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A GENERALIZED BOLOTIN’S METHOD FOR
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A boundary tracing method is presented for the construction of stability charts
for non-canonical parametrically excited systems. The method is an extension, so
as to cover the combination resonances, of the well known Bolotin’s method, and
reduces the boundary tracing problem into an eigenvalue analysis problem of
some special matrices.

7 1998 Academic Press

1. INTRODUCTION

Dynamical systems mathematically modelled by linear ordinary differential
equations with periodic coefficients (or Mathieu–Hill equations) are referred to as
parametrically excited systems. A stability investigation constitutes the focal point
in the analysis of such systems and numerous methods have been devised for that
purpose. These methods may be grouped, with respect to their origins, into three
categories as Lyapunovian methods [1–4], perturbation methods [5–8] and Floquet
methods. The results of stability investigations are generally and preferably
presented in the form of stability charts reflecting stability’s dependence on two
selected system parameters. Another convenient classification of the stability
analysis methods follows from the way they imply for the construction of these
charts: they are either scatter plot methods or boundary tracing methods.

In order to state clearly the scope of this paper, a brief overview of the Floquet
methods which as such either consider the Floquet multipliers or the Floquet
exponents to provide stability information will be given.

The Floquet multiplier methods determine first the so-called monodromy
matrix, by direct numerical integration of the system’s equations [9] or resorting
to an approximation technique [10–12], and calculate its eigenvalues which are the
Floquet multipliers. Recently Weyh and Kostyra have given a general Floquet
multipliers-boundary tracing method [13]. Its application [14] has shown that
boundary tracing methods do not only reduce the process-time but also facilitate
getting insight into some theoretically interesting peculiarities of multi-degree-of-
freedom systems. A similar method has also been given [15, 16] for the special case
of 2-degree-of-freedom canonical systems.
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The Floquet exponent methods start with the Floquet solutions, proceed via
Fourier series and harmonic balance and arrive at a vanishing, infinite determinant
known as Hill’s determinant. The Floquet exponents are calculated as the roots
of the determinantal equation. A basic Floquet exponent method introduced by
Hill [17] for the analysis of a single Hill’s equation, and generalized by some
authors to systems of Mathieu–Hill equations [18–21], consists of making use of
the convergence properties of Hill’s determinants to extract a closed form
expression for the determinantal equation. Some other Floquet exponent methods
confine the periodic coefficients to be of small order and resort to small parameter
expansions to obtain approximations to the determinantal equation [22, 23] or to
the stability boundaries [24]. Yet another Floquet exponent method, due to
Bolotin [25], consists of approximating the infinite Hill’s determinants by finite
segments and using the resulting determinantal equations to calculate the stability
boundaries rather than the Floquet exponents. This requires the values, the
Floquet exponents would assume on the stability boundaires, to be a priori known.
This indeed is the case for the boundaries of parametric resonance regions and the
method turns out to be an efficient boundary tracing method for those kind of
boundaries, but fails to deal with combination resonance boundaries as no
information is available on the required values in that case. Some authors
proposed generalizations of Bolotin’s method [26–28], but doing this, they
sacrificed its perhaps most valuable aspect of being a boundary tracing method.
The only exception is the work of Szemplińska-Stupnicka [29] who devised an ad
hoc approximate boundary tracing method for the primary instability regions of
2-degree-of-freedom systems.

Here a generalization of Bolotin’s boundary tracing method, applicable to
non-canonical parametrically excited systems, is presented. The essential feature
of the method is to eliminate the unknown Floquet exponents by using some
indirect knowledge on their aspect when passing from stability to instability and
to formulate the resulting boundary tracing problem in the form of an eigenvalue
analysis problem. A somewhat detailed analysis on the behaviour of the Floquet
characteristics is also given, which provides the required knowledge. As it will be
apparent in the sequel, the method turns out to be a computationally expensive
one. Yet, in the author’s opinion, it is not devoid of theoretical nor of practical
interest.

