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During the last 20 years, the development of experimental modal analysis
techniques has facilitated the accurate measurement of modal parameters in many
types of structure. Alongside this work, several methods have been developed to
detect structural damage by using location-dependent changes in the modal
parameters. The paper extends the authors’ work on a correlation coefficient
termed the Multiple Damage Location Assurance Criterion (MDLAC) by
introducing two methods of estimating the size of defects in a structure. Their
effectiveness is illustrated using numerical data for two truss structures and both
location and sizing algorithms are validated experimentally using a three-beam
test structure. The paper also introduces a means of improving the computational
efficiency of the damage location algorithm. The MDLAC approach offers the
practical attraction of only requiring measurements of the changes in a few of the
structure’s natural frequencies between the undamaged and damaged states and
is shown to provide good predictions of both the location and absolute size of
damage at one or more sites.
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1. INTRODUCTION

Recently, much work has been dedicated to solving the problem of detecting the
location and extent of damage in elastic structures by using the changes in their
modal parameters; specifically, the natural frequencies, modal damping and
associated mode shapes. It is widely recognized that the natural frequencies are
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least contaminated by measurement noise and can generally be measured with
good accuracy. Messina et al. [1] suggest a standard error of 20·15% as a
benchmark figure for natural frequencies measured in the laboratory with the
impulse hammer technique. In contrast, modal damping and mode shape estimates
have error levels as much as 20 times worse [2] than those in the corresponding
natural frequency estimates.

In practice, measurements yield only partial mode shapes with respect to the
total degrees of freedom (DOFs) present in corresponding finite element (FE)
models. While the use of expansion methods [3, 4] can assist, the ratio of measured
to analytical DOFs is invariably low with consequential errors in the assessment
of the mode shapes. These difficulties are compounded when the structure under
test exhibits complex mode shapes and the FE model being used for the expansion
produces normal modes.

A number of non-destructive evaluation techniques based on changes in
a structure’s modal parameters have been introduced. Cawley and Adams [5]
used the changes in the natural frequencies together with a FE model to
locate the damage site. Some researchers [1, 6] have found this method
susceptible to measurement errors and ways of improving the localization
have been proposed [7]. Experiments performed by Biswas et al. [8] on a
highway bridge also demonstrated that changes in the natural frequencies alone
could be used to detect damage. Other authors [9, 10] have described similar
success.

By including mode shape information, several authors have developed methods
of assessing the extent of damage in addition to its location. Pandey and Biswas
[11] used complete mode shapes for the damaged and undamaged states to identify
both the location and amount of damage in a single pass by solving a system of
linear equations. Zimmerman and Kaouk’s algorithm [12] used two passes, the first
to locate the damage site and the second to assess the amount of damage. Topole
and Stubbs [13] also used mode shapes and natural frequencies and showed the
importance of introducing mode shape orthogonality to identify the location and
extent of damage on a structure by a pseudo-inverse solution of a system of linear
equations.

In practice, only a truncated set of natural frequencies and partial mode shapes
can be expected experimentally. As a result, a method capable of predicting the
extent as well as the location of damage that requires only the changes in the
natural frequencies would be welcomed.

Messina et al. proposed an assurance criterion for detecting single damage sites
[1] and this was extended [14, 15] to identify the relative amount of damage at
multiple sites. The principles were demonstrated on numerical test cases using
error-free data. This paper extends the approach further to give an absolute
assessment of the amount of damage present and validates the practical
application of the method with an experimental investigation. It will be seen in
section 2.2 that the solution procedure can involve significant computational effort
when analyzing large structures and section 3.3 therefore introduces a method of
dramatically reducing the solution time. Before describing the new work, the basis
for the MDLAC approach will be briefly reviewed.
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2. DAMAGE DETECTION PRINCIPLE

2.1.       

If {Df} is the measured frequency change vector for a structure with a single
defect of unknown size or location and {dfj} is the theoretical frequency change
vector for damage of a known size at location j, the Damage Location Assurance
Criterion (DLAC) for location j can be defined using a correlation approach
similar to the modal assurance criterion (MAC) used for comparing mode shape
vectors.

