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Active control of vibrations and noise transmission of double wall composite
cylindrical shells using pairs of spatially discrete piezoelectric actuators is
investigated. The velocity feedback and sound pressure rate feedback control
procedures are developed. The inner and outer shells which are separated by a soft
core are modelled by Love’s thin shell theory for laminate composite materials and
the inputs are taken as stationary random pressures and/or random point forces.
A Galerkin-like procedure is used to obtain solutions of the governing
structural–acoustic equations. Parametric studies are performed to demonstrate
the effect of actuator placement, actuator size, control gains, spillover, structural
and acoustic damping characteristics.
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1. INTRODUCTION

Active control of vibrations and noise transmission/radiation has been a growing
interest for application to aircraft, space structures, automobiles, enclosures, etc.
[1–23]. Rapid development of high-speed microprocessors and piezoelectric/piezo-
ceramic materials provided alternative methods for vibration reduction and noise
attenuation [24–29]. Most of the recent applications of active vibration and noise
transmission/radiation control have been devoted to deterministic inputs where the
phase relationships between inputs, response and control forces can be established.

We present an analytical study of active control of vibrations and noise
transmission of double wall cylindrical shells to random inputs. The thin wall
shells are made of fiber reinforced composite materials and the core separating the
two shells is soft so that bending effects in the core can be neglected. Love’s thin
shell theory is used to model coupled vibrations of inner and outer shells [30, 31].
The equations of motion are solved using a Galerkin-like procedure [31]. Results
are presented to illustrate the superiority of sound pressure rate feedback over
the velocity feedback control for noise transmission. The differences of vibration
and noise transmission control for random point force inputs and uniformly
distributed sound pressure inputs are demonstrated. Parametric studies are
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performed to show the sensitivity of actuator size, placement and voltage gain on
the performance of active control.

2. THE FORMULATION OF EQUATIONS OF MOTION AND SOLUTION
PROCEDURE

2.1.    

The sandwich shell system is composed of two simply supported cylindrical
shells and a soft viscoelastic core, as shown in Figure 1. Each shell is constructed
from layers of fiber-reinforced laminate [30, 31]. The fibers are basically the load
carriers. The orientation of fibers is defined in Figure 1 with respect to the chosen
co-ordinates. The exterior shell is exposed to random loads. Two different
piezoelectric element configurations, surface-bonded and embedded, are
considered in this study. In Figure 2, an active piezoelectric system, where pairs
of discrete piezoelectric elements are attached/embedded to inner and outer shells,
is shown. The collocated piezoelectric sensors/actuators are assumed to be placed
symmetrically with respect to the middle surface of each shell. The polling
direction of the top and bottom piezoelectric actuators is in the same direction.
However, the external electric fields are applied in opposite directions. Thus, under
this action the substrate will deform in bending. Consider first surface-bonded
actuators and a single shell.

By neglecting all components of rotary inertia, the equations of equilibrium are

1Nx

1x
+

1Nxu

R1u
+ fx =mü, (1)

Figure 1. A double wall laminate composite circular cylindrical shell and co-ordinate system.
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Figure 2. Actuator placement on a double wall shell construction, polling and external electric
field directions.

1Nxu

1x
+

1Nu

R1u
+

Qu

R
+ fu =mv̈, (2)

12Mx

1x2 +2
12Mxu

R1x1u
+

12Mu

R21u2 −
Nu

R
+ fz =mẅ, (3)

where fx , fu and fz are the components of the external loads acting on the shell and
a dot indicates time derivative.

Following Love’s first approximation theory of thin shells [32], the in-plane
force and moment resultants in matrix form are

{N}=([A]+ x[Ab]+ x[Aa]){e}+([B]+ x[Bb]+ x[Ba]){k}, (4)

{M}=([B]+ x[Bb]+ x[Ba]){e}+([D]+ x[Db]+ x[Da]){k}− x[Ma], (5)

in which a and b represent the piezoelectric actuator and the bonding layer
between the actuator and the shell; matrices [A], [B] and [D] are given in reference
[33]. The position function x(x, u) is defined as

x(x, u)=61,
0,

if actuators exist,
otherwise.

(6)
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The strain {e} and curvature change {k} vectors are

ex

1u
1x

kx

−
12u
1x2

eu =
1v

R1u
+

w
R

, ku = −
12w

R21u2 −
1
R

1v
R1u

. (7)g
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The actuator induced moment vector {Ma} is

{Ma}=[Ba]8d31Ez

d32Ez

0 9, (8)

in which d31 and d32 are the piezoelectric strain constants, Ez is the electric field
applied to the piezoelectric actuator in the z-axis direction, and [Ba] is the coupling
stiffness matrix. The piezoelectric strain constant matrix [d] is [34]

[d]= & 0
0
d31

0
0
d32

0
0
d33

0
d24

0

d15

0
0

0
0
0'. (9)

For a thin piezoelectric patch with poling direction perpendicular to the patch,
only the constants d31 and d32 are needed.

In the present study, it was assumed that external electric fields are always
applied in the opposite direction to a pair of discrete actuators shown in Figure 2.
Thus, for thin cylindrical shells the effect of active in-plane forces, {Na}, can be
neglected. However, when polling and applied electric fields are in the same
direction, in-plane forces in the circumferential direction are the dominant
components for membrane action control [19–22]. Furthermore, the discrete
patches of thin piezoelectric actuators distributed over both sides of inner and
outer shells, shown in Figures 1 and 2, do not contribute much to the overall shell
stiffness.

For a laminate composite the extensional stiffnesses Aij , the extensional-bending
stiffnesses Bij and the bending stiffnesses Dij can be obtained from [30, 31]

Aij = s
N

k=1

C(k)
ij (zk+1 − zk ), i, j=1, 2, 6; (10)

Bij = 1
2 s

N

k=1

C(k)
ij (z2

k+1 − z2
k ), i, j=1, 2, 6; (11)

Dij = 1
3 s

N

k=1

C(k)
ij (z3

k+1 − z3
k ), i, j=1, 2, 6; (12)
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in which C(k)
ij are the elastic constants of the kth lamina [35] and zk , zk+1 are

distances measured from the reference surface, as shown in Figure 1. The mass
per unit area is calculated from

m= s
n

k=1

rkhk +2 s
M

j=1

x(rbjhbj + rajhaj ), (13)

in which N is the number of laminate layers and M is the number of actuators
bonded to the shell surface.