2. FLOQUET THEORY AND STABILITY BOUNDARIES

Consider an n-degree-of-freedom dynamical system whose state–space
representation leads to

u̇=A(t)u, (1)

where A(t) is a 2n×2n T periodic matrix. Floquet’s theory states that a
fundamental matrix of the system (1) may be expressed as F(t)=Q(t) eRt where
Q(t) is a T periodic matrix and R is a constant matrix which is related to another
constant matrix S, referred to as a monodromy matrix, by R=1/T log S. If the
fundamental matrix is normalized so that F(t0)= I, then S=F(t0 +T). The
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eigenvalues si of S are the Floquet multipliers while the eigenvalues ri of R are
the Floquet exponents. These two sets of generally complex characteristic numbers
are interrelated by

Re (ri )=1/T log [mod (si )], Im (ri )=1/T[arg (si )2 2kp], k=0, 1, 2, . .

(2)

and either of them governs the stability of the system (1). Specifically the system
is stable if and only if mod (si )E1 i.e., Re (ri )E0 for all i’s, where the equality
sign holds only when the multiplicity of the ith eigenvalue equals its nullity. It is
clear that the equality sign, for a certain i, also constitutes a necessary condition
for the passage from stability to instability or vice versa. But in view of the present
goal, one needs some further information on the features of the Floquet exponents
crossing a stability limit. Thus, there follows a brief discussion on the subject. It
proves to be more convenient to pursue this discussion in terms of Floquet
multipliers and then translate the results, by means of equation (2), into terms of
Floquet exponents. To this end two basic theorems are first evoked: (i) If A(t) is
real (the contrary case is discarded in this study), then complex Floquet multipliers
can only occur in complex conjugate pairs (si , sj = s*i ; i$ j). (ii) If the dynamical
system is canonical (i.e., if it is a conservative system with ideal holonomic
constraints so that its dynamics may be described by Hamilton’s canonical
equations) then the Floquet multipliers occur in reciprocal pairs
(si , sj = s−1

i , i$ j). As it will soon become apparent, the situation is quite different
for canonical and non-canonical systems:

In canonical systems (Figure 1(a)), existence of one complex si with
mod (si )$ 1 implies, by virtue of the above theorems, existence of four of them:
si:sj = s*i , sk = s−1

i = sj /mod2 (si ), s1 = s−1
j = s*k = si /mod2 (si ); i$ j$ k$ l

and this obviously corresponds to instability as two of the s’s have necessarily
moduli exceeding unity. But for a complex si with mod (si )=1, which
corresponds to simple or limit stability (the best possible for a canonical system),

Figure 1. Behaviour of Floquet multipliers. (a) Canonical systems; (b) non-canonical systems.
(H: Harmonic, S: subharmonic, C: combination resonance boundary.)
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one has s*i = s−1
i and the implications of the two theorems collapse in one so that

the existence of such a si implies existence of only two of them: si:sj = s*i = s−1;
i$ j. It then follows that the passage from instability to stability via a complex
s (boundary of combination resonance region) occurs when two pairs of complex
s’s of unit modulus meet. Thus, on a combination resonance boundary one has
si = s1 = s, sj = sk = s*= s−1; i$ j$ k$ l. On the other hand, for a real si we
have by theorem (ii) si:sj = s−1

i ; i$ j which obviously corresponds to instability
unless mod (si )= =si ==1. It then follows that the passage from stability to
instability via a real s (boundary of parametric resonance region) occurs either
when si = sj =+1; i$ j (boundary of harmonic parametric resonance region) or
when sk = s1 =−1; k$ l (boundary of subharmonic parametric resonance
region). It results from the above discussion that in canonical systems a stability
boundary, of whatever type, is characterized by the occurence of repeated Floquet
multipliers: si /sj =1; i$ j. It must however be remarked here that in some systems
with perfect symmetry, which in their stationary state have repeated
eigenfrequencies, existence of repeated Floquet multipliers will not be peculiar to
stability boundaries. Under the restriction voiced by this remark we are now at
a point to state in terms of Floquet exponents: in canonical systems, for a stability
boundary (of any kind) to occur it is necessary (sufficiency does not hold) that

ri − rj =0, i$ j, 0E =Im (ri,j )=E p/T, (3)

where the constraint on Im (ri,j ) is introduced in order to remove the indefiniteness
implied by equation (2) which does not single out the Floquet exponents but
defines them as a member of a so-called congruent set.

