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3. NUMERICAL ANALYSIS

In this section, the boundary integral equation and the boundary element
method (BEM) briefly are described. A two-dimensional field is assumed
throughout this paper, except in section 7 which describes the results of
three-dimensional experiments, although the two-dimensional field is obviously
not of practical interest. This is because the three-dimensional simulations require
much more computational resources and calculation time. Figure 3 shows the
cross-section of the situation for which the sound field was calculated. A
two-dimensional field is assumed and thus the geometrical and acoustical variables
are constant in the z direction. A noise barrier of infinite length lies on a rigid
plane, i.e., on a reflective ground. The barrier and a monofrequency line source
of sound are parallel to the z-axis. In section 7, it is shown that the
two-dimensional analyses can be applied to a practical situation; that is, the
three-dimensional situation where a point source and a receiver are in the vertical
plane which is perpendicular to the axis of the noise barrier.

Let r0 denote the source position, r denote the receiver position, and b(rs ) denote
the normalized surface admittance at point rs on the barrier surface S. The sound
pressure at the receiver, p(r), satisfies the following boundary integral equation [6]:

e(r)p(r, r0)=G(r0, r)−gS 01G(rs , r)
1n(rs )

+ jkb(rs )G(rs , r)1p(rs , r0) ds(rs ), (1)

where ds(rs ) denotes the arc length of the barrier surface S at point rs , 1/1n(rs )
denotes the normal derivative at rs , k denotes the wave number, and the time
dependence factor exp(jvt) is understood. e(r)=1 when r is in the propagating
medium and not on S; e(r)=1/2 when r is on S. G is the sound pressure at r in
the absence of the barrier:

G(r, r0)= (1/4j){H(2)
0 (k=r0 − r=)+H(2)

0 (k=r'0 − r=)}, (2)

where r'0 denotes the position of the imaginary line source in the rigid ground, and
H(2)

0 is the Hankel function of the second kind of order zero.
In order to solve equation (1) numerically, the BEM was used. The barrier

surface S was divided into straight elements S1, S2, . . . ,SN , and rn denotes
the midpoint of Sn for n=1, 2, . . . ,N. By the approximation that p(r, r0) is

Figure 3. Cross-section of the two-dimensional sound field to be investigated by the boundary
element method.
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Figure 4. Comparison between BEM and an exact solution: SPL behind a hard circular cylinder.
——, BEM; . . . . , the exact solution.

constant and equal to p(rn , r0) for r on Sn , equation (1) is written in the discrete
form:

e(r)p(r, r0)=G(r0, r)− s
N

n=1

p(rn , r0) gSn
01G(rs , r)

1n(rs )
+ jkb(rs )G(rs , r)1 ds(rs ). (3)

Then by setting r= rm for m=1, 2, . . . ,N in equation (3), a set of N linear
equations is obtained in the unknowns p(r1, r0), p(r2, r0), . . . , p(rN , r0). When the
equations are solved for p(r, r0), the sound pressure at any point r, can be
calculated by substituting the pressure at the midpoint of each element into
equation (3). To solve the integral equation with sufficient accuracy, a maximum
element length is smaller than l/8 [7] in all of the calculations carried out in this
paper.

To confirm the accuracy of the boundary element method, numerical
simulations for some cases were carried out using the BEM and analytical
solutions. The sound pressure level (SPL) normalized with that at a distance of
1 m in a free field was calculated at one-fifteenth octave band center frequencies.
Firstly, the comparison was carried out for a rigid semi-circular barrier of 0·125 m
radius, which corresponds to the core cylinder of the Waterwheel investigated in
the following section. A line source generating pure tones and a receiver were
located on the ground; the line source was located at a horizontal distance of 1 m
(from the axis of the barrier) in front of the barrier, and the receiver was located
at a distance of 3 m behind the barrier. An analytical analysis for a rigid cylinder
of 0·25 m diameter floating in the free field was carried out for comparison with
results of reference [8]. Figure 4 shows that the difference between the results by
BEM and the analytical solution is smaller than 0·01 dB in the frequency range
below 1·6 kHz, and that BEM calculation works quite accurately. It is also shown,
however, that discrepancies were observed at some frequencies above 1·6 kHz.
This numerical difficulty is caused by the non-uniqueness problem; the integral
equation has more than one solution at these frequencies which are close to the
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eigenfrequencies of the interior boundary value problem [6]. The eigenfrequencies
are decided by the shape of the boundary and appear in lower frequency range
when the cross-sectional area bounded by S is large.