The matrices [Aa], [Ba] and [Da] are extensional, coupling and bending stiffnesses
of the piezoelectric actuators

[Aa]=gza

[Ca] dz, [Ba]=gza

[Ca]z dz, [Da]=gza

[Ca]z2 dz, (14–16)

in which [Ca] is the elastic constant matrix of the piezoelectric actuators.
The matrices [Ab], [Bb] and [Db] are extensional, coupling and bending stiffness

matrices of the bonding layer. These matrices can be obtained in a similar fashion
as equations (14)–(16), where matrix [Ca] is replaced with the elastic constant
matrix [Cb] of the bonding layer and integrations are across the thicknesses of the
bonding layers.

For the embedded actuator configuration, the laminate substrate needs to be
cut-out to accommodate the piezoelectric actuators. It is assumed that the strains
developed in the actuators are compatible with the strains of the surrounding
media. Furthermore, it is assumed that stiffness and mass of the laminate
composite do not change by much after the installation of the embedded actuators.
Thus, the force and moment resultants can be calculated from

{N}=[A]{e}+[B]{k}, (17)

{M}=[B]{e}+[D]{k}− x[Ma]. (18)

By applying equations (1)–(18) to both inner and outer shells shown in Figure
1, the equations of motion of a double wall sandwich shell system can be
developed. In the present paper, the core is assumed to be soft so that bending
effects in the core can be neglected. Then, the equations of motion for the external
shell can be written as

LE
11uE +LE

12vE +LE
13wE + kx (uE − uI )+ fE

x =0mE +
mc

3 1üE +
mc

6
üI , (19)

LE
21uE +LE

22vE +LE
23wE + ku (vE − vI )+ fE

u + faE
u =0mE +

mc

3 1v̈E +
mc

6
v̈I , (20)

LE
31uE +LE

32vE +LE
33wE + kz (wE −wI )+ fE

z + faE
z =0mE +

mc

3 1ẅE +
mc

6
ẅI , (21)
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in which fE
x , fE

u and fE
z are the components of the random loads acting on the

external shell, faE
x and faE

x are the components of the actuation forces produced on
the external shell by piezoelectric actuators. In equations (19)–(21), kx and ku are
the shear spring constants, kz is the extensional spring constant, the superscripts
and subscripts of I, E and C denote the inner shell, the outer shell and the core,
respectively. In the present approach, it is assumed that displacements vary linearly
in the core. The terms which contain mc /3 and mc /6 represent the apportioned
contributions of the mass of the core to both face shells. The differential operators
LE

ij are given in reference [33]. A similar set of equations to these, given in equations
(19)–(21), can be developed for the inner shell by interchanging the superscripts
and subscripts denoted by E with I.

The solution for a simply supported cylindrical shell can be written as

uE (x, u, t)= s
a

m=1

s
a

n=0

s
1

a=0

UE
mna (x, u)qE

mna (t), (22)

vE (x, u, t)= s
a

m=1

s
a

n=0

s
1

a=0

VE
mna (x, u)qE

mna (t), (23)

wE (x, u, t)= s
a

m=1

s
a

n=0

s
1

a=0

WE
mna (x, u)qE

mna (t), (24)

in which qE
mna (t) are the generalized co-ordinates of the outer shell, UE

mna (x, u),
VE

mna (x, u) and WE
mna (x, u) are the shell modes

UE
mna (x, u)=U
 E

mn cos 0mpx
L 1 cos 0nu− a

p

21, (25)

VE
mna (x, u)=V
 E

mn sin 0mpx
L 1 sin 0nu− a

p

21, (26)

WE
mna (x, u)=W
 E

mn sin 0mpx
L 1 cos 0nu− a

p

21, (27)

where a is an adjustment index to identify the ring-type modes, and U
 E
mn , V
 E

mn and
W
 E

mn are the modal amplitudes. Since the closed end shell considered in this paper
does not show preference for the orientation of its ring-type modes, it is necessary
to specify the preference to obtain a complete solution of the forced vibration
problem. An index a is used for the two ring-type modes cos (nu) and sin (nu)
which have the same natural frequency and modal amplitude.

The components of the actuation forces faE
u (x, u, t) and faE

z (x, u, t) are

faE
u =−

1
RE

1(xMaE
u )

RE1u
, (28)
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faE
z =−612(xMaE

x )
1x2 +

12(xMaE
u )

R2
E1u2 7, (29)

where MaE
x and MaE

u can be obtained from equation (8). The discrete pairs of
actuators shown in Figure 2 are polled in the same direction while the external
electric fields are applied in opposite directions. For thin shells, this type of
actuation does not produce any significant circumferential membrane force
component, Nu

a , to equation (28). However, for the general shell theory considered
in the present study, some actuation force in circumferential direction is produced
through moment MaE

u . If the external electric field is applied in the same direction
to each pair of actuators, a control force, Nu

a , will be induced in the circumferential
direction [19–22]. However, the surface area of each pair of discrete actuators
shown in Figures 1 and 2 that are distributed over the shell surface is assumed
to be relatively small in comparison to the overall surface area of the shell. Thus,
even for this type of control action, we should not expect that significant
contributions will result in membrane control force, Nu

a , from these small
actuators. The position function x(x, u) can be defined as

x(x, u)= s
Np

p=1

{H(x− x−
p )−H(x− x+

p )}{H(u− u−
p )−H(u− u+

p )}, (30)

in which H is the unit step function, x−
p , x+

p , u−
p , u+

p are the co-ordinates of the
four edges of the pth actuator pair and Np is the number of the piezoelectric
actuator pairs. The first and second derivatives of the unit step function can be
defined as delta and doublet functions, respectively. A doublet function can be
used to represent a concentrated moment. Thus, equations (28) and (29) can be
used as counteracting line moments at the edges of the piezoelectric actuators.