DLAC(j)=
={Df}T · {dfj}=2

({Df}T · {Df}) · ({dfj}T · {dfj})
. (1)

As can be seen from the Cauchy–Schwarz inequality, DLAC values lie in the range
of 0 to 1, with 0 indicating no correlation and 1 indicating an exact match between
the patterns of frequency changes. The location j giving the highest DLAC value
gives the best match to the measured frequency change pattern and is therefore
taken as the predicted damage site. It is found [1] that a more accurate localization
can be obtained if the frequency changes are normalized with respect to the
frequency of the undamaged structure. This is because the use of percentage
changes gives similar weight to all modes, whereas the use of absolute frequency
changes favours the higher modes since these tend to exhibit larger shifts.
Percentage changes are used throughout the work reported here.

As with the MAC parameter, equation (1) provides a sound statistical measure
to discriminate between the patterns for each potential damage site. Tests [1] have
shown that only about 10 to 15 modes are required to give sufficient discrimination
for reliable damage localization. This is an important advantage of the method
since higher-frequency mode shapes can change significantly when damage occurs
and can make it difficult in practice to match the modal pairs from undamaged
to damaged states. The modest mode number requirement makes mode-matching
errors less likely.

The original DLAC code was shown [1] to be robust in the presence of
measurement error and to give the correct location for damage of a range of sizes
at a single site.

2.2.      

The DLAC formulation applies to single defects only, but can be extended to
multiple sites by making use of an analytical model of the structure.

The model is based on the sensitivity of the frequency of each mode to damage
in each location. To calculate the sensitivities, it is assumed that damage to the
jth element is simulated by a homogeneous reduction of stiffness, but with no
change of mass. In this case, the sensitivity of the kth natural frequency to damage
at location j is given by equation (2) below.

1fk

1Dj
=

1
8 · fo

k · p2 ·
{fo

k}T[Ko
j ]{fo

k}
{fo

k}T[Mo]{fo
k}

, (2)
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where [Ko
j ] is the stiffness matrix of the jth element positioned within the global

matrix, [Mo] is the global mass matrix and {fo
k} is the kth mode shape vector; all

terms evaluated are for the undamaged structure.
A stiffness reduction factor Dj for the element is introduced such that Dj =1 for

no damage and Dj =0 for complete loss of the element (100% damage). For any
combination of size and location of damage at one or more sites (embodied in a
vector of changes to individual stiffness reduction factors {dD}), it is assumed that
the corresponding reductions in the natural frequencies can be written using a
linear combination of the sensitivities in the form:

df1 =
1f1

1D1
dD1 +

1f1

1D2
dD2 + · · ·+

1f1

1Dm
dDm

· · · · · · ·

dfp =
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or {df}= · · · · · · · · · {dD}, (3)G
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or

{df}=[S]{dD}.

Equation (3) gives the analytical predictions of the frequency changes, {df},
resulting from an arbitrary pattern of damage defined by the vector {dD}.
Substituting this into equation (1), one obtains a statistical correlation with the
measured frequency changes, {Df}. This is termed the Multiple Damage Location
Assurance Criterion (MDLAC) since it is a function of all elements in the damage
vector {dD}.

MDLAC({dD})= ={Df}T · {df({dD})}=2
({Df}T · {Df}) · ({df({dD})}T · {df({dD})}). (4)

Using the same damage detection principle as before, the required damage state
is obtained by searching for the vector {dD} which maximises the MDLAC value.
The search is initiated by setting the damage vector {dD} to {0·01%}. This is
chosen to be close to, but not at, the undamaged state since {dD}= {0} is a
singular point for equation (4).

It will be noted that the size of {df} is equal to the number of modes used, while
the size of {dD} is equal to the number of potential damaged sites. The latter is
a key factor in determining the computational time required for the search for the
maximum. In principle, all elements in the structure could be considered as
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potential damaged sites. However, section 3.3 discusses a method of reducing
computational effort by excluding locations that are unlikely to be damaged.

2.3.  