Secondly, the frequency characteristics of the SPL behind a rigid simple barrier
of 3 m height was calculated by using the two methods. As a reference, the
analytical solution derived by the diffraction theory for a half plane of zero
thickness [8] was applied to four diffraction paths from a real or imaginary line
source to a real or imaginary receiver. This mirror image method is often used as
an exact analysis to calculate the sound field around a noise barrier built on the
ground. A line source was located at a horizontal distance of 5 m in front of the
barrier, and a receiver was located at a distance of 25 m behind the barrier. Both
of them were set on the ground surface, hence the four diffraction paths in the
exact analysis come to be the same. BEM calculations were carried out for barriers
of two thicknesses; 0·0025 m which is sufficiently small to be compared with the
exact analysis assuming zero thickness, and 0·03 m which is the thickness of all
barriers in the following sections. Figure 5 shows the comparison of the three
results. In the frequency range below 500 Hz, the middle of fluctuations of the
BEM results almost correspond to the results using the analytical solution,
whereas it is still unclear that the fluctuation does not appear in the analytical
solution curve. Above 500 Hz, both of the BEM results are always a little smaller
than the analytical result because the barrier thickness increases the sound
shielding efficiency of the barrier. However, the difference between BEM results
for 0·0025 m thickness and analytical results is less than 0·2 dB and small enough
to conclude that the BEM calculation can yield reasonable sound field analyses
around noise barriers.

Figure 5 also shows that the numerical difficulty of the discrepancies between
BEM and analytical analyses does not occur in the cases of a simple and thin
barrier since the small cross-section of the barrier shifts the eigenfrequencies
upward. That is, one can avoid the difficulty when the thickness of the barrier is

Figure 5. Comparison between BEM and an exact solution: SPL behind a hard simple barrier
of 3 m height. ——, an exact solution for a half plane [8] and a mirror image method; ----, 0·0025 m
thickness using BEM; . . . , 0·03 m thickness using BEM.
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Figure 6. Geometries of a line source, noise barrier, and receivers.

sufficiently smaller than the height. The thickness of all barriers analyzed in this
paper, 0·03 m, is thin enough to avoid the problem. However, when the
Waterwheel cylinder is installed on the barrier, the cross-section of the barrier
increases and thus the eigenfrequencies appear in the frequency range where the
numerical analyses are carried out in this paper, from 63 Hz–4 kHz. If the
frequency where BEM calculation is carried out happens to be very close to one
of the eigenfrequencies, the result of BEM is unreliable. That is, when a calculated
result at a certain frequency protrudes significantly from the frequency
characteristic curve of the SPL, it might be caused by the numerical difficulty,
especially in higher frequency range. Although different kinds of methods to
improve this numerical difficulty around the eigenfrequencies have been proposed
(most of them are based on the CHIEF method by Schenck [9] or the linear
combined integral equation method by Burton and Miller [10]), the improvement
of the difficulty was not adopted in this paper. This is because some of the methods
are computationally expensive to implement, and others are quite simple but are
not always successful.

4. IMPROVEMENT OF THE SOUND SHIELDING EFFICIENCY OF A
NOISE BARRIER

The sound shielding efficiency of the noise barrier on the ground with the
Waterwheel is investigated. It has been shown previously that the efficiency of a
half plane with the Waterwheel is highly frequency dependent because of the
strong frequency dependence of the acoustic properties of the Waterwheel surface
[5]. Therefore it is expected that the efficiency of the noise barrier built on the
ground is also frequency dependent, corresponding to the surface sound pressure
of the Waterwheel. Figure 6 shows the cross-section of the sound field to be
calculated numerically by using BEM. It is assumed that the cross-sectional shape
of a noise barrier does not vary along its length. A rigid noise barrier of infinite
length, 3 m height and 0·03 m thickness was positioned on the reflecting ground.
The 0·03 m thickness is unrealistically small given that 0·125 m thick barriers are
typically used in Japan. The 0·03 m dimension is used, however, to correspond to
the thickness of the material used in scale model experiments in section 7, and
consequently the numerical difficulty described previously is avoided. A coherent
monofrequency line source was placed on the ground surface at a horizontal
distance of 5 m in front of the barrier. SPL was calculated behind the barrier with
and without the Waterwheel. The frequency characteristics of the SPL were
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calculated at a receiver located on the ground surface at a distance of 25 m behind
the barrier. The line source and the receiver were placed on the ground surface
to avoid complications due to interference resulting from ground reflections in the
monofrequency sound field. If the interference were to minimize the sound
pressure at a receiver off the ground, one would not be able to distinguish the
sound shielding efficiency of the barrier and the effect of the interference. The
spatial distribution of the SPL was calculated in the receiver region as shown in
Figure 6, with the receivers set in an array (51×26) at intervals of 0·2 m.

