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The problem of determining the ensemble averages of vibration energy flow in
harmonically driven trusses with random parameter variations is considered. The
mass, elasticity, damping and length of the truss members are modelled as random
variables. The uncertainty associated with member lengths result in randomness
in truss geometry. Four different linear damping models for truss members,
namely, strain rate dependent viscous/hysteretic models and velocity dependent
viscous/hysteretic models are considered. The analysis employs random dynamic
stiffness matrices and Monte Carlo simulation procedures. A comparison of the
ensemble averages of subsystem energies obtained using this approach and those
using statistical energy analysis (SEA) formalism is also made. The energy
coefficient matrix arising in SEA studies is determined using the direct dynamic
stiffness matrix approach. The paper illustrates the relative importance of
alternative damping models and alternative sources of system randomness on the
behavior of spectra of subsystem vibration energies in a 13-member truss. The
uncertainties in randomness in truss geometry and the choice of damping model
are shown to significantly affect the energy statistics.
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1. INTRODUCTION

Several publications addressing the theoretical foundations of statistical energy
analysis (SEA) have appeared over the last decade [1–6]. While these studies have
provided valuable insights into the range of applicability of SEA, the
determination of variability in vibration energy spectra arising in SEA modelling,
on the other hand, has largely remained an open research problem. This issue is
of fundamental importance in estimating confidence intervals associated with the
averages predicted by SEA. In a recent state of the art review, Fahy [4] identified
this class of problems as requiring further research attention and, also, Lyon and
DeJong [5], in their recent book on SEA, described the associated problems as
being part of a ‘‘major piece of unfinished business in SEA . . .’’. The difficulties
associated with this problem can be traced to the following complicating features:
(1) The problem of determining energy flow variability requires the determination
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of the probability distribution of the vibration energy spectra. This problem is
analytically not easily tractable. Rules of transformation of random variables are
difficult to apply and no discernible patterns in mathematical expressions for
energy levels exist which would enable the application of limit theorems of
probability. (2) The energy spectra, viewed as random processes evolving in the
frequency parameter, are non-stationary in nature. This is especially true in regions
of low modal overlap. Thus, the assumption of ergodicity of these spectra is
inadmissible. Consequently, decisions based on a limited number of samples (often
a single sample), using frequency band averages, are difficult to validate. (3) To
conduct experiments on a stochastic ensemble of vibrating systems, one should be
able to produce in laboratories such ensembles with specified statistical properties,
which, again, is not easy. (4) No feasible statistical models for system parameters
which are based on field observations exist and, consequently, knowledge is
lacking in postulating appropriate stochastic models for system property
variations.

In view of these difficulties, several researchers have performed numerical
experiments on simple structural configurations with hypothesized uncertainty
models. The analysis here is carried out within the frameworks of Monte Carlo
simulations and frequency domain vibration analysis techniques such as those
using system Green’s function (receptances) or dynamic stiffness matrices. Such
studies have enabled identification of factors influencing variability in spectra of
vibration energies. The study reported in this paper belongs to studies of this genre.
We begin by briefly describing some of the earlier related investigations.

Davies and Wahab [7] considered the statistics of coupling loss factors across
the intermediate support of a two-span continuous beam with one of the spans
subjected to rain on the roof type of excitations. The ratio of the two spans was
modelled as a random variable with uniform probability distribution function. The
same system under the action of point harmonic forcing was considered by Davies
and Khandoker [8] and results were presented on the statistics of cross power
receptance function. These studies illustrated the importance of the subsystem
modal overlap factor, defined as the ratio of average modal bandwidth to the
average spacing of natural frequencies, as a parameter influencing the response
variability. As may be expected, the variability was found to be higher for lower
modal overlap factors. Fahy and Mohammed [9] considered systems of spring
coupled beams, plates and rods and noted the non-Gaussian nature of the energy
flow characteristics at low modal overlap factors and concluded that the
confidence limits cannot be estimated using the mean and standard deviation
alone.