In non-canonical systems (Figure 1(b)), existence of one complex si implies, by
virtue of theorem (i), existence of two of them: si:sj = s*i ; i$ j. If mod (si )$ 1
either instability or stability prevails depending on whether mod (si ) is greater or
less than unity and the passage takes place when momentarily mod (si )=1
(momentarily because permanent limit stability is exclusive to canonical systems).
But then one has sj = s*i = s−1

i . Thus, it is concluded that a boundary of
combination resonance region is characterized by the occurrence of a pair of
reciprocal Floquet multipliers: si · sj =1; i$ j. Similarly, a real si may indicate
stability or instability and the passage occurs when momentarily
mod (si )= =si ==1. It then follows that a boundary of parametric resonance
region is characterized either by si =+1 or si =−1. To summarize these results,
we state in terms of Floquet exponents: in non-canonical systems, for a stability
boundary to occur, it is necessary that either

ri =0(22kpi/T), k=1, 2, . . . , i2 =−1, (4)

ri = pi/T(22kpi/T), k=1, 2, . . , (5)

where the terms in parentheses indicate possible congruents, or

ri + rj =0, i$ j, 0Q =Im (ri,j )=Qp/T, (6)

and these correspond to stability limits of harmonic parametric, subharmonic
parametric and combination resonance regions, respectively. [Note that equations



   855

(4) and (5) also hold for canonical systems, with pairs of equal Floquet exponents
instead of single ones.]

It is of interest to note that equations (5) and (6) may be combined in

ri + rj =0, i$ j, 0Q =Im (ri,j )=Ep/T, (7)

where the congruents corresponding to k=1 of equation (5) are allowed and
equations (4)–(6) may be combined in

ri + rj =0, i$ or= j, 0E =Im (ri,j )=Ep/T, (8)

where summation with oneself is allowed. Equation (8) is the necessary condition
for a stability boundary (of any kind) to occur in a non-canonical system.

In what follows, we concentrate on the study of non-canonical sytems and a
boundary tracing method is presented on the basis of equations (4)–(8).

3. MATHEMATICAL FORMULATIONS

Consider an n-degree-of-freedom non-canonical system described by

ẍ+C(t)ẋ+K(t)x= 0, (9)

where C(t) and K(t) are n× n, T periodic matrices. [The phase–space
representation of equation (1) is abandoned here for convenience.] Introducing the
change of variable t=vt, v=2p/T which turns the period T to 2p, substituting
for x(t) the Floquet solution

x(t)= ert s
a

k=−a
Dk eikt, (10)

where Dk’s are n×1 complex Fourier coefficients’ matrices, and representing C(t)
and K(t) by their Fourier series expansions up to the mth harmonic, equation (9)
gives (see reference [21])

v2 s
a

k=−a
(r+ik)2Dk e(r+ik)t + s

m

p=−m

s
a

k=−a
[v(r+ik)Cp +Kp ]Dp e[r+i(k+ p)]t = 0,

(11)

where Cp and Kp’s are n× n complex Fourier coefficients’ matrices related to C(t)
and K(t), respectively. Harmonic balance of equation (11) requires the following
infinite set of algebraic equations to be satisfied

v2(r+ik)2Dk + s
m

p=−m

[v(r−iq)Cp +Kp ]Dq = 0,

k=· · · −2, −1, 0, 1, 2, . . . , q= k− p. (12)
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This set may be recast, with v$ 0 into the form

[r2I+ r[E0 +1/vE1]+ [F0 +1/vF1 +1/v2F2]]D= 0, (13)

where D is an infinite column matrix defined as
D= { . . . DT

−2, DT
−1, DT

0 , DT
1 , DT

2 , . . . }T, I is the infinite dimensional unit matrix and
Ei , Fi’s are infinite dimensional partitioned matrices made up of n× n submatrices
given by