The Waterwheel cylinder was installed on the edge of a barrier. Figure 7 shows
the cross-section around the edge. Both of the barriers with and without the
Waterwheel were 3 m high, in order to exclude the effect of the extra barrier height
from the effect of the Waterwheel. The thickness of the edge actually increases even
if the height remains constant; thus, the geometrical boundary of diffraction moves
upward and the so-called ‘‘effective height’’ increases. This increase in height,
however, is sufficiently small, approximately 0·05 m. Thereby the efficiency
changes only slightly with the increase in height. As shown in Figure 7, the barrier
was inserted between two half cylinders of the Waterwheel. Thus, the cross-section
of the edge with the Waterwheel becomes an irregular circle, which affects the
sound field and the efficiency of the barrier only a little. The depth of the channels
was 170 mm, corresponding to a quarter of the wavelength at 500 Hz. Taking into
account the size of materials of the 1/10 scale model to be made later, the diameter
of the core cylinder was 250 mm and the thickness of the plates partitioning the
channels was 10 mm. Consequently, the diameter of the whole Waterwheel was
590 mm. The opening angle of the channels was 15 degrees. The channels must
be sufficiently narrow when compared to the wavelength, for the sound wave needs
to propagate only in the direction parallel to the radius. The 15° angle is the
minimum value that allows for easy construction of the scale model. All surfaces,
including the barrier with the Waterwheel and the ground, are reflective.

The frequency characteristics of the SPL behind the barriers with and without
the Waterwheel were calculated using the BEM. The complicated cross-sectional

Figure 7. Cross-section of the Waterwheel installed on the barrier’s edge.
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Figure 8. Frequency characteristics: (a) the sound-pressure level behind the barriers; ——, with
the Waterwheel; ----, without cylinder, and (b) the effect of the Waterwheel.

shape of the barrier with the Waterwheel was divided into a large number of
straight line elements, and the admittance is zero on the surface of all elements.
With the Waterwheel installed on the edge, the BEM calculation might be
inaccurate in the higher frequency range. This is because the core cylinder of the
Waterwheel increases the thickness of the object (i.e., the barrier), and thus the
non-uniqueness problem occurs in the frequency range of interest. The frequency
of the pure tone generated by the line source was set at 1/15 octave intervals.
Figure 8(a) shows the frequency characteristics of the SPL behind the barriers with
and without the Waterwheel. One refers to the SPL difference between the barriers
with and without the Waterwheel as the effect of the Waterwheel. It is shown in
Figure 8(b); positive values indicate the improvement of the efficiency, that is, the
decrease of the SPL by the Waterwheel. In the frequency range of 500–800 Hz,
the improvement in the sound shielding exceeded 10 dB. As was described in the
section 2, the surface sound pressure of the isolated Waterwheel floating in a free
field is minimized (i.e., the surface becomes soft) at around the frequencies
600+1000n Hz. The efficiency improvements in the frequency ranges centred at
600 Hz and 1·6 kHz agree with the previously reported results. In a higher
frequency range, however, there is no obvious relationship between the frequencies
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that improve the sound shielding efficiency and those that make the surface soft,
especially at 3·2 kHz. This is partly because the BEM yields inaccurate predictions
due to the non-uniqueness problem. As shown in section 3, the non-uniqueness
problem is caused in the frequency range above 2·7 kHz in the case of the rigid
semi-circular barrier of 0·125 m radius. In consequence, the problem could be
caused when the sound field around the barrier with the Waterwheel including a
rigid core cylinder of 0·125 m radius is calculated. On the other hand, the effect
of the Waterwheel is negative in the range of 315–400 Hz. This negative effect is
remarkably large, more than 5 dB at maximum, and corresponds to an increase
in the surface sound pressure of the Waterwheel. In a manner similar to that
discussed for a half-plane with the Waterwheel in the previous report, the
Waterwheel increases the sound energy diffracted into the back of the barrier.