Keane and Manohar [10] and Manohar and Keane [11, 12] considered the
energy flows in spring coupled beam and rod systems and investigated the effects
of the following factors on the probabilistic characteristics of power receptance
functions: choice of subsystem types, damping models, strength of system
randomness, type of excitation and types of system randomness. The study
considered both Gaussian and non-Gaussian random variable/random process
models for the mass, stiffness and geometrical properties of the rod/beam elements
and surveyed the statistics of the power receptance functions. It was noted that
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these receptance functions are non-stationary random processes with the
non-stationarity arising due to occurrence of resonances and the variation of mode
shapes at the point of driving, coupling and measurement with changes in the
driving frequency. However, it was noticed in most, but not all cases, that with
increases in driving frequency, the receptance functions tended to be stochastically
stationary. This indicated that a frequency exists beyond which the receptance can
be expected to reach a stochastic ‘‘steady’’ state and consequently, beyond this
frequency, a simplified description of system behavior through procedures such as
SEA can be expected to be possible. Analogous to the definition of a modal
overlap factor, a modal statistical overlap factor was defined as the ratio of
standard deviation of the natural frequency to the average spacing of the natural
frequencies [12]. This factor enabled identification of frequency beyond which the
statistics of the spectra cease to ‘‘oscillate’’. It was concluded that since both these
overlap factors could vary with frequency, precise knowledge of their behavior was
a precursor to the successful application of SEA methods. Furthermore, the same
study has also demonstrated that the probability distribution of the response
power spectra can be very well approximated by either gamma or lognormal
probability distributions. These considerations have further been examined by
Keane [13] in the context of vibration energy flow in a pair of line coupled random
membranes.

The study by Rebillard and Guyader [14] considers a system of a pair of
rectangular plates coupled along edges and executing harmonic flexural and
in-plane vibrations. The connection angle between the two plates is modelled as
a Gaussian random variable. The in-plane and flexural motions are uncoupled
only if the connection angle is zero. The study has shown that when the nominal
angle of connection is small, the uncertainty in system response is higher than
when the angle is large. Mace [15] and Wester and Mace [16] adopt dynamical
analysis based on wave propagation theory and they combine this with simulation
procedures to investigate the ensemble averages of energy flow in simple built-up
structures.

2. PRESENT STUDY

Most of the studies mentioned in the previous section focus their attention on
relatively small sized problems with a number of coupled subsystems, most often
being only two. Thus, in these studies, the question of randomness in system
geometry does not assume significant importance. In large sized structures,
however, the randomness in specifying nodal locations would be another source
of system randomness. Besides, the influence of different models for damping and
the manner in which the damping is spatially distributed also has not been studied
extensively. These issues are addressed in the present study. Specifically, this paper
considers the vibration energy flow in a truss structure with reference to the
following aspects: (1) Development of the stochastic dynamic stiffness matrix
approach combined with the Monte Carlo simulation technique to study ensemble
statistics of vibration energy distribution in trusses due to point harmonic
excitations. (2) Study of the influence of different sources of system randomness
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on behavior ensemble averages; for this purpose, the mass, elasticity, damping and
lengths of the truss members are considered to be a set of random variables; the
randomness in lengths of individual members introduces randomness in the truss
geometry. (3) Comparison between the results of ensemble averages using
stochastic dynamic stiffness matrix analysis and the results from frequency band
averaging using SEA calculations. (4) Use of dynamic stiffness matrices in
evaluation of the energy coefficient matrix arising in the SEA calculation; the
questions of close coupling and far coupling between subsystems are also
considered in these calculations. (5) Investigation into the probability distribution
of the spectrum of vibration energies.

3. A SINGLE TRUSS ELEMENT

With reference to Figure 1, the equation of motion of an axially vibrating rod
element can be written as

1

1x 6AE
1Y
1x

+$h1 +
h2

v%AE
12Y
1x1t7=m

12Y
1t2 +6c1 +

c2

v7 1Y
1t

−Fd(x− x0) exp[ivt].