Ek,q
0 =2kiIdkq , Ek,q

1 =Cp ,

Fk,q
0 =� − k2Idkq , Fk,q

1 = qiCp , Fk,q
2 =Kp , (14)

where dkq is the Kronecker delta, i2 =−1, and the superscripts k and q denote
the row and column indices of the submatrix in question. We note that, except
those which are obviously diagonal, these submatrices are banded matrices with
bandwidth h=2n(m+1)−1. Existence of non-trivial solutions of equation (13)
requires vanishing of the determinant of the coefficients’ matrix which is a monic
matrix polynomial of second degree in r. Linearizing, one may write

det [[U0 +1/vU1 +1/v2U2]−rI]=det [R� − rI]=0, (15)

where Ui’s are doubly infinite matrices, whose definitions immediately follow from
equations (13)–(15). Hence, the Floquet exponents are the eigenvalues of the
matrix R� which is, therefore, an infinite dimensional substitute for the 2n×2n
matrix R. It is worth noting that the matrix pencil of equation (15) which is
nothing but the Hill’s matrix of the problem is i periodic in r, in accordance with
the fact that the Floquet exponents are defined [equation (2)] up to an integral
multiple of 2pi/T (here T=2p).

One may expect, following Bolotin [25], that finite dimensional, 2n(2K+1)th
order determinants taken from equation (15) by putting −KE kEK,
K=1, 2, . . . in equation (12) would give reasonable approximations to the
Floquet exponents. Care, however, must be taken in such a calculation because,
out of the resulting 2n(2K+1) eigenvalues, only 2n would be Kth order
approximations to the Floquet exponents ri ; =Im (ri )=E1/2 sought and the
remaining ones would be K− kth order approximations to the congruents ri 2 ki,
k=1, 2, . . . , K (as noted in reference [30]). This fact, which may be utilized to
construct a convergence criterion which let a so calculated ri be accepted only if
there are corresponding rj’s which are to a prescribed amount close to ri 2 i, seems
not to be fully recognized in some studies (e.g., reference [28]).

4. BOUNDARY TRACING METHOD

Let the frequency v of the parametric excitation be one of the two components
of the parameter space on which the stability chart is to be constructed. The second
component, say l, need not be specified beforehand. The boundary tracing method
will, therefore, consist of equations yielding the v values on the stability
boundaries. Such equations can easily be given for parametric resonance
boundaries as follows:
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Substitution of r=0 from equation (4) into equation (13) yields for harmonic
resonance boundaries

det [F0 +1/vF1 +1/v2F2]=0 (16)

and substitution of r=i/2 (r=−i/2 would equally do) from equation (5) with
T=2p, into equation (13) yields for subharmonic resonance boundaries

det [[F0 +1/2iE0 −1/4I]+1/v[F1 +1/2iE1]+1/v2F2]=0. (17)

Equations (16) and (17) are nothing but the original Bolotin’s method put in a
different form and their various versions have long been successfully used in
parametric stability analysis of various systems by many authors including the
present one [31, 32].

In order to obtain similar equations for combination resonance boundaries, one
has to express, according to equations (6)–(8), conditions for matrix R� of equation
(15) to have eigenvalues with vanishing sum. This problem is mathematically
equivalent to the problem of finding a matrix whose eigenvalues are the sums of
the eigenvalues of R� taken in pairs, and putting its determinant to zero. Such
matrices do indeed exist and are treated in detail by Fuller [33]. It turns out that,
given an nth order matrix M with eigenvalues mi (i=1, 2, . . . , n) one may
construct an n(n−1)/2-th order matrix B(M) called, in terms of Fuller, bialternate
sum of M by itself, with eigenvalues mi + mj (i=2, 3, . . . , n, j=1, 2, . . . , i−1),
and an n(n+1)/2-th order matrix L(M), called Lyapunov matrix of M by Fuller,
with eigenvalues mi + mj (i=1, 2, . . . , n, j=1, 2, . . . , i). (See Appendix for the
construction of these matrices.)