Spatial distribution of the SPL and the Waterwheel’s effect was calculated in
the back of the barrier. The calculation was carried out in the region of 20 m to
30 m horizontally from the barrier and ground surface to 5 m high, as shown in
Figure 6. The frequency was set at 630 Hz to make the Waterwheel’s surface soft.

Figure 9. Spatial distributions behind the barrier at 630 Hz: (a) sound pressure level without
cylinder, (b) sound pressure level with the Waterwheel, and (c) effect of the Waterwheel.
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Figures 9(a) and (b) show the SPL distribution behind the barrier without (a) or
with (b) the Waterwheel. Values in both figures indicate SPL normalized with that
at a distance of 1 m in a free field, and contour lines are drawn at 6 dB intervals.
As shown in Figure 9(a), there are three SPL dips where the difference between
two path lengths from real and imaginary barrier edges to the receiver correspond
to a half of the wavelength multiplied by odd numbers. In other words, the SPL
dips are caused by reflections from the hard ground. Figure 9(c) shows the effect
of the Waterwheel, which is the difference between the two SPLs. Positive values
in Figure 9(c) indicate improvement of the sound shielding efficiency, and the
contour lines are drawn at 3 dB intervals. It is shown that the large decrease in
the SPL, more than 9 dB, covers a broad region. The region where the efficiency
improvement is small corresponds to the region in which the SPL dips, due to
interference caused by the ground reflection, as shown in Figure 9(a). That is, the
Waterwheel does not improve the sound shielding efficiency, in the region where
the SPL was small even if the Waterwheel was not installed.

The energetic average (rather than the arithmetic average) of the SPL behind
the barrier is discussed below. Let the energetic average of the SPL, L�, be
defined as L� =10 log10 {(10L1/10 + · · ·+10LN /10)/N} where Li denotes the SPL at the
ith receiver and N denotes the total number of the receivers. Calculated L� is
−25·0 dB behind the barrier without the Waterwheel, decreasing to −34·5 dB
when the Waterwheel is installed. Consequently, the averaged effect of the
Waterwheel in the region of interest (i.e., the difference of the two SPL averages)
is 9·5 dB.

5. CROSS-SECTIONAL SHAPE OF THE WATERWHEEL

This section discusses the relationship between the cross-sectional shape of the
Waterwheel and the improvement in the sound shielding efficiency. The change
of the efficiency that results from the change of the depth of the channels, the
opening angle of the channels, and the whole diameter of the Waterwheel is
calculated using the BEM. The calculations were carried out using pure tones at
1/15 octave frequency intervals.

5.1.    

The depth of the channels of the Waterwheel discussed in the previous section
was 170 mm, equal to a quarter of the wavelength at 500 Hz. As mentioned
previously, the sound shielding efficiency of the barrier improves most in the
frequency range centered at approximately 600 Hz. The depth was changed to
100 mm (one-quarter of the wavelength at 850 Hz), with the diameter of the whole
Waterwheel kept at 590 mm; consequently, the diameter of the core cylinder was
390 mm. Figure 10 shows the calculated effect of the Waterwheel. As expected, the
frequency range of the improvement shifted to a higher range and was centred at
approximately 1 kHz. Although the positive effect of the 100 mm channel was the
same as that of the 170 mm channel, the width of the ineffective range was wider.
As is shown in the next section, the width of the negative effect range is related
to the ratio of the depth to the diameter of the Waterwheel.
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Figure 10. Difference of the Waterwheel’s effect caused by the variations of channel depth. ——,
110 mm; ----, 170 mm.

5.2.    

The sound shielding efficiency of the barrier with Waterwheels of different
diameters is discussed. The diameter of the whole Waterwheel varied from the
original size of 590 mm to 490 mm, 690 mm, and 790 mm, with the depth of the
channels kept at 170 mm. The ratio of the area of the open end of the channel
to that of the bottom is 5·6:1 for the 490 mm Waterwheel and 1·9:1 for the 790 mm
one; hence the channels of the 790 mm Waterwheel are fairly rectangular in shape
as compared to that of the 490 mm.