The MDLAC formulation provides a solution vector {dD} giving the relative
amount of damage at each site, but not an absolute estimate. This is because the
linear assumption embodied in equation (3) means that changing the solution
vector by a constant will not change the MDLAC correlation value. However,
since the actual frequency-change vector {Df} is known, an absolute damage
scaling coefficient, C, can be estimated such that C · {dD} gives the actual
percentage damage present. Two algorithms have been developed for this.

2.3.1. First order approximation

If the linear analytical model were an exact match to the experimental data, the
predicted frequency changes given by equation (3) would be identical to the
measured changes. That is:

{Df}=C · [S]{dD}. (5)

In principle, C could then be obtained from any one of the frequency-change
values. For example, using mode k, one has;

Ck =
Dfk

{Sk} · {dD}. (6)

However, due to the first order assumption and the effects of errors in the
measured frequencies, a more reliable value of the scaling coefficient is obtained
by averaging the estimates from equation (6) for all of the modes used in the
analysis.

2.3.2. Second order approximation

As damage increases, the effects of the true non-linear relation between
frequency changes and damage can introduce significant errors in the size
estimates. To combat this, a second order approximation has been developed.

For mode k, a second order approximation for the change in the eigenvalue lk

can be obtained by expanding around the undamaged state using a Taylor series.

lk − lo
k =61lk

1D1
· · ·

1lk

1Dm7
dD1 dD1

T 12lk

1D2
1

· · ·
12lk

1D1 1Dm

dD1

dD2 dD2 · · · · · ·
dD2

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

×
· · ·

+
1
2

·
· · ·

·
12lk

1Dm 1D1
· · ·

12lk

1D2
m

·
· · ·

(7)

dDm dDm dDm



2

1
3 8

9

7

10 15

1.52 m

1.
52

 m

E = 70 GPa   = 2770 kg/m3

14

13

19

18

2520

24

23 28

29

30  
4

5

6 11 16 21 26 31

27221712

.   .796

or

lk = lo
k + {sk}{dD}+ 1

2{dD}T[Hk ]{dD} with k=1, . . . , p.

Lin and Lim [16] showed that the elements for the kth Hessian matrix, [Hk ], used
in equation (7) can be written as;

12lk

1Dj 1Di
= s

n

r=1
r$ k

(lo
k − lo

r ) · b(i)kr · [b(j)kr − b(j)rk ]

where b(j)rk =
{fo

r}T · [Ko
j ] · {fo

k}
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k − lo
r )

.

(8)g
G

G

G
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F

f

Equation (7) can then be used to obtain individual estimates of the scaling
coefficient from each mode by solving quadratic equations in Ck in the form;

(1
2{dD}T[Hk ]{dD})C2

k +({sk}{dD})Ck +(4p2(f o2

k − f 2
k))=0. (9)

Again, the final value for the absolute damage scaling coefficient is obtained by
averaging the individual estimates.

3. ANALYTICAL EXAMPLES

3.1.  

Two numerical examples are used to illustrate the versatility of the method. One
is a 2-D pin-jointed truss with 31 bars and the other is a 3-D truss representative
of an offshore platform. The latter is also used to introduce ways of improving
the computational efficiency of the search. In all cases, frequency changes for the
first ten modes are used in the calculations.

3.2. -- 

The 31-bar truss, shown in Figure 1, was modelled using 31 classical consistent
finite elements without internal nodes [17] giving 25 degrees of freedom. Damage
in the structure was introduced as a reduction in the stiffness of individual bars,

Figure 1. Thirty-one-bar truss structure.
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T 1

Damage scenarios for the 31-bar truss structure

Case 1 Case 2 Case 3
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV
Element dD Element dD Element dD

11 25% 16 30% 1 30%
25 15% 2 20%

but the inertia properties were unchanged. This damage model agrees with others
present in the literature [5, 11, 13] and is consistent with the MDLAC formulation.

Three different damage states were considered (see Table 1) and, for each of
them, the true frequency changes {Df} were obtained by re-running an
eigensolution. The predictions of the absolute damage levels using the first and
second order approximations are shown in Figure 2.