The governing equations of motion in terms of generalized co-ordinates qE
mna (t)

and qI
mna (t) can be developed by substituting the assumed modal solution for uE ,

vE , wE , uI , vI and wI into equations (19)–(21) and using the orthogonality condition.
The same procedure is repeated for the governing equations of the interior shell.
Damping can be introduced by simply replacing the elastic constants CE

ij in
equations (10)–(12) by the complex elastic constants of the form CE

ij (1+ jhE
ij ),

where hE
ij are the damping factors of the composite material. Damping could also

be introduced in the soft core by replacing the constants kx , ku and kz with
kx (1+ jhx ), ku (1+ jhu ) and kz (1+ jhz ), respectively, where hx , hu and hz are the
damping coefficients of the core material.

The generalized forces corresponding to the actuating forces are obtained from

FaE
mna (t)=g

L

0 g
2p

0

(faE
u VE

mna + faE
z WE

mna ) dx RE du, (31)

in which RE is the shell radius referenced to the shell layer to which the actuator
is laminated. The actuation terms faE

u and faE
z are functions of the actuator induced
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moments MaE
x and MaE

u . These moments can be obtained from equation (8). For
a uniformly distributed electric field,

Ep
z =

Vp
z

hp
a

, (32)

in which VpE
z and hpE

a are the applied voltage and thickness of the pth piezoelectric
actuator. From equation (31), the actuating generalized forces can be written as

FaE
mna (t)= s

NE
p

p=1

QpE
mnaVp

z (t), (33)

where

(Ba
11d31 +Ba

12d32)p0 1
hp

a102mpLp
u

L 1 sin 0mpLp
x

2L 1WE
mna (xp , up ), if n=0;

$(Ba
11d31Ba

12d32)p04mpRE

nL 1
QpE

mna = +(Ba
12d31 +Ba

22d32)p0 4nL
mpRE101+

V
 E
mna

nW
 E
mna1%

×0 1
hp

a1 sin 0mpLp
x

2L 1 sin 0nLp
u

2RE1WE
mna (xp , up ), otherwise;

(34)

in which Lp
x and Lp

u are the lengths of the pth actuator pair in the longitudinal and
circumferential directions, and (xp , up ) denotes the local co-ordinates of the pth
actuator.

The inputs to the double wall shell considered in this study are random point
loads and uniformly distributed random pressure. Thus, response solutions in the
form of spectral densities need to be developed. Taking the Fourier transformation
on the time variable of the governing equations of motion and using random
process theory [36], the response spectral densities of the transverse displacement
of the inner and the outer shells are

SI
ww (x, u, v)= s

a

m=1

s
a

n=0

s
1

a=0

s
a

r=1

s
a

s=0

s
1

b=0

{(II
(mna)(rsb)HI

mnaHI*
rsb

+ IE
(mna)HIE

mnaHIE*
rsb )WI

mnaWI
rsb}, (35)

SE
ww (x, u, v)= s

a

m=1

s
a

n=0

s
1

a=0

s
a

r=1

s
a

s=0

s
1

b=0

{(IE
(mna)(rsb)HE

mnaHE*
rsb

+ II
(mna)(rsb)HEI

mnaHEI*
rsb )WE

mnaWE
rsb }, (36)
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in which HI
mna (v) and HE

mna (v) are the frequency response functions of the inner
and the outer shell, HIE

mna (v) and HEI
mna (v) are the cross-terms of the frequency

response functions, an asterisk denotes a conjugate quantity, II
(mna)(rsb)(v) and

IE
(mna)(rsb)(v) are the cross-spectral densities of the generalized random input forces.

If the random inputs to the inner shell are zero, equations (35) and (36) can be
simplified by setting II

(mna)(rsb)(v)=0. The expressions for the frequency response
functions and generalized random forces are very lengthy and they are not
presented in this paper. However, these expressions can be found in reference [33].

2.2.      

After the response spectral densities of shell vibrations are known, the noise
transmitted through the double wall shell system can be obtained. The flexible shell
is supported by rigid end caps forming a closed cylindrical enclosure. It is assumed
that noise is only transmitted through the elastic shell and the entire surface of
the acoustic enclosure is absorbent.

The acoustic pressure p inside the cylindrical enclosure satisfies the wave
equation [31]

92p=
1
c2

0
p̈+ bṗ, (37)

where c0 is the speed of sound, b is the acoustic damping coefficient and

92 =
12

1r2 +
1
r

1

1r
+

1
r2

12

1u2 +
12

1x2 . (38)

The boundary conditions to be satisfied by equation (37) are

1p
1r

=−r0ẅI −
r0

ZA
ṗ, on r=RI ; (39)

1p
1x

=+
r0

ZA
ṗ, on x=0; (40)

1p
1x

=−
r0

ZA
ṗ, on x=L; (41)

in which r0 is the air density inside the enclosure and ZA is the frequency dependent
acoustic point impedance of the acoustic absorbent material [37, 38].

Solving equation (37) for hard wall boundary conditions, i.e., 1p/1r=0 at
r=RI and 1p/1x=0 at x=0 and L, the acoustic modes of the cylindrical
enclosures are

Cijkm (x, u, r)= cos 0ipx
L 1 cos 0ju− m

p

21Jj0ljkr
RI 1, (42)

in which Jj is the Bessel function of the first kind of order j and ljk are the values
of the kth zero of the first derivative of Jj , i.e., {d[Jj (r)]/dr}r= ljk =0. The solution
for interior acoustic pressure can be obtained by expanding the pressure in terms
of acoustic modes given in equation (42) and satisfying equation (37) by a
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Galerkin-like procedure. Furthermore, applying Green’s second identity [39], the
homogeneous acoustic equation with non-homogeneous boundary conditions can
be transformed into a non-homogeneous equation with homogeneous boundary
conditions. Then, the acoustic modal equations can be written as

P� ijkm +02jA
ijkv

A
ijk +

r0c2
0Aijkm

ZAVijkm 1P� ijkm +vA2

ijkPijkm

=−
r0c2

0

Vijkm

s
a

m=1

s
a

n=0

s
1

a=0

B(mna)(ijkm)q̈mna , (43)

in which jA
ijk are the acoustic modal damping coefficients and vA

ijk are the acoustic
modal frequencies

vA
ijk = c0X0ipL1

2

+0ljk

RI1
2

. (44)

The acoustic–structural coupling coefficients B(mna)(ijkm) are

B(mna)(ijkm) = 82mendnjdam

m2 − i2
W
 I

mnaJj (ljk )RIL,

0,

if (m− i) odd,

otherwise,
(45)

in which en =2 for n=0, en =1 for n$ 0; dnj =1 for n= j and dnj =0 for n$ j.
The coefficients Vijkm and Aijkm can be obtained from