Results of the calculations are shown in Figure 11. The frequency width of the
improvement around 630 Hz is discussed below. It was expected that the whole
of the improved frequency band would shift to a lower frequency. Nonetheless,
only the lower limit of the band shifted to a lower frequency while the higher limit

Figure 11. Difference of the Waterwheel’s effect caused by the variations of its diameter. ——,
490 mm; ----, 590 mm; . . . . , 690 mm; –.–.–, 790 mm.
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remained the same. On the other hand, the range of the negative effect shifted
down as a whole. Furthermore, the band width of the negative effect became
broader with increasing diameter. As mentioned in the previous section, the ratio
of the depth to the diameter of the Waterwheel affects the width of the negative
effect range.

It was also expected that the maximum value of the effect would increase with
an increasing diameter, because of an increase of the soft surface. The results
indicate, however, that the maximum value of the effect changed only slightly,
whereas the width of the effective range increased substantially. The soft surface
area increased when the diameter of the Waterwheel increased; nevertheless, the
soft surface extended away from the edge. In other words, the soft surface area
does not increase in the region close to the edge, and therefore the increasing
diameter does not affect the amplitude of the edge potential and the sound field
behind the barrier. The diameter affects only the shape of the Waterwheel channels
that determine the width of the effective range.

Results above 2 kHz are quite chaotic and it is difficult to find any trend. As
mentioned in the section 4, the non-uniqueness problem is caused above 2·7 kHz.
Furthermore, the problem might happen in a lower frequency range when the core
cylinder of the Waterwheel is larger than the original.

5.3.     

In this study, the opening angle of the channel was 15°; that is, a circle
was divided into 24 sectors. The 15° angle was set to propagate the sound waves
in the channels parallel to the radius of the Waterwheel. Generally speaking, in
the duct of a constant cross-sectional area, the sound wave propagates as a
plane wave when the inner diameter of the duct is smaller than half of the
wavelength. For the required propagation in the channel of the Waterwheel,
however, the upper limit of the cross-section area was not obtained. The 15°
angle was the minimum value that allowed for easy construction of the
two-dimensional scale model [5], and there were no physical foundations to decide
the angle.

With the depth of channels kept at 170 mm and the diameter kept at 590 mm,
the effect of the Waterwheel was calculated for different opening angles. The
opening angle was set at 15, 20, 30, 36, and 45°, which is 180° divided by the
integers 12, 9, 6, 5, and 4. Figure 12 shows the effect of change in the opening
angle on the effect of the Waterwheel. In the frequency range under 400 Hz, the
negative effect changed only slightly. In contrast, the form of the graphs above
1 kHz differs significantly for each opening angle, and thus no noticeable
relationship between the opening angle and the efficiency improvement was found.
In the higher frequency range, the sound wave in a channel does not propagate
solely parallel to the radius of the Waterwheel, i.e., the Waterwheel surface is not
locally reactive, because the channel mouth is no longer smaller than half of the
wavelength. For example, in the case of the 30° opening angle, the mouth of each
channel exceeds half of the wavelength at around 1·2 kHz. Accordingly, one
cannot easily estimate the acoustical property of the Waterwheel surface in this
frequency range.
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Figure 12. Difference of the Waterwheel’s effect caused by the variation of the channel opening
angle: (a) ——, 15°; ----, 20°; . . . . , 30°; (b) ——, 15°; ----, 36°; . . . . , 45°.

The effect of the Waterwheel in the range of 500 Hz–1 kHz is discussed below.
The effect decreases with an increasing opening angle. When the opening angle is
less than 36°, the decrease of the effect is less than 2 dB. The effect decreases by
4 dB, however, with the opening angle set at 45°. Even if the opening angle
increases from 15–36°, that is, even if the number of the plates decreases to half
of the original, the effect decreases by only 2 dB. Nevertheless, when only two
more plates are omitted (i.e., a 45° opening), the effect decreases by 4 dB as
compared to that of the 15° opening. For practical use of the noise barrier with
the Waterwheel, a compromise between the weight of the Waterwheel and the
sound shielding efficiency must be found. Consequently, the channels of the
Waterwheel considered in this study should be narrower than 36°. The limit of the
opening angle is also related to other dimensions, e.g., the diameter of the
Waterwheel and the depth of the channels. As such, further investigation is needed.