Hence, using equations (6) and (15), one may write for the combination
resonance boundaries

det [B(U0)+1/vB(U1)+1/v2B(U2)]=0; 0Q =Im (ri,j )=Q 1/2, (18)

where B(Ui ) designates the bialternate sum of Ui by itself. Finally, by equations
(8) and (15), one obtains for all the stability boundaries

det [L(U0)+1/vL(U1)+1/v2L(U2)]=0; 0E =Im (ri,j )E Q 1/2, (19)

where L(Ui ) designates the Lyapunov matrix of Ui .
Equations (16)–(19) involve regular matrix polynomials of second degree in 1/v.

They are, however, neither monic nor comonic, nor is their leading or last
coefficient matrix invertible [except for equations (16) and (17)]. Therefore first put
1/v=1/v*+ a where a is some scalar which does not equal an eigenvalue of the
matrix polynomial in question, and then linearize in v* [34] to obtain

det [G(l)−v*I]=0, v*=v/(1− av), (20)

where l represents the second component of the parameter space and the structure
of G(l) depends, besides l, on the boundary tracing problem [equations (16)–(19)]
in question and on the scalar a used in linearization.

Equation (20) concludes the essence of the boundary tracing method: v values
corresponding to the stability boundaries will be calculated, for given values of
l, by means of the eigenvalues of the matrix G(l). It should however be noted
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that all the so calculated v values are not admissable and the method has to be
supplemented with a selection procedure which: (1) rejects the v values which are
not real numbers [this follows from obvious physical considerations and applies
to any of the problems (16)–(19)]; and (2) eliminates those v values which
correspond to ri,j pairs violating the accompanying inequality constraint and/or
to unconverged ones [this applies to the problems (18) and (19)]. It is clear that
though the implementation of (1) does not require an additional effort, that of (2)
requires the corresponding Floquet exponents to be calculated through equation
(15), and a carefully designed convergence criterion to be used. This somewhat
disables the straightforward aspect of the method but as it is a consequence of the
intrinsic redundancy of the matrix R� , can apparently, not be circumvented within
the conceptual framework adopted in this study. Another problem associated with
the implementation of the method is the overdimensionality of the matrices
involved. For an n-degree-of-freedom system, in order for the Kth order instability
regions to be included in the calculations, the matrix G(l) has to be of order
h1 =2n(2K+1) for equations (16) and (17), h2 = h1(h1 −1) for equation (18), and
h3 = h1(h1 +1) for equation (19). These dimensions rapidly grow prohibitive in the
analysis of high degree-of-freedom systems.

5. A NUMERICAL EXAMPLE

As an example, consider the 2-degree-of-freedom system

6ẍ1

ẍ27+$0·1
0

0
0·1%6ẋ1

ẋ27+$$0·5
0

0
1·5%+$0·4

l

l

0·4% cos vt%6x1

x27=6007, (21)

which was first studied by Szemplińska-Stupnicka [29] and later revisited by
Takahashi [28]. The calculations are performed by means of a special FORTRAN
code developed for implementing the proposed method and the results are
presented in Figures 2 and 3, where hatched zones represent unstable parameter
regions. Figure 2 depicts the superposition of the results obtained by solving
equations (16) and (17) separately, with K=12 (h1 =100). Accordingly, only

Figure 2. Parametric stability analysis. (���: Harmonic; ===: subharmonic resonance region.)
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Figure 3. Complete stability analysis. (���: Harmonic; ===: subharmonic; 2: combination
resonance region.)

parametric resonances are accounted for and 12th order approximations are
obtained for the boundaries of primary and secondary parametric resonance
regions and diminishing order approximations to the boundaries of higher order
ones. Low order boundaries are therefore highly reliable. We note that, of the
calculated boundaries, some highest order ones are not shown on the figure.
Figure 3 depicts the results of the complete stability analysis performed by solving
equation (19) with K=3 (h3 =812). One observes that besides the primary and
secondary instability regions of Figure 2, which are accurately recovered, two
combination resonance regions corresponding to v0v1 +v2 and v0 (v1 +v2)/
2 (where v1 =z0·5, v2 =z1·5 are the natural frequencies of the system) are also
obtained. As a result of the fact that the ‘‘necessary’’ conditions used in
determining the stability boundaries do not discern the difference between an area
limit and an absolute limit of stability, both figures exhibit some regions where
more than one kind of instability coexist. Though not of great practical
significance, this feature may contribute to the understanding of some theoretically
interesting peculiarities of high order systems, as discussed in reference [13].