Vijkm =g
L

0 g
2p

0 g
RI

0

C2
ijkm (x, u, r) dxRI du dr, (46)

Aijkm =g
L

0 g
2p

0

C2
ijkm (x, u, RI ) dx RI du

+g
2p

0 g
RI

0

{C2
ijkm (0, u, r)+C2

ijkm (L, u, r)}RI du dr. (47)

Then, taking the Fourier transformation of equation (43) and using the theory of
random processes [36], the spectral density of the acoustic pressure inside the
cylindrical enclosure is

Spp (x, u, r, v)= s
a

i=0

s
a

j=0

s
a

k=0

s
1

m=0

s
a

a=0

s
a

b=0

s
a

c=0

s
1

n=0

L(ijkm)(abcn)HijkmH*abcnCijkmCabcn ,

(48)
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in which Hijkm (v) are the acoustic modal frequency response functions of the cavity
and can be obtained from

Hijkm (v)=
−(r0c2

0 /Vijkm )
vA2

ijk −v2 + jv(2jA
ijkv

A
ijk +(r0c2

0Aijkm /ZAVijkm ))
. (49)

The terms L(ijkm)(abcn)(v) involving the acoustic–structural coupling are

L(ijkm)(abcn)(v)= s
a

m=1

s
a

n=0

s
1

a=0

s
a

r=1

s
a

s=0

s
1

b=0

{II
(mna)(rsb)HI

mnaHI*
rsb

+ IE
(mna)(rsb)HIE

mnaHIE*
rsb }B(mna)(ijkm)B(rsb)(abcn), (50)

in which IE
(mna)(rsb) and II

(mnaa)(rsb) are the cross-spectral densities of the generalized
random forces of the inner and outer shells and are given in reference [33].

After the spectral density of the interior acoustic pressure is known, the
band-filtered sound pressure levels (SPL) and the Sound Pressure Level (SPL) can
be calculated from

SPL(x, u, v)=10 log
Spp (x, u, r, v)Dv

p2
ref

, dB, (51)

SPL(x, u)=10 log
g

vu

0

Spp (x, u, r, v) dv

p2
ref

, dB, (52)

in which pref is the reference sound pressure, pref =20 mPa for airborne sound, Dv

is the selected frequency bandwidth, and vu is the upper cut-off frequency.

3. ACTIVE CONTROL OF VIBRATIONS AND NOISE TRANSMISSION

The application of active control to vibration suppression and noise
transmission attenuation is aimed to large-scaled shells and wide-band random
inputs. Thus, a large number of sensors/actuators will be needed to obtain the
required solutions. The control scheme is designated to be multiple independent
single-input/single-output feedback controllers. Two active control mechanisms
are considered in this paper: direct velocity feedback and sound pressure rate
feedback [23].

3.1.  

For the velocity feedback control, the shell transverse velocity measured at
location (xp , up ) is inverted and fed to the pth piezoelectric actuator pair as voltage
with a control gain GE

p . Then, the voltage can be written as

VpE
z (t)=−GE

p ẇE (xp , up , t)=−GE
p s

a

m=1

s
a

n=0

s
1

a=0

WE
mna (xp , up )q̇E

mna (t). (53)
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It can be shown that active modal damping factors za
mna are

zE
mna = s

NE
p

p=1

GE
p QpE

mnaWE
mna (xp , up ). (54)

For collocated sensors/actuators, the active modal damping factor given in
equation (54) can be incorporated as positive damping into the governing
equations of shell vibrations and response spectral densities. A similar expression
of the active modal damping factor can be obtained for the inner shell. Thus, the
random vibration response of the double wall shell system is reduced due to
increase in system damping from piezoelectric actuators.

3.2.    

The direct velocity feedback control developed in section 3.1. is aimed at
reducing vibrations of the double wall shell system. However, for cases where the
acoustic resonances dominate the interior noise, velocity feedback might not be
effective in reducing noise transmission to acceptable levels. The active control by
sound pressure rate feedback could provide additional acoustic damping thereby
suppressing the acoustic resonances [23]. This can be achieved by making the
applied voltage to the piezoelectric actuators proportional to the sound pressure
rate inside the cavity as

Vp
z (t)=Gpṗ(xp , up , rp , t)=Gp s

a

i=1

s
a

j=0

s
a

k=0

s
1

m=0

Cijkm (xp , up , rp )P� ijkm (t). (55)

Substituting the above expression into equation (33) and solving the governing
equations for double wall shell vibrations which contain piezoelectric actuators,
the active acoustic damping factors zijkm can be obtained:

zijkm =−6 s
NI

pz

p=1

GI
pCijkm (xI

p , uI
p , rI

p ) s
a

m=1

s
a

n=0

s
1

a=0

(Qp
mna )IHI

mnaB(mna)(ijkm)

+ s
NE

pz

p=1

GE
p Cijkm (xE

p , uE
p , rE

p ) s
a

m=1

s
a

n=0

s
1

a=0

(Qp
mna )EHIE

mnaB(mna)(ijkm)7. (56)

Then, the active acoustic damping effect enters equation (43) and subsequently
equation (49) as an additional v2zijkm damping term multiplied by P� ijkm . Unlike the
direct velocity feedback scheme, the sound pressure rate feedback does not
guarantee that active damping factors zijkm will be positive. Positive damping can
be guaranteed by using appropriate filters for control gain GE

p and GI
p .
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4. NUMERICAL RESULTS

Numerical results are obtained for uniformly distributed random pressure and
for random point loads acting on the exterior shell. The random pressure is taken
as homogeneous truncated Gaussian white noise for which the spectral density is

FE
z =6S0,

0,
for 0E fE fu ,
otherwise,

(57)

in which S0 is a selected parameter to represent different random pressure loadings,
f is the frequency and fu is the upper cut-off frequency. For example,
S0 =40 Pa2/Hz for sound pressure level input of 110 dB and 140 dB overall level
when fu =1000 Hz. The random point loads are represented by two independent
random forces acting on the exterior shell, as shown in Figure 3. The spectral
densities of these point forces are also taken as truncated Gaussian white noise
with the spectral density

FE
z = s

2

i=1

Sid(x− xi )
1
RE

d(u− ui ), (58)

in which d denotes a delta function. Numerical results are obtained for

S1 =S2 =610 N2/Hz,
0,

for
otherwise.

