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A quarter car suspension system model containing a controllable damper with
a limited range of coefficient values, a limited adjustment system bandwidth and
a realistic elastic mounting to the car body is optimized for operation on a random
road through a novel numerical method. The optimized system is simulated
traversing random road surfaces and performance measures are extracted from the
simulation runs. Comparisons are made with corresponding measures from
relevant alternative systems. The effectiveness of the numerical optimization is
established and conclusions are drawn on the usage and value of preview for
semi-active automotive suspensions.
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1. INTRODUCTION

Of the large number of research papers which have been concerned with computer
controlled suspension systems for vehicles, a small proportion have discussed road
preview. Bender [1] and Tomizuka [2] were pioneers in the field, each treating the
optimization of one mass systems with perfect actuation. In cases involving active
suspensions, the following have been established, largely by application of linear
optimal control theory: (a) the potential benefits in performance to be obtained
from preview; (b) the typical energy consumption costs; and (c) the amount of
preview necessary as a function of vehicle speed, wheelbase and control bandwidth
[3]. The results indicate that ‘‘look-ahead’’ preview control is not, at present, a
viable technology for anything other than a small minority of applications. A
rather large preview distance is needed for much benefit to be gained under normal
operating conditions and gaining benefit from the preview is probably at the
expense of energy consumption.

It has been established that the road elevation can be measured about 1 m ahead
of the front of a car in normal service [4] but it is likely that the practical difficulties
associated with obtaining the greater ‘‘look-ahead’’ distances needed will be
considerable and the freely available ‘‘wheelbase’’ preview is useful only with a full
bandwidth suspension. With preview, the actuators operate more vigorously on
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a random road than without it [5], which implies greater energy consumption of
an electro-hydraulic system of normal design. Note, however, that the opposite
result can be obtained, depending on whether the calculations relate to idealised
totally efficient and energy regenerative devices or to practical electro-hydraulic
systems [6, 7].

‘‘Wheelbase preview’’ is normally such that a slow-active or limited bandwidth
suspension cannot gain significantly from the preview information. A full
bandwidth system may so gain [5] but the full bandwidth design seems not
practical in any case, due to its capital cost, weight, maintenance needs and energy
requirements [8–10].

Preview control of a semi-active suspension can be useful in each of two ways.
Firstly, the preview can be used to counter the possibly adverse influences on
performance of actuation delays in the dampers. Secondly, it can be used, in
principle, to improve the control strategy over that which is best for a non-preview
system. However, the inverse relationship between performance improvement and
energy consumption through preview [3, 5] suggests that the addition of preview
information to a semi-active suspension may not yield much advantage. Also, it
is quite widely believed that the optimal control strategy for a semi-active system
is to mimic a linear optimal active system as closely as possible, employing
so-called ‘‘clipped’’ optimal control [11, 12]. This would imply that strategic
advantage from preview semi-active control is unlikely to be obtainable.
Nevertheless, it is possible that the best control schemes for realistic semi-active
systems (with operating delays) with preview, are sufficiently different from those
yielded by application of the linear optimal theory that this suggestion is incorrect
[13].

Using clipped optimal preview control, Hac and Youn [11] made performance
calculations for a full bandwidth quarter car system for sinusoidal roads, discrete
road bumps and randomly profiled roads and it was concluded that sufficient
preview significantly benefits almost all aspects of suspension performance
simultaneously. Dynamic programming techniques have been used by Muijder-
man et al. [14] to determine the state control of a two state, instantly switchable
damper of a quarter car for discrete road bumps but no conclusions on the value
of preview were reached. Muijderman et al. [15] later described an optimization
method of ‘‘branch and bound’’ nature to derive a switching control for a two state
damper with first order lag switching dynamics, under road preview. The
controller’s ability to contribute to a defined performance objective was
demonstrated but improvement of a conventional fixed system appeared modest.
Implementation of the scheme on a vehicle appears to be processor intensive, a
new optimization being needed at each discrete time step.

It remains somewhat uncertain, therefore, what constitutes the optimal use of
road preview information for a realistic semi-active automotive suspension system
and what sort of benefits can be obtained from it. Shedding more light on these
issues and, in particular, trying to quantify them, are the main thrusts of the
present paper. At the beginning, a semi-active quarter car model containing some
realistic design features is set up and a novel numerical procedure for optimizing
its performance is described. The system is then simulated traversing randomly
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profiled roads and comparisons are made with relevant alternative systems.
Conclusions relate to the optimization technique used, to the use of available
preview information in a semi-active scheme and to the performance advantages
which can be gained from the use of the information.