(1)

Here AE=axial stiffness, m=mass per unit length, h1 = strain rate dependent
viscous damping coefficient, h2 = strain rate dependent hysteretic damping
coefficient, c1 =velocity dependent viscous damping coefficient, c2 =velocity
dependent hysteretic damping coefficient, F=magnitude of the harmonic
concentrated force, x0 =distance at which the force is acting and d(x− x0)
represents the Dirac delta function centered at x= x0. In the presence of element
harmonic forces and nodal displacements, the displacement within the rod element
can be taken to be given by

Y(x, t)= y(x) exp[ivt]. (2)

Consequently, the field equation reduces to

d2y
dx2 + b2y=

−Fd(x− x0)
AE[1+ ih1v+ih2]

, (3)

Figure 1. Axially vibrating truss element.
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where

b2 =
mv2 − ic1v−ic2

AE[1+ ih1v+ih2]
. (4)

It is clear that b is complex valued. The displacement field with y(0)= d1 and
y(L)= d2 is given by

Y(x, t)=$d1 cos bx+
d2 − d1 cos bL

sin bL
sin bx+

F sin b(L− x0)
AE(1+ ih1v+ih2)

sin bx
sin bL%

×exp[ivt] for xE x0,

Y(x, t)=$d1 cos bx+
d2 − d1 cos bL

sin bL
sin bx+

F sin b(L− x0)
AE(1+ ih1v+ih2)

sin bx
sin bL

−
F sin b(x− x0)

AE(1+ ih1v+ih2)% exp[ivt] for xe x0. (5)

The quantities d1 and d2 are in general complex valued.

3.1.     

The expressions for the total strain energy U�(v), total kinetic energy T�(v) and
the total energy dissipated D�(v) in the rod averaged over the time interval
(0, 2p/v) are given by

U�(v)=$v

2p% 1
2 g

2p/v

0 g
L

0

AE$Real 61Y
1x7%

2

dx dt, (6)

T�(v)=$v

2p% 1
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0 g
L

0
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1t 7%

2

dx dt, (7)

D�c1(v)=$v

2p% g
2p/v

0 g
L

0

c1$Real 61Y
1t 7%

2

dx dt,

D�c2(v)=$v

2p% g
2p/v

0 g
L

0

c2

v $Real 61Y
1t 7%

2

dx dt

D�h1(v)=−$v

2p% g
2p/v

0 g
L

0

h1AE $Real 61Y
1t 7 Real 6 13Y

1x2 1t7% dx dt,

D�c1(v)=−$v

2p% g
2p/v

0 g
L

0

h2AE
v $Real 61Y

1t 7 Real 6 13Y
1x2 1t7% dx dt,

D�(v)=D�c1(v)+D�c2(v)+D�h1(v)+D�h2(v). (8)



y

(x1,y1)

(x2,y2)

x

2

0

1
2

1

4
3

4

3

. .   . 48

Figure 2. Local and global co-ordinates.

Here D� c1(v), D� c2(v), D� h1(v) and D� h2(v) correspond to the contributions to D� (v)
made by damping terms involving c1, c2, h1 and h2 respectively. In our studies, the
integrals appearing in equations (6–8) were evaluated symbolically using MAPLE
V. The primary response variable in this study is the total vibration energy given
by

E(v)=U� (v)+T�(v). (9)

A useful feature which emerges from the study of the expressions for energy
spectra is that the energy dissipated can be expressed as a fraction of the kinetic
energy as follows

D� c1(v)
T�(v)

=2
c1

m
,

D� c2(v)
T�(v)

=2
c2

vm
,

D� h1(v)
T�(v)

=2
(a2 − b2)AEh1

m
,

D� h2(v)
T�(v)

=2
(a2 − b2)AEh2

vm
. (10)

Here a=Real [b] and b=Imag [b]. These expressions enable the computation of
dissipation energies as fractions of kinetic energies.

3.2.        

The dynamic stiffness matrix for an undamped axially vibrating rod is readily
available in the literature [17]. For a damped axially vibrating rod, the dynamic
stiffness matrix is symmetric and complex valued. With reference to Figure 2, the
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member dynamic stiffness coefficients in global co-ordinates can be shown to be
given by

De
G1,1

(v)=
AEb cos (bL)(x2

2 −2x2x1 + x2
1 )

L2 sin (bL)
,

De
G1,2

(v)=
AEb cos (bL)(x2y2 − x2y1 − x1y2 + x1y1)

L2 sin (bL)
,

De
G1,3

(v)=−
AEb(x2

2 −2x2x1 + x2
1 )