Figure 2. Damage location charts for the 31-bar truss structure. (a) Case 1: dD11 =25%,
dD25 =15%, 10 modes; (b) Case 2: dD16 =30%, 10 modes; (c) Case 3: dD1 =30%, dD2 =20%, 10
modes. Q, 1st order MDLAC; , 2nd order MDLAC; s, Pandey and Biswas.
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The MDLAC results are also compared with the method presented by Pandey
and Biswas [11]. They used complete mode shapes to estimate the flexibility
matrices in the undamaged and damaged conditions using the expression:

[F]= s
p

k=1

1
v2

k
{fk}{fk}T. (10)

The change in the flexibility matrix was then written in the form:

[DF]=− s
m

j=1

[F]Damaged[Kj ]P[F]UndamageddDj . (11)

Equation (11) resulted in a set of linear equations which can be solved for the
absolute damage vector {dD}.

For Case 1 (Figure 2(a)), all three approaches correctly identify the location of
the two damage sites. The MDLAC prediction using the second order
approximation gives more accurate predictions of the damage levels than either
the first order approximation or the Pandey and Biswas method. A spread effect
is also apparent with the latter, in that it incorrectly predicts small amounts of
damage (some of which indicate an increase in stiffness) at other sites. Similar
observations apply to Case 2 (Figure 2(b)) and to many other cases which have
been investigated. In a few cases, however, the Pandey and Biswas method has
been found to give better results as, for example, in Case 3 (Figure 2(c)) where
the MDLAC approach underestimates the amount of damage in element 2 and
gives a false indication of damage in element 8.

It can be concluded that the MDLAC approach using either first or second
order approximations is able to assess the size of damage with good accuracy. It
should be noted that for both sizing methods, the linear approximation of
equation (3) is used for detecting the location(s) of damage. Equation (4)
constitutes a statistically sound method for comparing two patterns and it is found
that the MDLAC parameter is close to unity, even when the true
frequency-damage relationship is non-linear, and thus provides a sound statistical
measure of the contribution of different damaged locations to the overall
frequency-change pattern.

While the second order sizing algorithm gives significantly better results for
damage levels in excess of about 20%, the computational simplicity of the first
order approximation makes it attractive for the level of precision typically required
in practical damage monitoring applications.

The second order approximation is generally at least as good as the Pandey and
Biswas method. This is significant since the latter requires complete mode shape
information for both the damaged and undamaged states in order to calculate
changes to the flexibility matrix. This is unattractive in practice since it implies
either a comprehensive modal survey each time a damage evaluation is needed,
or the use of a model expansion technique to obtain the required data. Either way,
it is felt that the MDLAC approach offers a sound, cost-effective solution.
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3.3.   

The tabular steel offshore platform structure shown in Figure 3 was modelled
with 76 two-noded 3-D Euler–Bernoulli beam elements giving a total of 372
degrees of freedom. The overall height of the platform is 83 m and the base is 45
by 42 m. Details of the geometry of the legs and cross-members are given in
reference [18].

Even though the longest part of the overall diagnosis process is normally the
collection of the required experimental data, it is recognized that the search for
the maximum in {dD}-space can be a computationally intensive exercise if the
number of potential damaged sites is large. One reason is that the linear
assumption embodied in equation (3) implies an infinite number of maxima for
the MDLAC function in the search range; all having the same relative proportion
of damage in each element. It follows that, if the initial value for the maximum
search is the undamaged state (i.e., near zero in {dD}-space), it is not necessary
to search the whole of the domain of the stiffness reduction factor between 0 and
1. In this work all the assessments have been done in the range from 0 to 0·5.

While this restriction provides a useful time saving, the key factor determining
the search time is the size of the {dD} vector; in other words, on the number of
potential damaged locations included in the search. Significant time savings can
be obtained if it is possible to limit the search to a sub-set of possible damage sites.