0E fE fu , (59)

For an upper frequency cut-off of 1000 Hz, the root-mean-square value of each
input force is 100 N.

The dimensions of a double wall cylindrical shell shown in Figure 1 are: L =
6 m, RI =1·6 m, RE =1·65 m, hc =50 mm, hI =2·5 mm, and hE =2 mm. The
inner and outer shells consist of ten and eight layers of multi-directional
T300/N5208 Graphite/Epoxy laminate with the material properties: E1 =
181 GPa, E2 =10·3 GPa, G12 =7·17 GPa, n12 =0·28, and r=1600 kg/m3. Each
lamina has a thickness of 0·25 mm and stacking sequences starting from the
bottom layer are [0°/45°/90°/–45°/90°/90°/–45°/90°/45°/0°] for the inner shell and

Figure 3. Locations of the point loads.
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T 1

Empirical constants for glass fiber materials [38]

Lx =0·025 a1 a2 a3 a4 b1 b2 b3 b4

LELx 0·396 0·135 0·0668 0·196 0·458 0·646 0·707 0·549
LeLx 0·179 0·102 0·0235 0·0875 0·674 0·705 0·887 0·770

[0°/45°/–45°/90°/90°/–45°/45°/0°] for the outer shell. The damping factors of the
shells and the core are taken as hI

mna = hE
mna =0·02 and hC

mna =0·1, respectively.
The vibrations of a double wall shells system with a relatively soft core include

flexural (in-phase) and dilatational (out-of-phase) motions [31]. The numerical
results were obtained including all the modes for the selected frequency range of
0–1000 Hz. To cover this frequency range, 9940 structural modes (4970 flexural
and 4970 dilatational) with m=1, 2, . . . , 70 and n=0, 1, . . . . , 70, are needed.
For convenience, the displacement level DL is defined as

DL=10 log
Sww (x, u, f)Df

h2 , dB, (60)

in which Sww is the displacement response spectral density of either the inner or
outer shell and h is the respective shell thickness.

The normal acoustic point impedance ZA of the sound absorbing materials at
the inner shell surface and the end caps can be taken as [37]

ZA =
Za

tanh (Gad)
, (61)

in which d is the thickness of the sound absorbing acoustic material, and Za and
Ga are the characteristic impedance and propagation constant [38]:

Za =Z0{1+ a1L
−b1 − ja2L

−b2}, Ga = k0{a3L
−b3 + j(1+ a4L

−b4)}, (62, 63)

in which Z0 = r0c0 is the air characteristic impedance, k0 =v/c0 is the acoustic air
wave number, L= r0f/Rf , Rf is the flow resistivity, and a1, a2, a3, a4, b1, b2, b3,
b4 are empirical constants. Noise transmission is calculated for d=12·5 mm glass
fiber blanket with Rf =18·4 kN · s/m4 and for empirical constants given in Table
1. The acoustic modal damping coefficients jA

ijkm in equations (43) and (49) were
set equal to zero. Numerical results were obtained using all acoustic modes in the
frequency range of 0–1000 Hz.

The displacement levels and root-mean-square displacements at x=3 m and
u=90° are shown in Figures 4 and 5 for uniform random pressure and random
point force inputs. These results are for the cases without active vibration control.
For a uniformly loaded shell, only the modes with n=0 and odd m are excited.
The peaks in Figure 4 are the breathing flexural and dilatational modes for n=0.
Thus, the response in the low frequency range is very low since there are no modes
excited in this frequency range. For point force inputs, the shell response is
dominated by low frequency modes and a large number of modes are excited.
Thus, the effectiveness of active vibration control by piezoelectric actuators could
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Figure 4. Displacement levels at x=3 m for uniform random pressure with SPL=110 dB:
——, inner shell, rms wI /hI=0·00155; ····· , outer shell, rms wE /hE =0·00988.

be significantly different for these two types of inputs. Different active control
designs might be required to accommodate distinctly different inputs.

A wide variety of piezoelectric materials is available. Since the structure selected
in this study is of large-scale and is relatively stiff, the major concern is the
limitation of the actuation ability of these materials. Piezoelectric actuators with
high modulus, large piezoelectric strain constant, and large applied electric field
can achieve significant actuation capability. Numerical results are obtained for the
following geometric and material properties of the piezoelectric actuators:
Ea =63 GPa, ra =7650 kg/m3, na =0·3, d31 = d32 =−180×10−12 m/V,
Lp

x =60 mm, Lp
u =60 mm, and ha =1 mm. The adhesive used for bonding

actuators is assumed to be isotropic with the following properties: Eb =10 GPa,

Figure 5. Displacement levels at x=3 m and u=90° for two concentrated forces: ——, inner
shell, rms wI /hI =0·06134; ·····, outer shell, rms wE /hE =0·07776.
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T 2

The spatial-average response of controlled double wall sandwich shells with various
arrangements of piezoelectric actuators for uniform pressure and point force inputs

Uniform pressure Point forces
ZXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXV

Control (wI
avg/hI )rms (wE

avg/hE )rms SPLavg (dB) (wI
avg/hI )rms (wE

avg/hE )rms SPLavg (dB)

None 0·00180 0·00767 119·6 0·0531 0·0680 116·1
Inner shell 0·00144 0·00775 118·7 0·0154 0·0215 113·5
Outer shell 0·00195 0·00715 122·0 0·0446 0·0572 116·1
Both shells 0·00158 0·00724 119·8 0·0115 0·0151 112·5

rb =1000 kg/m3, nb =0·33, and hb =0·1 mm. In addition, numerical results were
also obtained for several different sizes of piezoelectric actuators.

To control shell vibrations and noise transmission, 270 pairs of actuators on the
inner shell and 270 pairs of actuators on the outer shell were used. The actuators
were arranged on the shell surface as follows: a total of 15 actuator rings are
distributed longitudinally at 0·25-m intervals in the space from x=1·25 m to
x=4·75 m, where each ring contains 18 actuators uniformly distributed around
the circumference.