2. SYSTEM MODEL AND OPTIMIZATION OF THE DAMPING CONTROL

2.1. 

The quarter car model is shown diagrammatically in Figure 1. The
representations of body mass, wheel mass and tyre spring are conventional, while
the damper is mounted in series with a relatively stiff spring, has second order
actuation dynamics and is controllable via the damper coefficient demand signal,
u, within the range 0 to 100 as illustrated in Figure 2, which shows the non-linear
map: Fdamp = m(v, ū)= (200+48ū) arctan (2v), where v is the relative velocity
between the ends of the damper and ū is the output of the second order signal
filter shown in Figure 1. With the constraint on u, it is possible for ū to take values
outside the range 0 to 100 but with the high damping factor of the filter, the
tendency to overshoot the demand u is rather small.

Other versions of the quarter car, which are of interest from a comparison point
of view, are an infinite bandwidth linear active system, and a simple linear passive
system with non-compliant damper mounting. The controllable suspensions will
be subject to differing amounts of road surface preview. For the active system
without preview, Linear Quadratic Regulator (LQR) or Linear Quadratic
Gaussian (LQG) techniques [16] can be used to find a control which minimizes
a quadratic cost function under white noise derived excitation and it is such a
system which has been presumed here. For the active system with infinite preview,

Figure 1. Diagrammatic representation of quarter-car suspension.
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Figure 2. Steady state damper force/velocity map.

a new derivation of its frequency response functions in analytical form follows.
From these response functions, it is straightforward to calculate responses to any
defined excitation.

2.2.          



With reference to the quarter-car model of Figure 1, if dynamic suspension force
Fs (t) is applied directly by an idealized actuator, replacing the spring and damper,
the equations of motion are simply

Mbz̈b =Fs (t), Mwz̈w = kt (zr − zw )−Fs (t). (1)

The control objective is to choose Fs (t) to minimize a standard form of quadratic
cost function

C(T)=
1
T g

T

0

{z̈2
b + a(zr − zw )2 + b(zw − zb )2} dt (2)

in the limit as T:a, where aq 0, bq 0 are weighting parameters whose values
are taken from an earlier paper [17], namely a=116 000 and b=1190. In the
infinite preview case, it is assumed that zr (t) is explicitly known before the
optimization is carried out.

It is well known that such a linear quadratic dynamic optimization can be
formulated as a linear two point boundary value problem [18]. This means that
a general solution can be expressed in terms of component sinusoids, found from
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a Fourier analysis of zr (t). Thus, restricting attention to a sinusoidal road profile
of wavelength l, one can assume

zr (t)=R ejvt, (3)

where R(v) is a complex amplitude, v= vel/l, and vel is the forward speed of
the vehicle.

In steady state, the optimal control input and system responses are also
sinusoidal,

Fs (t)=U ejvt, zw (t)=W ejvt, zb (t)=B ejvt, (4)

and again U(v), W(v) and B(v) are complex scalars. Substituting these response
forms in equations (1) yield,

−v2MbB=U, −v2MwW= kt (R−W)−U. (5)

It is clear that the minimization of C(T) can be carried out over a single cycle,
of duration T0 =2p/v. This results in a simplified cost function,

C(T0)= 1
2{=B=2v4 + a=R−W=2 + b=W−B=2}, (6)

where the real parts of the complex sinusoids have been taken and use has been
made of the general formula

1
T0 g

T0

0

[Re (A ejvt)]2 dt= 1
2=A=2. (7)

The optimal control problem now reduces to the minimization of equation (6),
subject to the constraints imposed in equations (5). Though Lagrange multipliers
may be used, it is simpler to eliminate the constraints W and B from equation (6)
by using equations (5) to give

2C(T0)=M−2
b =U=2 + a

(kt −Mwv
2)2 =U−Mwv

2R=2

+
b

M2
bv

4(kt −Mwv
2)2 =ktMbv

2R+(kt −MTv
2)U=2, (8)

where MT =Mb +Mw is the total mass of the quarter-car. To minimize the
expression with respect to the complex control amplitude U, it is possible to
re-write it explicitly in terms of U and its complex conjugate U	 , treat these as
independent variables and apply the condition [19]