Comparing the stability chart of Figure 3 to the previously published charts for
the same system (Figure 1 of reference [29] and Figure 3(a) of reference [28]) one
observes notable quantitative discrepancies. This is just natural with the former
reference as it corresponds to a different level of approximation but is not
justifiable with the latter. The numerical experiments lead one to conclude that the
discrepancies with reference [28] should be traced back to the fact that no
discrimination has been made in that study between converged and unconverged
eigenvalues of the matrix R� . But, one must say, this makes the calculated
eigenvalues turn to a meaningless compilation of numbers corresponding to
different levels of approximation.

Figure 4, which corresponds to a fragment of Figure 3, visualizes some rough
results obtained by solving equation (19) and gives an idea about the selection
procedure mentioned above. The strings of points constitute candidates for a
stability boundary. Upon checking through equations (15) one finds out that a
string labelled k corresponds to Floquet exponents r+ ki. Thus, the strings
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Figure 4. Some results in the rough. +, k=0; w, k=1; q, k=2.

labelled 1 and 2 are rejected and the 0 labelled ones are admitted after checking
for convergence.

6. CONCLUSIONS

A method is presented for the stability limit calculations of parametrically
excited systems. The method constitutes an extension of the well known Bolotin’s
method to the case of combination resonances. It is based on the recognition of
the fact that the stability boundaries calculation problem of parametric systems
can be viewed as two eigenvalue analysis problems (one for the parametric
frequency and one for the Floquet exponents) nested inside one another (see
equation (13)) and that the Floquet exponents may be eliminated from that
problem by using some indirect information on their behaviour when crossing a
stability boundary.

An analysis of the behaviour of the Floquet characteristics is also provided
which makes it possible to derive the required information.

The applicability of the presented method is restricted to non-canonical systems.
This is, however, not too severe a restriction because canonical models are
generally used as approximations for actually non-canonical systems.

The method, on the other hand, severely suffers from the high-dimensionality
of the matrices involved. But who knows how long the significance of this
statement may persist in view of the prodigious developments in computer
technologies?
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APPENDIX:
CONSTRUCTION OF BIALTERNATE SUM AND LYAPUNOV MATRICES

Let A be an n× n matrix with elements aij , B the bialternate sum of A by itself
and L the Lyapunov matrix of A. The elements bpq,rs of B, where pq (p=2,
3, . . . , n, q=1, 2, . . . , p−1) labels the rows and rs (r=2, 3, . . . , n; s=1,
2, . . . , r−1) labels the columns of B, are defined as

−aps if r= q

apr if r$ p and s= q

app + aqq if r= p and s= q
g
G

G

G

G

G

G

bpq,rs = aqs if r= p and s$ q
, (A1)

−aqr if s= p

0 otherwise

and the elements lpq,rs of L, where pq (p=1, 2, . . . , n; q=1, 2, . . . , p) labels the
rows and rs (r=1, 2, . . . . , n; s=1, 2, . . . , r) labels the columns of L, are defined
for p$ q as

aps if r= q and s$ q

apr if r$ p and s= q

app + aqq if r= p and s= q
g
G

G

G

G

G

G

lpq,rs = aqs if r= p and s$ q
(A2)

aqr if r$ p and s= p

0 otherwise
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and for p= q as

2aps if r= p and s$ p

2app if r= p and s= p
g
G

G

G

G

lpq,rs = 2apr if r$ p and s= p
. (A3)

0 otherwise

For details and proofs the reader is referred to the work of Fuller [33].