Local vibration response and local interior noise pressure could vary
significantly from one location to another. To evaluate the feasibility of active
vibration and noise transmission control, it is more meaningful to define spatial
average quantities in terms of spectral densities, root-mean-square values, and
overall noise levels. The spatial average spectral densities are defined as

SL
avg(f)=

1
2pRIL g

L

0 g
2p

0

SI
ww (x, u, f) dx RI du, (64)

SE
avg(f)=

1
2pREL g

L

0 g
2p

0

SE
ww (x, u, f) dx RE du, (65)

SP
avg(f)=

1
pR2

I L g
L

0 g
2p

0 g
RI

0

Spp (x, u, r, f) dx RI du dr. (66)

The spatial-average root-mean-square vibration response and overall sound
pressure levels are given in Table 2 for various velocity feedback control
arrangements. The inputs are 110 dB uniform pressure and two point loads with
spectral densities prescribed in equations (58) and (59). The control gains of the
piezoelectric actuators are all set to G=5×103. These results indicate that active
control is most effective when piezoelectric actuators are installed either on both
shells or only on the inner shell. Installing piezoelectric actuators only on the outer
shell could reduce vibrations of the outer shell, but has almost no effect on noise
transmission. Since the vibrations of both shells are coupled, controlling vibrations
of one shell might not always guarantee the best results.
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T 3

The spatial-average response of inner shell control with various sizes of piezoelectric
actuators for uniform pressure and point force inputs

Uniform pressure Point forces
Actuator ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

size (wI
avg/hI )rms (wE

avg/hE )rms SPLavg (dB) (wI
avg/hI )rms (wE

avg/hE )rms SPLavg (dB)

None 0·00180 0·00767 119·6 0·0531 0·0680 116·1
80×80 mm 0·00144 0·00775 118·7 0·0154 0·0215 113·5
160×160 mm 0·00092 0·00790 112·9 0·0078 0·0143 109·7
240×240 mm 0·00060 0·00803 109·9 0·0051 0·0136 106·5

The effect of using different sizes of piezoelectric actuators is demonstrated in
Table 3. In this case, the actuators are only located on the inner shell. These results
indicate that for the chosen shell geometry, increasing piezoelectric actuators’ size
can result in greater reduction of average inner shell response and average interior
noise. However, these observations should not be generalized since the
effectiveness of active control depends on many parameters and not just the size
of actuators. Furthermore, there are some practical limitations in the size of a
discrete piezoelectric patch. The large size of the piezoelectric patch may not be
commercially available. Furthermore, induced strains in piezoelectric actuators are
assumed to be constant. For a large size actuator, the resonant frequency of the
actuator may be close to the selected upper bound frequency range. Thus, induced
strains are no longer constant [40]. In addition, the large size piezoelectric actuator
may cause spillovers to the higher modes. The spillover is demonstrated in Figures
6 and 7. These results were obtained using 9940 structural modes. The spillover
phenomena can be observed from the active damping factor given in equation (54).

Figure 6. The inner shell spatial-average response under inner shell control for various sizes of
piezoelectric actuators and uniform pressure: ——, no control; ·····, 80×80 mm; - - - ,
160×160 mm; ——, 240×240 mm.
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Figure 7. The inner shell spatial-average response under inner shell control for various sizes of
piezoelectric actuators for point force inputs: ——, no control; ·····, 80×80 mm; - - - ,
160×160 mm; ——, 240×240 mm.

The parameters in this expression are all positive except for modal terms
sin (mpLp

x /2L) and sin (nLp
u /2R). For large values of Lp

x and Lp
u , these terms could

become negative yielding negative active damping factors which cause the spillover
effect. For patch sizes satisfying mL2

x /2LE 1 and nLp
u /2RE E p, active damping

coefficients in equation (54) are all positive and no spillover to higher modes
occurs. Thus, patch sizes could be tailored to accommodate different shell
geometries with no spillover for the selected frequency range. The effect of
spillover may not be very significant at higher frequencies since higher-frequency
modes tend to have lower amplitudes and are more effected by damping.

The active damping factor in equation (54) is a function of control gain G. To
investigate the effect of control gain, four different cases have been considered. In
each case, a total of 270 pairs of piezoelectric actuators size 80×80 mm are
attached only to the inner shell. The results are given in Table 4. The results for
G=0 correspond to the case where actuators are mounted to the inner shell but
no voltage is applied to the actuators. Only the structural dynamic characteristics

T 4

The spatial-average response of inner shell control with various control gains for
uniform pressure and point force inputs

Uniform pressure Point forces
Control ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

gain (wI
avg/hI )rms (wE

avg/hE )rms SPLavg (dB) (wI
avg/hI )rms (wE

avg/hE )rms SPLavg (dB)

None 0·00180 0·00767 119·6 0·0531 0·0680 116·1
G=0 0·00152 0·00777 119·3 0·0405 0·0528 114·9
G=5×103 0·00144 0·00775 118·7 0·0154 0·0215 113·5
G=5×104 0·00126 0·00769 116·9 0·0053 0·0135 109·8
G=5×105 0·00091 0·00761 113·1 0·0015 0·0149 103·1
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(stiffness and mass) of the inner shell are affected by the presence of piezoelectric
actuators. As can be seen from these results, a larger control gain can achieve
larger reduction of shell vibration and noise transmission. However, the applied
electric fields to the piezoelectric actuators exceed the allowable electric field of
piezoelectric materials for G=5×105. For the actuator located at x=0·5L and
u=60°, the feedback voltages are 63, 610 and 5084 V, for uniform pressure input,
and 108, 356 and 1032 V, for point force inputs with control gains G of 5×103,
5×104 and 5×105, respectively. A voltage requirement of 5084 V would be too
large for practical implementation of piezoelectric materials and the results are
only included for comparison [40].

The performance of direct velocity feedback is relatively good to control
vibrations of the inner shell and a reasonable amount of noise reduction can be
achieved when inputs are random point forces. However, for a uniform random
pressure input only a modest amount of noise reduction was obtained. In this case,
only the modes for which n=0, m=1, 3, 5, . . . are present. The efficiency of
sound radiation from coupling of these shell modes to acoustic modes is high.
Vibration control introduced through localized bending moments from small and
discrete pairs of piezoelectric patches do not seem to be very effective for the shell
modes which involve uniform stretching around the circumference. Due to
practical limitations of the feedback voltage that can be applied to piezoelectric
actuators, direct velocity feedback control is not very effective in obtaining a
substantial amount of noise reduction for random pressure inputs that are
uniformly distributed over the shell surface.