L2 sin (bL)
,

De
G1,4

(v)=−
AEb(x2y2 − x2y1 − x1y2 + x1y1)

L2 sin (bL)
,

De
G2,2

(v)=
AEb cos (bL)(y2

2 −2y2y1 + y2
1 )

L2 sin (bL)
,

De
G2,3

(v)=−
AEb(x2y2 − x2y1 − x1y2 + x1y1)

L2 sin (bL)
,

De
G2,4

(v)=−
AEb(y2

2 −2y2y1 + y2
1 )

L2 sin (bL)
,

De
G3,3

(v)=
AEb cos (bL)(x2

2 −2x2x1 + x2
1 )

L2 sin (bL)
,

De
G3,4

(v)=
AEb cos (bL)(x2y2 − x2y1 − x1y2 + x1y1)

L2 sin (bL)
,

De
G4,4

(v)=
AEb cos (bL)(y2

2 −2y2y1 + y2
1 )

L2 sin (bL)
, (11)

where L is the length of the member. Notice that only the elements of the upper
triangular matrix are listed above. The presence of force within the element results
in the equivalent nodal forces. Thus, corresponding to the concentrated force
F exp [ivt] acting at x= x0, see Figure 1, the amplitude of the equivalent nodal
force in global co-ordinates can be shown to be given by

(x2 − x1)F(−cot (bL) sin (bx0)+ cos (bx0))
L

(y2 − y1)F(−cot (bL) sin (bx0)+ cos (bx0))
L

f e
G =−G

G

G

G

G

G

G

K

k

(x2 − x1)F cosec (bL) sin (bx0)
L

G
G

G

G

G

G

G

L

l

. (12)

(y2 − y1)F cosec (bL) sin (bx0)
L

It may be noted that the presence of damping makes the dynamic stiffness
coefficients and equivalent nodal forces to be complex valued.
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3.3.  ,    

Although the present study does not employ normal mode expansion for
response analysis, still it is of interest to consider the nature of modal equations
which would result from equation (1). In general, the equation for the frequency
response function corresponding to the nth generalized co-ordinate can be given
by

Hn (v, vn )=
1

−v2 + i2jnvnv+v2
n
, (13)

where jn =the coefficient of damping of the nth mode and vn = nth natural
frequency. Furthermore, the quantity Bn =2jnvn is the modal bandwidth. The
damping coefficient and modal bandwidth can be shown to be given respectively
by

jn =
c2

2mvnv
+

c1

2mvn
+

h2

2
vn

v
+ h1vn ,

Bn =
c2

mv
+

c1

m
+ h2

v2
n

v
+ h1v

2
n . (14)

If a resonant condition v=vn is assumed to prevail, then, it follows

jn =
c2

2mv2 +
c1

2mv
+

h2

2
+

h1v

2
,

Bn =
c2

mv
+

c1

m
+ h2v+ h1v

2. (15)

Thus, Bn and jn appear as linear combinations of terms involving v−2, v−1, v0,
v1 and v2. It must be noted that, since, for a truss element the subsystem natural
frequencies are uniformly spaced, the modal overlap factor becomes linearly
dependent on the modal bandwidth. The behavior of modal damping coefficient,
bandwidth and overlap factor as a function of v is thus strongly influenced by
the chosen modal for the damping and it will be demonstrated later that this
variation has a major influence on the behavior of the energy spectra.