The MDLAC approach is based on the pattern recognition principle that
damage at a particular location produces larger changes in some natural
frequencies than in others. This, of course, is quantified in the sensitivity matrix
[S]. If it can be assumed that damage is present at only a few locations (i.e., that
most of the structure remains undamaged), the large values found in the measured
frequency-change vector {Df} can be used in conjunction with the sensitivity

Figure 3. Offshore platform structure.
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Figure 4. Damage location charts for the platform structure (Case 1); dD1 =20%. (a) Full search
of all 76 elements: 5776 iterations; (b) selective search of seven elements: 91 iterations. Q, 1st order;

, 2nd order.

matrix to identify locations which are more likely than others to produce such
changes. For example, if it was found that mode 7 had the largest percentage
frequency change, it might be expected that locations which would produce large
changes in that frequency (as indicated by the sensitivity matrix) would be among
the likely damage sites. In a multiple-damage situation, it is necessary to consider
several of the modes whose frequencies change significantly and, for each, to
identify a list of probable damage sites. Any restriction of the set of locations to
be searched risks omitting one or more which are damaged and this is particularly
true if many sites are damaged. However, if several modes are examined the
resulting list of possible damage sites can be large enough to minimize this risk
and, as will be illustrated later, even modest reductions in the number to be
searched can produce significant savings.

To illustrate the benefits, the case of a 20% stiffness reduction to element 1 of
the platform is considered. The results of a full search of all 76 elements using the
frequency changes in the first ten modes is shown in Figure 4(a), where it can be

T 2

Reduction in the number of iterations required

Number of Number of Number of Number of
modes locations per mode locations searched iterations

10 76 76 5776
5 10 32 1388
4 7 16 705
1 7 7 91
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Figure 5. Damage location charts for the platform structure. (a) Case 2: dD1 =60%; (b) Case 3:
dD1 = dD21 = dD62 =40%. Q, 1st order; , 2nd order.

seen that both first and second order approximations give good predictions of the
damage scenario. The search required 5776 iterations to converge.

Examining the five modes showing the largest frequency changes, and
identifying ten locations with the highest damage sensitivities for each, gave a list
(after eliminating duplicates) of 32 possible damage sites. Restricting the search
to these locations took 1388 iterations and gave a location chart which was
indistinguishable from Figure 4(a). These and two other cases are listed in Table 2.
In the final row where the search list was reduced to just seven locations, only 91
iterations were required. Since the time needed for each iteration is also reduced,
the overall time saving is over 500:1 compared with the full search. The result of
the final search case is shown in Figure 4(b) where it will be seen that there is a
small deterioration in the accuracy of the damage size prediction. The use of the
MDLAC approach is illustrated by results for two further damage scenarios that
are given in Figures 5(a) and (b). For Case 2 (Figure 5(a)), a 60% stiffness
reduction was imposed on element 1 and for Case 3 (Figure 5(b)), a 40% stiffness
reduction was imposed on elements 1, 21 and 62. In each case, the correct damage
locations are found, with good indications of the size of the stiffness reduction.

4. DISCUSSION OF THE ANALYTICAL CASES

In each of the cases presented, it is found that the MDLAC approach gives good
predictions of the location of both single and multiple damage sites and of the
absolute stiffness reduction. To the authors’ knowledge, it is the only method
based on monitoring only the changes in the natural frequencies which is able to
predict both the location and absolute extent of damage. As mentioned in the
introduction, this feature makes it particularly attractive for practical applications.
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For damage in excess of about 20%, it has been found that MDLAC can give
inaccurate size predictions due to the non-linear relationship between frequency
changes and damage. In particular, the solution frequency-change vector,
{df({dD})}, is not an exact match to the ‘‘measured’’vector, {Df}. Despite this, the
method still predicts the true damage locations.

The method of pre-selecting probable damage locations discussed in section 3.3
provides significant time savings during the search for the maximum MDLAC
value, but has to be used conservatively to avoid omitting any of the true damage
locations from the search list.

5. EXPERIMENTAL VALIDATION

5.1.  

It is clear that large errors in the measured frequencies could alter the apparent
frequency-change pattern and affect the ability of the MDLAC approach to give
a correct prediction. The other problem faced in practice is that the analytical FE
model used to calculate the sensitivity and Hessian matrices is unlikely to be an
exact match to the real structure. In principle, FE model updating could be applied
to address the situation, but since the approach is intended for routine monitoring
with minimum effort, it may be difficult to justify the additional cost. It was
therefore felt that the use of a non-updated model would provide a more realistic
(and more demanding) test of the method.