1C/1U	 =0, (9)

which gives

M−2
b U+

a(U−Mwv
2R)

(kt −Mwv
2)2 +

b(kt −MTv
2)[ktMbv

2R+(kt −MTv
2)U]

M2
bv

4(kt −Mwv
2)2 =0.
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After some algebraic manipulation:

U
R

=
Mbv

2{aMbMwv
4 − bkt (kt −MTv

2)}
(kt −Mwv

2)2v4 + aM2
bv

4 + b(kt −MTv
2)2 , (10)

from which one can assign the notation

H1(v)=N1(v)/D(v). (10a)

For a general road input, H1(v) represents the frequency response for the optimal
previewed control force, relative to the road vertical deflection input zr (t). From
equations (5), the following related responses are easily obtained:

H2(v)=
R−W

R
=

−v2{(kt −Mwv
2)Mwv

4 + b(kt −MTv
2)MT}

D(v)
, (11)

H3(v)=
W−B

R
=

v4{kt (kt −Mwv
2)+ aMbMw}

D(v)
. (12)

H2 and H3 are respectively the frequency responses for suspension deflection and
tyre deflection under the optimal preview controller. Though not directly suitable
for controller synthesis—there is no explicit resolution into feedback and
feedforward control components—these expressions are very useful for
comparison with the numerical results derived below.

The above analytic formulae are applicable to any input profile zr (t). However,
if as a reference we assume that the vertical contact velocity żr (t) is a unit
amplitude white noise process, the expected cost (ensemble average of C(T) as
T:a) is given by

C
 =
1
2p g

a

0

Pc (v) dv (13)

where

Pc (v)=M−2
b P1(v)+ aP2(v)+ bP3(v) (14)

is the power spectral density associated with the cost function in equation (2) and

Pi (v)= b Hi (v)
v b

2

, i=1, 2, 3, (15)

are the power spectra associated with the control force, tyre deflection and
suspension deflection respectively. The system having these ideal responses is
referred to as ACI in the results section.

Bender’s results for infinite preview [1] can easily be recreated from equations
(10), (11) and (12) but the inverse process, in which Bender’s method is used to
try to obtain the above expressions is fraught with algebraic complexity.
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2.3.       

To optimize the semi-active system, a numerical procedure has been devised,
based on Pontryagin’s Hamiltonian formulation of the non-linear optimal
regulator; the method has been developed from those described in references [20]
and [21] and it incorporates a novel use of passive suspension dynamics to provide
approximate final-time boundary conditions. The scheme is to be applied to both
the ideal active and detailed semi-active models, each with variable amounts of
road preview. The method is now described in a general context, with case-specific
details given in the Appendix.

The dynamic equations are written in state-variable form,

ẋ= f(x, u(t), w(t)), (16)

where u(t) is the control (control force in the active case, or command signal to
the semi-active controllable damper) and w(t)= żr (t) is the input disturbance.
Control system optimization is considered to take place in real time, with a
receding horizon for the preview control. At time t0 and with preview time tp , the
available dynamic model becomes

ẋ= f(x, u(t), ŵ(t, t0 + tp )) (17)

where

ŵ(t, t)=6w(t)
0

if tE t

tq t
(18)

is the previewed disturbance, assumed to be zero beyond the preview horizon.
Thus, upon assuming only finite preview is available, the optimization problem

must be modified from the form of equation (2), with the performance index now
being written

C(t0, u(.))=g
a

t0

L(x, u(t), ŵ(t, t0 + tp )) dt, (19)

where L(x, u(t), ŵ(t, t0 + tp )) is the underlying cost function—see the Appendix.
The notation u(.) denotes the fact that C is a functional, depending on the entire

control sequence {u(t): t0 Q tQa}. A rigorous solution of the optimization
problem is available through Pontryagin’s Maximum Principle [18]. The
Hamiltonian function is

H(x, p, u, ŵ)= pTf(x, u, ŵ)+L(x, u, ŵ) (20)

in which the costate vector p satisfies the differential equations

ṗ=−1H/1x. (21)
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Ideally, the optimal control u(t) is chosen to minimize the Hamiltonian at each
instant of time, and the state and costate vectors satisfy the two-point boundary
conditions

x(t0)= x0, lim
t:a

p(t)=0. (22)