4. TRUSS EXAMPLE: DETERMINISTIC ANALYSIS

As a prelude to the statistical analysis of vibration energy flow in an ensemble
of trusses, the energy flow calculations for the case of a deterministic truss are first
considered. The approach adopted is based on the inversion of the global dynamic
stiffness matrix of the structure. This provides an elegant framework to treat
alternative damping models and also provides uniformly accurate results at all
values of the driving frequency. It may be noted that the use of the dynamic
stiffness matrix in vibration energy flow calculation in skeletal structures has been
discussed earlier by Langley [18]. An alternative approach based on series
representation of subsystem Green’s functions is also available [3, 19]. For the
purpose of illustration, the truss shown in Figure 3 has been selected. All the
members of the truss are taken to have an axial stiffness AE=23·75×106 N and
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mass per unit length m=0·882 kg/m. The truss is driven by a vertical point
harmonic excitation at node 5 and we are interested in determining the total
vibration energy over a cycle, i.e., E(v), in all the truss members as a function
of v. The global dynamic stiffness matrix is obtained by following the usual rules
of structural matrix assembling as is used in the static finite element analysis. The
inversion of this matrix leads to the nodal displacements which in turn enable the
computation of various energy quantities using equations (6)–(8). In the numerical
work, five models for damping are considered: (a) all members have identical
velocity dependent viscous damping with c1 =60·96 Ns/m2; (b) all members have
identical velocity dependent hysteretic damping with c2 =42·132×103 N/m2; (c)
all members have identical strain rate dependent viscous damping with
h1 =1·468×10−4 s; (d) all members have identical strain rate dependent hysteretic
damping with h2 =0·1015; (e) all top chord members (2, 3, 4) have identical strain
rate dependent viscous damping with h1 =1·468×10−4 s, all bottom chord
members (6, 7, 8) have identical strain rate dependent hysteretic damping with
h2 =0·1015, all vertical members (1, 10, 12, 5) have identical velocity dependent
viscous damping with c1 =60·96 Ns/m2 and all diagonal elements (9, 11, 13) have
identical velocity dependent hysteretic damping with c2 =42·132×103 N/m2.

The value of c1 in model (a) is selected on the basis that the damping coefficient
in the first mode is 1·5%. For this value of damping, the dissipated energy as a
fraction of T�(v) is computed using equation (10). The values of the other damping
model parameters, c2, h1 and h2 in models (b–d) are then selected such that in all
these models, at the first natural frequency, the same fraction of T�(v) gets
dissipated as in model (a). Figure 4 shows E(v) for the top chord members, 2,
3 and 4, for the above damping models. It has been verified that in all these cases
the power input is numerically equal to the sum of energy dissipated in all the truss
members; this serves as a check on the correctness of the calculations made. The
behavior of E(v) for large frequencies is seen to be strongly governed by the choice
of damping model. From equation (15) it follows that for the first four damping
types listed above, (a–d), the bandwidth parameter, Bn , varies as v0, v−1, v2 and
v, respectively. It can be expected that the behavior of E(v) at large frequencies

Figure 3. The example truss considered; for all members: AE=23·75×106 N; m=0·882 kg/m.



(a)
10–2

10–4

10–6

10–8

10–10

10–12

10–14

10–16

10–2

10–4

10–6

10–8

10–10

10–12

10–14

10–16

10–2

10–4

10–6

10–8

10–10

10–12

10–14

10–16

10000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

Driving frequency (Hz)

E
n

er
g

y 
(J

)

(b)

10000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

Driving frequency (Hz)

E
n

er
g

y 
(J

)

(c)

10000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

Driving frequency (Hz)

E
n

er
g

y 
(J

)

. .   . 52

Figure 4(a–c). Caption opposite.
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Figure 4. Energy spectra for top chord of the nominal truss; - . - . -, Member 2; - - -, member 3;
––, member 4. (a) Damping type (a); (b) damping type (b); (c) damping type (c); (d) damping type
(d); (e) damping type (e).

is smoother for systems having larger Bn . The results of Figure 4 endorse this
expectation, in which the fluctuations in E(v) is observed to be the largest for case
(b) (Figure 4(b)), and is the smoothest for case (c) (Figure 4(c)). In case (e),
different truss members have different damping models and the results presented
serve to illustrate the flexibility of dynamic stiffness matrix method in handling
different damping models.