6. COMPARISON WITH DIFFERENT CYLINDERS

The effect of the Waterwheel cylinder is compared to that of a hard cylinder,
an absorbing cylinder, and a soft cylinder. In this section, one refers to the term
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‘‘absorbing’’ as the surface of rc impedance, and the term ‘‘soft’’ as the surface
of zero impedance, both regardless of the frequency. Consider a cylinder of
590 mm in diameter installed on the edge of a 3 m high rigid barrier. The
dimensions of the Waterwheel used for the comparison are: diameter, 590 mm;
depth of the channels, 170 mm; and opening angle, 15°. The source and receiver
geometry was the same as shown in Figure 6.

Figure 13 shows the difference of the SPL behind the noise barrier with and
without each of the cylinders, i.e., the improvement in the noise shielding efficiency
due to each cylinder. Results in the higher frequency range, especially for a soft
cylinder, are doubtful because of the non-uniqueness problem of the BEM. A hard
cylinder improves the efficiency by up to 3 dB in the lower frequency range;
however, the effect in the middle and higher ranges was nearly zero. When the
surface of the cylinder becomes absorbing and soft, a larger improvement in
efficiency is gained. Even though the acoustic properties of the absorbing and soft
surfaces were not frequency dependent, the effect of these cylinders increased with
increasing frequency. This is because the region where the edge potential decreases
becomes larger as compared to wavelengths with increasing frequency. At 630 Hz,
the Waterwheel produces nearly the same improvement as a soft cylinder. Except
for the negative effect in the range of 315–400 Hz, the value of the SPL ranges from
those of a hard cylinder to those of a soft cylinder. Consequently, the hypothesis
that the acoustic properties of the surface of the Waterwheel converge between
that of hard and soft surfaces because of the nature of the interference is
supported. This hypothesis, however, cannot illustrate the behavior of the
Waterwheel in the range of 315–400 Hz. A method to avoid the negative effect
might be found if the unexpected sound field around the Waterwheel in the
frequency range can be analyzed.

Figure 13. Improvement in the barrier’s efficiency by different cylinders. ——, with the
Waterwheel; ----, with a soft cylinder; . . . . , with an absorbing cylinder; –.–.–, with a hard cylinder.
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Figure 14. Scale model of the Waterwheel for three-dimensional experiments.

7. EXPERIMENTAL RESULTS

All of the above findings were determined from numerical analyses using
two-dimensional BEM. It has been already reported that the numerical analyses
assuming the two-dimensional sound field can provide a good indication of the
three-dimensional experiment using a point source when the point source and the
receiver in the experiment are in the vertical plane which is perpendicular to the
axis of the noise barrier [6]. In this section, three-dimensional experiments are
performed to confirm that the two-dimensional simulations accurately predict
three-dimensional sound fields.

A scale model of the Waterwheel was constructed as shown in Figure 14. The
dimensions in the experiments were reduced to a scale of one-tenth, and thus the
depth of the wells was 17 mm and the diameter of the core cylinder was 25 mm.
The core cylinder was made of a half pipe of 1·5 mm thick aluminum, and the rest
of the parts were 1 mm thick aluminum plates. Transmission loss (TL) of these
materials was large enough not to harm the sound field. The opening angle of the
wells was 36° by taking into account the results shown in Figure 12. The opening
width along the longitudinal direction of the cylinder was 14 mm, which is half
of the wavelength at 12 kHz, to make the Waterwheel surface (i.e., the open ends
of the wells) approximately locally reactive under the frequency. One unit was
301 mm long with a diameter of 59 mm. Twenty-four models were constructed,
thus obtaining a Waterwheel cylinder with a total length of 3·6 m.

Scale model experiments were carried out in a hemianechoic room. The
geometry of the barrier, point source, and receivers is shown in Figure 15. A
300 mm high noise barrier was sitting on the rigid floor, and the Waterwheel was
installed on the edge. The barrier was inserted between two half cylinders of the
Waterwheel, similar to Figure 7. Though the line source was on the ground surface
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Figure 15. Configurations of experiments in a hemianechoic room.

in the previous simulations, the point source in the present experiment was above
the ground because of the size of the loudspeaker. A corn speaker was used for
the frequency range of 630 Hz–2·0 kHz, and a tweeter for the range above 2·5 kHz.
A 1/4 in condenser microphone was set at a height of 5 mm, and the microphone
head faced the floor downward and vertically to exlclude its directivity. Pink noise
was generated to measure the 1/3 octave band SPL. As in the sections above, one
refers to the difference of the SPL behind the barrier with and without the
Waterwheel as the effect of the cylinder.