For active control using the sound pressure rate feedback procedure,
piezoelectric actuators are assumed to be mounted only on the inner shell. A total
number of 270 pairs of actuators is used with the same arrangement as discussed
earlier. The pressure sensor (microphone) is located at x=3 m, u=0°. Successful
application of this approach relies on the design of feasible filters. The modal
feedback filters are chosen similarly as in reference [23]:

[Gp (v)]ijkm =−gpCijkm (xp , up , rp ) s
a

m=1

s
a

n=0

s
1

a=0

Qp
mnaHI*

mna
B(mna)(ijkm), (67)

in which gp is the positive gain of the filter. Substituting equation (67) into equation
(56), the acoustic modal active damping factors are

zijkm = s
Npz

p=1

gpC
2
ijkm (xp , up , rp )B s

a

m=1

s
a

n=0

s
1

a=0

Qp
mnaHI

mna
B(mna)(ijkm)B

2

. (68)

If the acoustic modal filters are chosen in the form of equation (67), acoustic
modal factors from equation (68) are all positive and the solution for interior
acoustic pressure is stable. However, these feedback filters need to be determined
numerically by solving the ijkn simultaneous equations. For a large number of
acoustic modes, these solutions require a significant amount of computation time.
However, if a single mode or only few modes dominate the acoustic response,
simplified expressions could be developed for feedback filters [23].
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Figure 8. Spatial-average sound pressure levels for uniform pressure with SPL=110 dB and
different control gains: · · · ·, no control; OASPLavg =122·6 dB; ——, gp=1×104,
OASPLavg =110·4 dB; -------, gp =1×105, OASPLavg =103·5 dB.

The results presented in Figure 8 are the spatial-average sound pressure levels
for several different control gains gp . These results indicate that a larger gain can
achieve a larger amount of noise reduction. The results given in Figure 8 show
that active control of noise transmission by the sound pressure rate feedback
procedure could be very effective over a significant frequency range. Since
piezoelectric actuators are most effective in controlling resonant modal vibrations
of the shell, best noise reduction is achieved in the frequency range where both
structural and acoustic modes are present. The distinct peaks that appear in Figure
8 in the frequency range of 0–500 Hz are the sound pressure levels at the resonant
frequencies of acoustic modes. Since for uniform pressure input no structural
modes are excited in this frequency range, active control of shell vibrations by
piezoelectric actuators has no significant effect on noise transmission. However,
for the chosen interior acoustic conditions, the sound pressure levels at
these acoustic resonances do not contribute much to the overall interior sound
pressure.

5. SUMMARY AND CONCLUSIONS

The control effectiveness of discrete small piezoelectric actuator patches
installed on simply supported double wall composite cylindrical shells subject to
random excitation were studied. Direct velocity feedback and sound pressure rate
feedback schemes were developed for vibration and noise transmission control.
Random sound pressure and random point force inputs were considered. Modal
feedback structural and acoustic controlled damping ratios were obtained and
their effects were evaluated with respect to: actuator size, electric field gain and
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different random input conditions. Theoretical investigations carried out in this
study suggest the following:

1. Direct velocity feedback control could provide significant reduction of
vibrations for a double wall shell configuration. The discrete piezoelectric
actuators are more effective for frequency-ranges of low modal densities.

2. For the chosen geometry and the number of actuators, direct velocity
feedback control is not very effective in reducing noise transmission.
However, if transmitted noise is dominated by structural shell resonances,
velocity feedback control might provide the required levels of noise
attenuation.

3. For a double wall configuration, locating active control elements on the inner
shell gives more noise reduction than for an equivalent control system located
on the outer shell.

4. Increasing the size of discrete actuator patches, increases vibration reduction
and transmitted noise attenuation. However, for larger piezoelectric
actuators a modal spillover effect was observed.

5. Increasing voltage gain within the acceptable limits of piezoelectric
materials could increase actuation capability and decrease vibration and
noise levels.

6. The sound pressure rate feedback control is very effective in reducing noise
transmission in the frequency range where strong coupling between structural
and acoustic modes occurs. However, more research is required to assess the
feasibility of this approach for practical implementation: design of modal
filters, frequency regions of high structural and acoustic modal densities, shell
geometries which represent actual aircraft and other transportation vehicles,
realistic random inputs from turbulent boundary layer and powerplant noise,
and different geometries of piezoelectric actuators.

In conclusion, discrete pairs of collocated piezoelectric sensors/actuators
installed on the shell surface could provide reduction in vibrations and noise
transmission. Since the surface area that is covered by these actuators is relatively
small in comparison to the total surface area of the shell and the primary action
is local bending, their effectiveness in controlling circumferential membrane action
dominant modes will be less than those of active lamina layers which cover the
entire or large portions of the shell surface [19, 20].

REFERENCES

1. J. C. S and K. K. A 1991 AIAA Journal 29, 1058–1067. Recent advances
in active noise control.

2. G. E. W 1982 Noise Control Engineering 18, 100–110. Active attenuation of
noise—the state of the art.

3. F. W. G and K. P. S 1994 Journal of Aircraft 31, 223–227. Active
sound attenuation across a double wall structure.

4. A. J. B, P. A. N and S. J. E 1990 Journal of Sound and Vibration
140, 191–217. Theoretical studies of the active control of propeller induced cabin noise.

5. S. J. E, P. A. N, I. M. S and C. C. B 1990 Journal of Sound
and Vibration 140, 219–238. In-flight experiments on the active control of
propeller-induced cabin noise.



.-.   . 886

6. J. V. W and R. J. B 1990 AIAA Journal 28, 284–289. Digital control
of local sound fields in an aircraft passenger compartment.

7. C. M. D, G. P. E, S. M. H, C. F. R and S. G. C. S
1989 Journal of Sound and Vibration 128, 358–360. A demonstration of active noise
reduction in an aircraft cabin.

8. R. J. S, H. C. L and S. B. A 1989 Journal of Vibration, Acoustics,
Stress, and Reliability in Design 111, 337–342. Evaluation of active noise control in
a cylindrical shell.