5. TRUSS EXAMPLE: STOCHASTIC ANALYSIS

The first step in the analysis of vibrating systems with parameter uncertainties
is the choice of the probabilistic models for uncertainties. In the traditional SEA,
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the subsystem natural frequencies are taken to be a set of mutually independent
random variables distributed uniformly in the frequency band of interest. In this
study, however, the physical parameters of the truss are modelled as being random.
These models could be in terms of random fields or, at a much simpler level, in
terms of a set of random variables. For problems of the first category, the random
fields need to be discretized into an equivalent set of random variables. Recently,
the present authors have considered a dynamic stiffness matrix of general
beam elements with spatially random inhomogenieties and have proposed a
discretization scheme involving frequency dependent shape functions [20]. In the
present study, however, our attention is restricted to random variable models and
it is assumed that, for every truss member, the elastic stiffness parameter AE, mass
per unit length m, damping parameters c1, c2, h1 and h2 form a set of mutually
independent random variables. Additionally, we are interested in treating
radomness in truss geometry. The following two options are considered to achieve
this: (1) model the length of individual truss members as a set of independent
random variables; consequently, the nodal co-ordinates, (xi , yi ), become a set of
mutually dependent random variables; (2) model the nodal co-ordinates (xi , yi ) as
a set of independent random variables; consequently, the member lengths become
a set of mutually independent random variables.

It is felt that the first option is more realistic, since, in practice, the lengths of
truss members are more likely to be the primary quantities than the nodal
co-ordinates, and, therefore, this option is adopted in our study. Attention is again
focused on the specific 13-member truss example considered in the previous
section. Let the vector of random variables [AEi , mi , c1i , c2i , h1i , h2i , Li ]T,
(T=matrix transpose), represent the uncertainty associated with the ith truss
element. All these vectors, that is, with i=1, . . . , 13, can now be assembled in
a matrix U with the elements taken to be given by

Uij =U� ij [1+ eijWij ]; i=1, . . . , 13, j=1, . . . , 7, (16)

where oij q 0 is a deterministic constant and U� ij is the vector of nominal values of
the system parameter. Wij are a set of random variables which are taken in this
study to be mutually independent, identical and distributed uniformly in [−1, 1].
The parameter oij , thus, denotes the strength of the randomness associated with
the jth element of the random variable vector associated with member i. Thus, for
example, o27 denotes the strength of randomness in the length of member 2.
Referring to equations (11), it becomes apparent that the member dynamic
stiffness coefficients in global co-ordinates are now a set of complex valued random
processes evolving in the parameter v. Upon assembling the element dynamic
stiffness matrix, following the usual rules of structural matrix assembling, one gets
the structure dynamic stiffness matrix. This matrix can be shown to be random,
symmetric and complex valued. The evaluation of energy spectra E(v) for the
truss members requires the inversion of this random matrix. This problem is
analytically not easily tractable, especially when elements of the random matrix
are non-Gaussian in nature [21], and, hence, in this study, the Monte Carlo
simulation procedures are adopted to solve the problem.
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Figure 5. (a) Scatter of nodal co-ordinates of truss with random geometry; ––, nominal truss. (b)
Sample realizations of truss with random geometry; *, nominal location of the nodes.

As has been already noted, as a consequence of taking member lengths to be
random variables, the nodal co-ordinates (xi , yi ) become a set of mutally
correlated random variables. This in turn, imparts randomness to the geometry
of the truss (see Figures 5(a) and (b)). The determination of the nodal co-ordinates
(xi , yi ) (i=1, 8), requires the solution of the following set of non-linear algebraic
equations:

x1 =0; y1 =0; x2 =0; y2 =L1;

y8 =
1

2y2
{L2

8 + y2
2 −L2

9}; x8 =z(L2
8 − y2

8 );

L2
10 − {x2 − x8 +z(L2

2 − (y3 − y2)2)}2 − (y3 − y8)2 =0;
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x3 = x2 +z(L2
2 − (y3 − y2)2);

L2
11 − {x8 − x3 +z(L2

7 − (y7 − y8)2)}2 − (y7 − y3)2 =0;

x7 = x8 +z(L2
7 − (y7 − y8)2);

L2
12 − {x3 − x7 +z(L2

3 − (y4 − y3)2)}2 − (y4 − y7)2 =0;

x4 = x3 +z(L2
3 − (y4 − y3)2);

L2
6 − {x4 − x7 +z(L2

13 − (y6 − y4)2)}2 − (y6 − y7)2 =0;

x6 = x4 +z(L2
13 − (y6 − y4)2);

L2
5 − {x4 − x6 +z(L2

4 − (y5 − y4)2)}2 − (y5 − y6)2 =0;

x5 = x4 +z(L2
4 − (y5 − y4)2). (17)

These equations have been listed in the order in which they are solved in the
numerical algorithm. A careful inspection of these equations reveals that these
equations can be solved sequentially such that, at any given step, only one
non-linear equation needs to be handled. Figure 5(b) shows a few sample
realizations of the truss geometries in which the randomness parameters, o17,
(i=1, . . . , 13), associated with the member lengths, are taken to be 0·05.