Figure 16 shows the results of the experiments, and illustrates that the sound
shielding efficiency of the noise barrier improves by approximately 10 dB in the
range of 5–8 kHz despite the negative effect at 3·15 kHz and 4 kHz. In the range
of 16–40 kHz, the improvement occurs at receivers R1 to R3. However, the effect
is fairly small at R4 and R5. The largest improvement due to the Waterwheel in
the higher frequency range was gained when a source and a receiver are set along
the line perpendicular to the barrier, and the improvement decreased when the
source and receiver were moved away from the perpendicular.

To achieve a meaningful comparison, the effect of the Waterwheel was
calculated again using two dimensional BEM for the cross-sectional geometry
shown in Figure 15. First the SPLs were calculated using pure tones at frequency
intervals of 1/15 octave, and the five results around the center frequency of a 1/3
octave band were averaged energetically to approximate the 1/3 octave band SPL.
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Figure 16. Measured effect of the Waterwheel cylinder during 1/10 scale model experiments: (a)
——, at receiver R1; ----, at receiver R2; . . . . , at receiver R3, and (b) ——, at receiver R4; ----,
at receiver R5.

The difference between the approximated band SPLs behind the barrier with and
without the Waterwheel is the effect of the cylinder. The comparison is shown in
Figure 17, with frequencies in the abscissa converted to the real scale. The results
of the experiment and simulation agree, despite the difference in the
two-dimensional and three-dimensional method, except in the range above

Figure 17. Comparison between three-dimensional experiment at the receiver R1 (——) and
two-dimensional BEM simulation (----): effect of the Waterwheel.
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3·15 kHz where the non-uniqueness problem of BEM might decrease the accuracy.
It is concluded that the two-dimensional numerical analyses can estimate the
sound shielding efficiency of noise barriers with the Waterwheel in a
three-dimensional sound field. The two-dimensional numerical analyses, however,
cannot estimate the angle dependence of the effect of the Waterwheel, as
demonstrated in the results for R4 and R5. Therefore, three-dimensional
experiments are still needed to predict the angle dependence.

8. CONCLUSIONS

The sound shielding efficiency of a noise barrier sitting on the ground and the
improvement of the efficiency by the Waterwheel installed on the edge of the
barrier were investigated. The frequency characteristics of the sound shielding
efficiency indicate that the efficiency increases by more than 10 dB in the frequency
range where the surface sound pressure of the Waterwheel is minimized, and the
width of the effective range is approximately one octave. On the other hand, in
the range where the sound pressure of the surface of the Waterwheel is larger than
that of a rigid cylinder, the Waterwheel produces a negative effect. Spatial
distribution of the effect was calculated at the frequency that produces minimal
sound pressure at the surface of the Waterwheel. Consequently, it was shown that
the effect was nearly 10 dB on average in the region investigated.

The relationship between the cross-section of the Waterwheel and its effect was
discussed. The depth of the channels and the diameter of the whole Waterwheel
influence the center frequency and the lower limit of the frequency range where
the efficiency improvement occurs. Furthermore, the opening angle of the channel
affects the upper limit of the effective range. The above investigations were based
on two-dimensional numerical analyses, and therefore three-dimensional
experiments were performed to confirm the accuracy of the simulations. Results
of the scale model experiment in an hemianechoic chamber show that
the Waterwheel is effective in the three-dimensional sound field, and that the
two-dimensional simulations can approximate the effect of the Waterwheel in the
three-dimensional field. In addition, the effect of the Waterwheel in a higher
frequency range is dependent on the incident angle.

The extension of the effective range and the reduction of the negative effect are
currently being investigated in the application of the Waterwheel to practical noise
control. A Waterwheel with different channel depths is expected to improve the
efficiency of the noise barrier. Moreover, intensity analysis might be very helpful
in determining the reason why the Waterwheel improves the sound shielding
efficiency of the barrier while completely reflecting the sound energy.
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