To make the optimization problem more tractable, one can reformulate it to
depend on a reduced set of control parameters. Firstly, u(t) is to operate as a
discrete-time signal via a zero-order hold—a hold interval D=5 ms being used
here. Secondly, u(t) is optimized over a finite time interval (t0, t0 + th ), where th

represents an optimization horizon; see Figure 3.
It turns out that th can be made reasonably small—th =1 s in the suspension

optimization—provided some account is taken of the system dynamics beyond the
final time t0 + th . This is achieved by using a simpler linear passive suspension
model of the form

ẋ=Ax (23)

to represent the final settling of the system with zero disturbance assumed. The
cost function can be resolved as a quadratic function in the states,

Lpassive = 1
2x

TQx (24)

in which case the total cost is approximated as

C(t0, u(.))=C1(t0, u(.))+C2(x(t0 + th ))

=g
t0 + th

t0

L(x, u, ŵ) dt+g
a

t0 + th

1
2

xTQx dt. (25)

Figure 3. Timing structure of the numerical optimization.
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The second integral is independent of any controls, or indeed the absolute time
t0 + th . It can be evaluated as

C2(x)=g
a

t0 + th

1
2

xTQx dt= 1
2x

TPx, (26)

where P is found from the Lyapunov matrix equation

ATP+PA+Q=0. (27)

Optimization then takes place over the time interval (t0, t0 + th ) by using a finite
number of discrete-time controls and the revised boundary conditions:

x(t0)= x0; p(t0 + th )=Px(t0 + th ). (28)

One can now summarize the optimization process. From any given ‘‘initial’’
state x(t0)= x0, and a candidate set of controls

U= {u1, u2, . . . , uN}, (29)

the state equations (17) are integrated forwards in time over the optimization
interval, the co-state boundary conditions are then imposed, and then equations
(21) are integrated in reverse time to evaluate the co-state vector. The gradient of
the total cost C(t0, U) is given via the Hamiltonian as:

1C(t0, U)
1ui

=g
ti+1

ti

1H
1ui

dt, (30)

where (ti , ti+1) is the hold interval associated with the ith control in U. From this,
a simple steepest descent process is very effective at finding a numerical
approximation to the set of optimal controls.

The efficiency of the integration process depends critically on the use of a
discretized control signal, and the reduction of numerical integration time afforded
by the use of passive co-states. Once an optimal set of controls has been found
at time t0, equations (16) are then available for forwards time integration over the
hold interval (t0, t0 +D) with

u(t)= u1 = const, (31)

at which point the candidate controls may be simply amended, typically as

U'= {u2, . . . , uN , 0}, (32)

and the optimization process is repeated. It turns out that only a very small
number of iterations is required for the optimization at each stage, since the new
candidate control sequence U' is very close to optimal; this is especially true for
the preview controller, since the system’s dynamic evolution has already been
anticipated in the earlier optimization.
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Validation of the total optimization procedure will be carried out by reference to
the fully active system. In particular, choosing th =1 s implies a maximum preview
horizon at tp =1 s also (see Figure 3). For the maximum preview case, the analytic
results of section 2.2 can be used. Also, for tp =0 the standard LQR system is
available for comparison.

2.4. 

Various system types have already been mentioned in the above and it is worth
introducing some simple labels by which they can be known, as follows:

AC0, active LQR controlled system with zero preview;
ACI, unrestricted active system with infinite preview having ideal frequency

response characteristics;
ACN0, active system without preview optimized numerically;
ACN1, active system with preview, having its control law numerically

optimized: tp =1 s unless stated otherwise;
SAN0, semi-active system without preview with control law numerically

optimized;
SAN1, similar to SAN0 but with preview: tp =1 s unless stated otherwise.

Additionally, we shall investigate the question of whether a ‘‘clipped’’ optimal
active control represents an acceptable approximation to the optimal semi-active
control law. For the above numerical optimization process, this simply means that
equation (17) is based on the simpler active system dynamics. The damper control,
to be applied in the actual forward simulation of the semi-active system, is set to
provide a closest available approximation to the required suspension force—upon
taking into account the contribution of the spring force but ignoring the damper
actuation transients. Thus we shall consider two further systems:

CSN0, clipped control of the semi-active system, optimized numerically for
tp =0;

CSN1, clipped control of the semi-active system, optimized numerically for
tp =1, unless stated otherwise.