Figure 6. Aluminium rod test structure and its FE model. All dimensions in mm; all rods have
a diameter of 7·9 mm.
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The test structure used is shown in Figure 6 and consisted of a number of
circular aluminium rods which could be screwed together to make a range of
different configurations. Damage was simulated by substituting one or more of the
sections by rods of the same length, but of smaller diameter. The FE model used
to obtain the required sensitivity and Hessian matrices is also shown in Figure 6
and used 21 two-noded 3-D beam elements giving 132 degrees of freedom.

For the undamaged structure, single-input multiple-output impact tests (using
two accelerometers to sense the in-plane and out-of-plane motions) were used to
measure frequency response functions (FRFs) at the 22 points corresponding to
the nodes on the FE model. These were processed using a poly-reference
curve-fitter to give the first 12 natural frequencies and mode shapes. For the
damaged cases, measurements were taken at just five points, from which it was
possible to match the mode shapes with the undamaged state.

5.2.  

Table 3 lists the measured natural frequencies of the first 12 modes of the
undamaged structure together with the values predicted by the FE model. It will
be seen that significant differences exist in a number of the frequencies.

Four damage scenarios were investigated. For Cases 1, 2 and 3, the 30-mm long
section of rod corresponding to element 5 was reduced to diameters of 7·00, 6·00
and 5·00 mm, respectively. For Case 4, elements 5 and 14 were both reduced to
a diameter of 7·00 mm. Since the measured mode shapes are dominated by bending
and torsional motion, the effective stiffness reduction is given by the second
moments of area. It follows that the above diameter reductions are equivalent to
stiffness reductions of 40, 67 and 84%, respectively.

Table 4 gives the measured percentage reduction in each natural frequency for
the four cases. It can be seen that a few of the smaller values in Table 4 are

T 3

Experimental and numerical frequencies of the undamaged
structure (E=52 GPa, G=21 GPa, density=2900 kg/m3)

Mode Experimental Numerical Difference
no. (Hz) (Hz) (%)

1 86·4 88·0 +1·8
2 95·9 93·8 −2·1
3 196·0 214·7 +9·6
4 312·7 323·4 +3·4
5 379·6 374·2 −1·4
6 468·8 482·1 +2·8
7 489·5 499·3 +2·0
8 1144·0 1046·6 −8·5
9 1149·5 1100·9 −4·2

10 1211·0 1150·1 −5·0
11 1278·8 1245·9 −2·6
12 1574·2 1475·4 −6·3
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T 4

Experimental percentage frequency reductions for the four damage cases

Mode Case 1 Case 2 Case 3 Case 4
no. (dD5 =40%) (dD5 =67%) (dD5 =84%) (dD5 = dD14 =40%)

1 0·4 1·9 12·7 5·5
2 1·5 5·6 18·3 5·3
3 5·5 16·5 35·8 7·9
4 2·7 7·8 50·1 2·6
5 5·2 17·8 19·3 4·9
6 −0·5 −0·5 2·6 −0·9
7 −0·1 0·1 4·7 2·0
8 0·9 4·6 15·6 0·6
9 0·5 3·3 14·1 0·7

10 0·1 0·8 2·4 0·2
11 0·4 0·7 2·3 0·8
12 0·1 0·8 5·2 −1·3

negative, indicating a frequency increase. While this may in part be associated with
experimental error, examination of the mode shapes confirmed that these modes
would not be sensitive to stiffness changes in the elements chosen. As a result, the
mass loss due to the diameter reduction has a greater effect than the loss of
stiffness; a conclusion also confirmed by tests with the FE model. The mass loss
effect will be present in all cases, of course, but is ignored by the MDLAC
formulation that is based on reductions in stiffness only. The fact that the
approach is able to diagnose the damage situation effectively is a further measure
of its robustness.