To evaluate the relative importance of different sources of system randomness,
the energy spectra Ei (v), (i=1, . . . , 13), have been evaluated with: (A)
randomness in all the elements of Uij with oij =0·05; (B) randomness in all the
elements of Uij oij =0·05, except the randomness associated with the member
lengths; and (C) randomness in member lengths alone with no randomness in other
quantities with oi7 =0·05 and 0·01. Numerical results on ensemble statistics of
E(v) using the digital simulations of 500 samples are shown in Figure 6. Results
are presented on moments of E(v) for the member 3, for the five damping models
listed in section 4 and for the randomness model A. The choice of damping model
is observed to largely control the behavior of ensemble statistics as a function of
driving frequency. For damping models, for which the bandwidth increases with
driving frequency (models c and d), the ensemble statistics become smooth
(Figures 6(c) and (d)). On the other hand, for damping models (a) and (b), for
which the bandwidth does not increase with frequency, the ensemble averages
remain ‘‘oscillatory’’, thereby indicating that the response is governed by
individual resonances (Figures 6(a) and 6(b)). For the combined damping model,
Figure 6(e), the behavior, as may be expected, consists of no systematic
‘‘oscillatory’’ or ‘‘smooth’’ trends. A measure of dispersion in the response is
defined as the difference in 95% and 50% probability points. Figure 7 shows this
measure as a function of v for member 3 for the damping models (a) to (e). For
damping model (c), in which the modal bandwidth parameter Bn varies as v2, the
dispersion measure reduces monotonically with increases in frequency and remains
lower than the results from all the other models. On the other hand, for damping
model (b) for which Bn varies as v−1, the dispersion measure is higher than the
results of the rest of the models. The relative importance of different sources of
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randomness is depicted in Figures 8(a) and (b), in which the ratio of dispersion
measures for randomness models A, B and C are shown for members 3 and 5 for
damping model (a). The dispersion measure for systems with randomness in
geometry is seen to be significantly higher than that due to other sources of
uncertainties. Thus, it is concluded that the choice of damping model and
randomness in truss geometry play important roles in deciding the qualitative and
quantitative behavior of the response statistics.

6. TRUSS EXAMPLE: STATISTICAL ENERGY ANALYSIS

The approach outlined in the previous section is an ‘‘exact’’ approach to
determine the spectra of average total energy distribution in the truss structure.
This is true from the point of view of both the dynamical analysis of sample
problems (since the dynamic stiffness matrix method is used) and from the point
of view of statistical analysis (since the Monte Carlo simulations are used). On the
other hand, the traditional SEA, which also aims at predicting the spectra of
average total energy distribution, introduces approximations in both dynamics
and statistical aspects of response calculations [1, 5, 12, 22]. Thus, it is of interest
to compare the results obtained in the previous section with calculations
performed within the SEA framework. Such comparisons are again illustrated
through the truss example shown in Figure 3.

6.1.  

A major step in the SEA of built-up structures is the identification of the matrix
of coupling loss factors [5, 2, 18]. There has been considerable interest in the use
of finite element analysis (FEA) in estimating the SEA coupling loss factors
[23–26]. These methods basically simulate on a computer the power injection
method of finding coupling loss factors experimentally [27, 28]. The analysis can
be carried out in two possible ways: (I) Here attention is focused on the built up
structure in its entirety and energy in all the members is found by injecting power
into individual subsystems by turn; this is equivalent to conducting the experiment
on the complete structure and, hence, the coupling between all the constituent
members is completely accounted for. (II) Here, the structure is considered to be
an assembly of several subsystems and each subsystem is studied divorced from
the main structure; this is equivalent to conducting experiments on a set of
substructures and synthesizing the results of built up structure from the results of
the parts.