3. SIMULATION RESULTS

Results are first generated to demonstrate the validity of the numerical
optimization method in two cases for which the true optimal system is known,
namely, the LQR controlled active system without preview, AC0, and the infinite
preview unrestricted active system case treated analytically in the previous section,
ACI. For the first of these cases, almost identical time histories, under a white
noise vertical road velocity disturbance, are shown in Figure 4. For the second
case, results are shown in Figure 5 in the form of output spectral densities, under
the same excitation. The differences between the numerically obtained and the
analytically obtained results are marginal. It appears appropriate to conclude that
the numerical optimization is working well for these cases, with the implication
that it is also effective for the semi-active cases, for which no direct checks are
available. Output spectral densities for the systems ACN1, SAN1 and CSN for
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Figure 4. Motions of the quarter car under white noise road vertical velocity excitation for AC0
(——) and ACN0 (· · · · ·) systems. (a) Tyre deflection (m); (b) suspension deflection (m); (c) body
acceleration (m s−2).

Figure 5. Output spectral densities of systems ACI (——) and ACN1 (· · · ·) under white noise road
vertical velocity excitation. (a) Total cost (1/Hz); (b) tyre deflection (m2/Hz); (c) suspension deflection
(m2/Hz); (d) body acceleration ((m s−2)2/Hz).
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white noise road vertical velocity excitation are shown in Figures 6, 7 and 8
respectively. Preview times, in each case, are varied between 0 and 1 s.

Figures 9, 10 and 11 contain the corresponding root mean square (RMS) values
of the response variables and also the cost function. ‘‘bva’’ denotes the body
vertical acceleration z̈b , ‘‘sws’’ the suspension working space zw − zb , ‘‘dtl’’ is
zr − zw , which is (proportional to) dynamic tyre load and ‘‘total’’ denotes the RMS
value associated with the overall cost function, i.e., zC(T)—see equation (2).

The general performance properties of active quarter car suspensions with
different amounts of preview are known from previous research [3, 22] and the
active system results in Figures 6 and 9 are entirely consistent with this prior
knowledge. This further reinforces the idea that the numerical optimization is
indeed deriving optimal configurations. Corresponding direct checks on the
accuracy of the semi-active system optimizations cannot, of course, be made.
However, it has been observed previously that, for zero preview, a ‘‘clipped
optimal’’ semi-active quarter-car suspension for a random road disturbance input
behaves much the same as a fully active suspension, hardly needing to ‘‘clip’’ at
all [23]. In keeping with this, the present results show the overall cost of the optimal
semi-active system without preview to be only a little higher than that of the active
system. This is despite the fact that the notional active system has infinite
bandwidth and unlimited force capabilities, while the semi-active system is
bounded as shown in Figure 2.

Figure 6. Output spectral densities for ACN1 system under white noise road velocity excitation
for preview times (s) 0 (——), 0·1 (· · · ·), 0·25 (–––), 0·5 (·–·–), 1·0 (——). (a) Total cost (1/Hz); (b)
tyre deflection (m2/Hz); (c) suspension deflection (m2/Hz); (d) body acceleration ((m s−2)2/Hz).
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Figure 7. Output spectral densities for SAN1 system under white noise road velocity excitation
for preview times (s) 0 (——), 0·1 (· · · ·), 0·25 (–––), 0·5 (·–·–), 1·0 (——). (a) Total cost (1/Hz); (b)
tyre deflection (m2/Hz); (c) suspension deflection (m2/Hz); (d) body acceleration ((m s−2)2/Hz).

The bar charts of Figures 9–11, containing summary results, show that preview
brings progressive advantage to all three types of system in respect of each aspect
of performance. The value of preview to the active system is substantially greater
than to the semi-active systems, and the ‘‘clipped’’ systems (CSN) lose ground
progressively in comparison with the truly optimal (within the constraints
described) semi-active systems (SAN) as the preview increases. In each case, most
of the performance gain from preview comes from the first 0·1 s and the main part
of the advantage is associated with better tyre load control. It is clear physically,
and from prior results [3, 22], that these factors depend on the high damper control
bandwidth of 40 Hz. If this were not so high, short previews would not be so useful
and the wheel control would not be improved so much. Nevertheless, a preview
time of 0·1 s is by no means trivial in practice, corresponding to 3 m preview
distance at the reasonable vehicle speed of 30 m/s.