9. S. D. S and C. H. H 1994 Journal of Sound and Vibration 170, 443–449.
The design of systems to control actively periodic sound transmission into enclosure
spaces, part I: analytical models.

10. S. D. S and C. H. H 1994 Journal of Sound and Vibration 170, 451–472.
The design of systems to control actively periodic sound transmission into enclosure
spaces, part II: mechanisms and trends.

11. D. R. T, P. A. N and S. J. E 1993 Journal of Sound and Vibration
167, 91–111. Active control of the transmission of sound through a thin cylindrical
shell, part I: the minimization of vibrational energy.

12. D. R. T, P. A. N and S. J. E 1993 Journal of Sound and Vibration
167, 113–128. Active control of the transmission of sound through a thin cylindrical
shell, part II: the minimization of acoustical potential energy.

13. M. A. S, T. M. L, C. R. F and J. D. J 1991 Journal of Aircraft
28, 208–215. Full-scale demonstration tests of cabin noise reduction using active
vibration control.

14. J. D. J and C. R. F 1989 AIAA Journal 27, 845–852. Active control of sound
fields in elastic cylinders by multicontrol forces.

15. C. R. F and J. D. J 1987 Journal of Sound and Vibration 112, 389–395.
Experiments on reduction of propeller induced interior noise by active control of
cylinder vibration.

16. H. C. L and S. L 1991 Proceedings of the Conference on Recent Advances
in Active Control of Sound and Vibration, Blacksburg, VA, 3–26. Piezoelectric actuator
models for active sound and vibration control of cylinders.

17. V. R. S and J. D. J 1991 Proceedings of the Conference on Recent Advances
in Active Control of Sound and Vibration, Blacksburg, VA, 27–38. Active vibration
control of thin cylindrical shells using piezoelectric actuators.

18. C. R. F, S. D. S, C. H. H and R. J. S 1992 AIAA Journal 30,
2613–2617. Active control of interior noise in model aircraft fuselages using
piezoceramic actuators.

19. H. S. T, J. P. Z and M. N 1993 Journal of Vibration and Acoustics 15,
40–46. Sensor mechanics of distributed shell convolving sensors.

20. H.S. T, J. P. Z and H 1994 Journal of Sound and Vibration 177,
63–378. Spatially distributed orthogonal piezoelectric shell actuators (theory and
applications).

21. H. S. T, Y. B and V. B. V 1996 Journal of Sound and Vibration 197,
207–224. Parametric study of segmented transducers laminated on cylindrical shells,
part 1: sensor patches.

22. H. S. T, Y. B and V. B. V 1996 Journal of Sound and Vibration 197,
225–249. Parametric study of segmented transducers laminated on cylindrical shells,
part I: actuator patches.

23. S. K, J. T. G and E. T. F 1993 The Journal of the Acoustical
Society of America 94, Part 1, 900–907. A new approach for active control of sound
transmission through an elastic plate backed by a rectangular cavity.

24. E. F. C 1994 AIAA Journal 32, 1689–1699. Intelligent structures for aerospace:
a technology overview and assessment.



   887

25. C. K. L 1990 The Journal of Acoustical Society of America 87, 1144–1158. Theory
of laminated piezoelectric plates for the design of distributed sensors/actuators, part
I: governing equations and reciprocal relationships.

26. E. F. C and J. D L 1987 AIAA Journal 25, 1373–1385. Use of piezoelectric
actuators as elements of intelligent structures.

27. N. N. R 1994 The Theory of Piezoelectric Shells and Plates. Boca Raton:
CRC Press.

28. H. S. T 1993 Piezoelectric Shells Distributed Sensing and Control of Continua.
Dordrecht: Kluwer Academic Publishers.

29. E. H. A and N. W. H 1994 Journal of Sound and Vibration 174,
617–639. Simultaneous piezoelectric sensing/actuation: analysis and application to
controlled structures.

30. W. S 1993 Vibrations of Shells and Plates. New York: Marcel Dekker; second
edition.

31. D. A. B and R. V 1987 Journal of Aircraft 24, 268–273. Response of
double-wall composite shells to random point loads.

32. A. E. H. L 1944 A Treatise on the Mathematical Theory of Elasticity. New York:
Dover; fourth edition.

33. C.-Y. W 1995 Ph.D. Thesis, Columbia University. Active vibration and noise
control of double wall cylindrical shells under random excitation.

34. ANSI/IEEE Std 176–1987 1987 IEEE Standard on Piezoelectricity. New York: IEEE.
35. S. W. T 1980 Introduction to Composite Materials. Westport: Technomic

Publishing.
36. Y. K. L 1967 Probabilistic Theory of Structural Dynamics. New York: McGraw-Hill.
37. F. P. M 1988 Journal of the Acoustical Society of America 83, 1002–1013. Design

charts for sound absorber layers.
38. L. L. B and I. L. V́ (edited) 1992 Noise and Vibration Control Engineering:

Principle and Applications. New York: John Wiley & Sons.
39. R. H 1987 Elementary Applied Partial Differential Equations. Englewood

Cliffs, NJ: Prentice-Hall; second edition.
40. C. L, F. P. S and C. A. R 1993 Smart Structures and Materials 1993:

Smart Materials SPIE 1916, 341–352. Dynamic output characteristics of piezoelectric
actuators.

APPENDIX: LIST OF SYMBOLS

E1, E2 moduli of elasticity of composite material
G12 shear modulus of composite material
h thickness
j z−1
kx , ku , kz stiffnesses of core
L length of shell
Mx , Mu , Mxu moment resultants
m mass per unit area of shell
Nx , Nu , Nxu force resultants
Pijkm generalized co-ordinates of sound pressure
Qu out-of-plane shear resultant
R mean radius of shell
u, v, w shell displacement components
x, u, r cylindrical coordinates
z shell co-ordinate measured outward from reference surface
n12 Poisson’s ratio
r material density
vmn natural frequencies of shell
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Subscripts and superscripts
a actuator
b bonding layer
C core
E outer shell
I inner shell
i, j, k, m indices of acoustic modes
m, n, a indices of shell modes
T matrix transpose
x component in longitudinal direction
z component in transverse direction
u component in circumferential direction
* complex conjugate