Figure 7 shows the location charts for three of the experimental cases. For Case
1, with a 40% stiffness reduction in element 5, the MDLAC algorithm correctly
identified element 5 as having the highest damage level (Figure 7(a)), but also
indicated some damage in elements 10 and 11. It will be seen from Figure 6 that
these are adjacent to element 5. The spatial discrimination of the prediction of the
damaged site depends to a large extent on the wavelength of the modes affected.
It will be seen from Table 4 that modes 3, 4 and 5 have the largest frequency
changes and these have long wavelengths compared with the lengths of the
elements used in the FE model. In principle, the resolution could be improved by
involving more modes in the analysis, but the prediction does not improve with
all 12 modes and, since the method is intended as a simple diagnostic tool, 12
modes was felt to be a realistic practical limit. The result does, however, give a
sufficiently clear indication of the area of the damage to allow visual inspection
to confirm the precise location of the problem. This level of spatial discrimination
would be more than adequate in many practical applications.

The predicted size of the damage is less than the true level, with the second order
approximation being less accurate than the first order. Since the experiment
imposed mass loss in addition to stiffness reduction, the measured frequency
reductions were less than those for a stiffness reduction alone. This smaller
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Figure 7. Damage location charts for experimental Cases 1, 2 and 3. (a) Case 1: dD5 =40%, 10
modes; (b) Case 2: dD=67%, 10 modes; (c) Case 3: dD=84%, 10 modes. Q, 1st order; , 2nd
order.

frequency reduction is reflected in the lower damage level indicated by the sizing
algorithm.

Case 2, with a 67% stiffness reduction in element 5, gives a similar result
(Figure 7(b)), with the highest damage level again predicted in element 5 and lower
levels in the adjacent elements 4, 10 and 11. The predicted extent is closer to the
true value in this case, confirming that the reduction in stiffness has a more
significant effect on the frequency changes than the loss of mass.

Case 3, with an 84% stiffness reduction in element 5, again correctly predicts
the damaged area (Figure 7(c)). While element 5 is still predicted to have the largest
damage, significant levels are also predicted in the adjacent elements 6, 10 and 11.
This spread effect is a consequence of the linear assumption in the MDLAC
formulation, coupled with the large 84% stiffness reduction present.

For Case 4, 40% stiffness reductions were imposed at both elements 5 and 14
and it will be seen from Figure 8(a) that both areas are correctly predicted
(elements 5 and 10 and elements 13 and 14). The predictions used data from the
first ten modes. As with Case 1, which also had a 40% reduction, the predicted
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Figure 8. Damage location charts for experimental Case 4, dD5 = dD14 =40%. (a) 10 Modes; (b)
12 modes. Q, 1st order; , 2nd order.

level is underestimated due again to the fact that the sensitivity matrix in the
MDLAC algorithm assumes no mass loss. Unlike Cases 1 to 3, the prediction for
Case 4 is improved if all 12 modes are made available, as can be seen from
Figure 8(b).

The tests provide good validation of the method. While it is difficult to quantify
the errors in the individual frequencies, they are obtained from global estimates
from several FRFs. It is important to note that a non-updated model was used
to compute the sensitivity matrix and it is clear from the differences in the
frequencies in Table 3 that significant modelling errors exist. Despite this, the
predictions are good. This is because, while the measured and model frequencies
may be different, the pattern of the frequency changes is similar.

6. CONCLUSIONS

A new correlation coefficient termed the Multiple Damage Location Assurance
Criterion (MDLAC) has been shown to provide reliable information about the
location and absolute size of damage at one or more sites. It has the practical
attraction of only requiring information about the changes in a few of the natural
frequencies between the undamaged and damaged states. A further advantage is
that the initial modal survey to find the undamaged structure’s frequencies and
mode shapes need only be carried out in sufficient detail to provide a match with
the FE model. Since only about ten modes are needed, the number of FRF
measurements required is modest. Subsequent checks for damage would require
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even fewer measurements in order to establish the changes in the natural
frequencies.

First and second order methods have been developed to estimate the absolute
damage extent. While the second order approach generally gives better results, it
is felt that the first order method is likely to be adequate for routine condition
monitoring purposes where precise knowledge of the defect size is less important
than its location.

The matrix used in the formulation for describing the sensitivity of each natural
frequency to small reductions in local stiffness from the undamaged state can be
obtained efficiently using equation (3) and requires only one eigen-solution of the
FE model of the structure. The same is true of the Hessian matrices used for the
second order estimate of the absolute amount of damage.

The experimental evidence suggests that an updated model is not necessary in
order to obtain satisfactory predictions in practice.
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