The results in Figures 6–8 reveal the frequencies at which particular advantage
accrues from the optimal or near optimal use of the various previews. These results
naturally confirm that little advantage is obtained, in these cases, when the preview
time is extended beyond 0·1 s. The improvements are spread across the frequency
range 0–25 Hz, except near to the invariant points in suspension deflection and
body acceleration, at which control cannot influence frequency responses [24]. The
tyre deflection response dip for the active suspension at 13 Hz corresponds to the
actuator, by virtue of the preview control, applying just sufficient force to the
wheel to keep its centre a more or less constant distance from the ground. Clearly,
the semi-active systems are inherently incapable of behaving in this way and there
are no corresponding response valleys for these cases.
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Figure 8. Output spectral densities for CSN system under white noise road velocity excitation for
preview times (s) 0 (——), 0·1 (· · · ·), 0·25 (––), 0·5 (·–·–), 1·0 (——). (a) Total cost (1/Hz); (b) tyre
deflection (m2/Hz); (c) suspension deflection (m2/Hz); (d) body acceleration ((m s−2)2/Hz).

To illustrate further the operation of the semi-active systems, the proportions
of the total time which they spend at their upper and lower coefficient constraint
limits are shown in Figure 12.

Figure 9. Bar chart showing RMS responses to white noise road velocity excitation for ACN
systems.
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Figure 10. Bar chart showing RMS responses to white noise road velocity excitation for SAN
systems.

Since the upper constraint limits are hardly used, it is clear that the systems are
not significantly limited by the restriction placed on the dampers in respect of their
ability to generate high forces for small velocities. The ‘‘soft’’ limits are used more
often but still not a very high proportion of the total time. Whenever the globally
optimal force generator would be doing work on the system, the best the
semi-active system can do is to set the damping on the lower constraint limit, so

Figure 11. Bar chart showing RMS responses to white noise road velocity excitation for CSN
systems.
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Figure 12. Proportions of total task time spent by (a) the optimally controlled damper and (b)
the clipped controlled damper at high and low setting limits, as functions of the preview time.

it is reassuring to find this happening quite rarely. The distinct tendency is for it
to happen more as the preview increases, which is entirely consistent with previous
findings relating energy consumption in an active suspension to preview time [3, 5].
These increases in time spent at the ‘‘soft’’ limit, as the preview is extended, align
with the increasing performance differences between active and semi-active
systems.

4. CONCLUSIONS

A new frequency response function based analytical scheme for the
establishment of the optimal capability of a linear system has been derived and
it has been applied to finding the limits of an idealized quarter-car suspension with
unlimited preview of the random disturbance provided by the road ahead.

A novel numerical optimization procedure, which is generally applicable to
continuous non-linear systems, has been applied to various suspension
optimization tasks; linear system results match those from alternative analyses,
confirming the efficacy of the method. The procedure has yielded the optimal
performance of semi-active suspensions with elastic damper mounting, damper
force limits, high bandwidth operation and specified road preview times. Based on
this realistic representation of a contemporary controllable damper and its
installation in a road vehicle, and concentrating on the vibration isolation function
of the suspension, it has been deduced that significant benefits are available from
preview of the road. The benefits are however less than those obtainable from a
corresponding full bandwidth active suspension. The major benefits are derived
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from the first 0·1 s preview with the fast system considered but obtaining such
preview information, for normal vehicle speeds, is non-trivial. The benefit is
mainly in wheel load control. As the preview increases, the optimal system spends
an increasing proportion of its total time on the ‘‘soft’’ limit. A feature of the
numerical optimization procedure is that it is computationally very heavy for
direct application to a running vehicle, at least in its current formulation.

Clipped optimal control is easier to implement in practice than the numerical
scheme described and the loss of performance associated with it is small for the
zero preview case. This is very much in tune with the findings of reference [13].
As the preview distance increases, clipped optimal control continues to improve
performance as compared with the zero preview case but it loses ground
systematically in relation to the numerically optimized systems, doing particularly
badly at low frequencies. Neither semi-active system suffers a significant
performance loss from the upper constraint placed on the damping coefficient,
since very small proportions of the total time are spent at that limit, under the
running conditions considered.

These results indicate that the ‘‘proof ’’ of optimality of clipped optimal control
for semi-active systems with preview in reference [11] does not apply to those cases
considered here.
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APPENDIX: DYNAMIC EQUATIONS AND COST FUNCTIONS

(A)  

The active system is formulated by using the state variables

x1 = zr − zw , x2 = zw − zb , x3 = żw , x4 = żb , (A1)

from which the state equations are easily found. Using the form

ẋ= f(x, u, w) (A2)

of equation (16), one finds the right-hand side function:

f1 = żr (t)− x3, f2 = x3 − x4, f3 = (ktx1 − u)/Mw , f4 = u/Mb . (A3)

From equation (2) the cost function (19) is given by

L= ax2
1 + bx2

2 +M−2
b u2. (A4)
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The co-state dynamic equations (21) take the form

ṗ1 =−ktp3/Mw −2ax1, ṗ2 =−2bx2,

ṗ3 = p1 − p2, ṗ4 = p2. (A5)

The linear passive system, used only for final co-state evaluation, is obtained from
equations (A3) by setting żr =0 and substituting the passive control force
u= ksx2 + bs (x3 − x4), with damping rate bs =1000 N/(m s−1) assumed; reference
to equation (23) gives

0 0 −1 0

0 0 1 −1
A=

6·67 ( 103 −667 −33·3 33·3
. (A6)

0 80 4 −4

Matrix Q in equation (24) becomes

116 000 0 0 0

0 7590 320 −320
Q=

0 320 16 −16
. (A7)

0 −320 −16 16

From these the solution to equation (27) is found to be

4·58 ( 103 957 −8·70 8·70

957 1·14 ( 103 −0·974 −55·6
P=

−8·70 −0·974 0·495 −0·192
. (A8)

8·70 −55·6 −0·192 17·5

(B) - 

In the semi-active system, the suspension force is written as

F=Fspring +Fdamper = ks (zw − zb )+ m(v, ũ), (A9)

where m(v, ũ) is the non-linear damper map, v is the relative velocity across the
damper, and ũ is the (filtered) control signal to the actuator. Upon writing xd for
the dynamic deflection of the compliant bush, the force balance between the bush
and the damper implies

m(v, ũ)= kcxd .

Differentiation with respect to time implies:

1m

1v
v̇+

1m

1ũ
ũ�= kcẋd . (A10)

The state equations for the semi-active system can now be formulated, upon using
the same state variables as for the active system, taken together with

x5 = v, x6 = ũ, x7 = ũ· . (A11)
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In the following the first of the partial derivatives in equation (A10) is abbreviated
to mv and the second to mu . Then

f1 = żr (t)− x3, f2 = x3 − x4, f3 = (ktx1 − m− ksx2)/Mw ,

f4 = (m+ ksx2)/Mb , f5 = (kc (x3 − x4 − x5)− mux7)/mv ,

f6 = x7, f7 =v2
n (u− x6)−2zvnx7. (A12)

Note that the first four equations are essentially the same as for the active system,
but with equation (A6) used in place of u. The fifth equation follows from equation
(A10), upon first noting that ẋd can be written as (x3 − x4 − x5). The last two
equations are just the filter dynamics for the controllable damper. The cost
function becomes

L= ax2
1 + bx2

2 +M−2
b (m+ ksx2)2 + gu2, (A13)

where the additional term gu2 is included for reasons of numerical stability; with
g=10−5, and u restricted to the range (0, 100); its magnitude is negligible
compared to the other terms. As a matter of detail, ũ is allowed to overshoot the
limits (0, 100), though this occurs only rarely, and for very short periods of time.

Now the co-state dynamic equations (21) take the form

ṗ1 =−ktp3/Mw −2ax1,

ṗ2 = ksp3/Mw − ksp4/Mb −2bx2 −2ksM−2
b (m+ ksx2),

ṗ3 = p1 − p2 − kcp5/mv , ṗ4 = p2 + kcp5/mv ,

ṗ5 = mvp3/Mw − mvp4/Mb −2mv (m+ ksx2)M−2
b · · ·

+mvvm
−2
v p5(kc (x3 − x4 − x5)− mux7)+ ps (kc + mvux7)/mv

ṗ6 = mup3/Mw − mup4/Mb +v2
np7 −2mu (m+ ksx2)M−2

b · · ·

+muup5x7/mv + mvum
−2
v p5(kc (x3 − x4 − x5)− mux7),

ṗ7 = mup5/mv − p6 +2zvnp7. (A14)

Final co-states are found via an expanded P matrix,

P7 =$ P
03,4 b 04,3

03,3% (A15)

where 04,3 is a 4×3 matrix of zeros, and P is given above in equation (A8).