In this study, the above two methods are employed to estimate the coupling
loss factors within the framework of the dynamic stiffness matrix approach. The
merits of this approach, in relation to the FEA based approach, are: (a) since
no modal expansion is used, errors due to modal truncation is avoided; (b) the
method is uniformly accurate over the entire frequency range of interest; and (c)
different damping models and damping magnitudes can be assigned to different
members.
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Figure 6(a–c). Caption opposite.
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Figure 6. Ensemble averages of E(v) for member 3; sample size=500; uncertainty model A;
. . . . , 5 percentage points; - . - . -, 50 percentage points; -*-*-, 95 percentage points; -w-w-, mean;
-× -× -, mean+standard deviation. (a) Damping type (a); (b) damping type (b); (c) damping type
(c); (d) damping type (d); (e) damping type (e).

6.1.1. Method I

In this method the truss structure shown in Figure 3 is divided into 13 SEA
subsystems with each truss member representing one subsystem. Furthermore, all
the subsystems are taken to be coupled with each other. We begin by applying a
point harmonic force of magnitude fk at a randomly chosen point xk within the
ith member and the total vibration energy given by equation E(k)

ij (v) is computed
for all the truss members j=1, . . . , 13. Also, the power input P(k)

i (v) is computed
using the formula

P(k)
i (v)= 1

2 Real [fkV*xk (v)], (18)
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Figure 7. Measure of dispersion in E(v) for member 3; -*-*-, damping type (a); -× -× -, damping
type (b); ––, damping type (c); - - - , damping type (d); -w-w-, damping type (e).

where Vxk (v)=amplitude of vellocity at xk and *=conjugation. These
calculations are repeated for five randomly chosen points of harmonic load
application. The estimates of Eij (v), the energy in the jth subsystem due to the
power input at the ith subsystem, and P(k)

i (v), the power input to the ith subsystem
are evaluated using the expressions

Eij (v)=
1
5

s
5

k=1

E(k)
ij (v), Pi (v)=

1
5

s
5

k=1

P(k)
i (v). (19)

These calculations are repeated for all the truss members by taking i=1, . . . , 13.
It is assumed that Eij (v) and Pi (v) are linearly related through the relation

[Cij (v)][Eij (v)]=Diag [Pi ]. (20)

These equations represent a set of simultaneous equations for the coefficients
[Cij (v)], (i, j=1, . . . ,13). Thus, Cij (v) are determined and these can further be
used to determine the energy distribution in the truss structure when it is loaded
by loads other than those considered in evaluating these coefficients. It may be
remarked here that the symmetry of the matrix of coupling loss factors implied
by the reciprocity relations [5] is not assumed here; also, it must be noted that the
C-matrix is fully populated thereby implying that the ‘‘far’’ coupling effects are
taken into account.

6.1.2. Method II

In this method the truss is again divided into 13 subsystems but the coupling
paths are assumed to exist only amongst ‘‘near’’ coupled subsystems (see Figure 9).
Thus, the coupling between members removed from each other by a joint is
ignored. Under this assumption, the C-matrix is no longer fully populated and has
the following form:



   61

C
1,

1
C

1,
2

0
0

0
0

0
C

1,
8

C
1,

9
0

0
0

0

C
2,

1
C

2,
2

C
2,

3
0

0
0

0
0

C
2,

9
C

2,
10

C
2,

11
0

0

0
C

3,
2

C
3,

3
C

3,
4

0
0

0
0

0
C

3,
10

C
3,

11
C

3,
12

C
3,

13

0
0

C
4,

3
C

4,
4

C
4,

5
0

0
0

0
0

0
C

4,
12

C
4,

13

0
0

0
C

5,
4

C
5,

5
C

5,
6

0
0

0
0

0
0

C
5,

13

0
0

0
0

C
6,

5
C

6,
6

C
6,

7
0

0
0

C
6,

11
C

6,
12

C
6,

13

C
=

0
0

0
0

0
C

7,
6

C
7,

7
C

7,
8

C
7,

9
C

7,
10

C
7,

11
C

7,
12

0
.

(2
1)

C
8,

1
0

0
0

0
0

C
8,

7
C

8,
8

C
8,

9
C

8,
10

0
0

0

C
9,

1
C

9,
2

0
0

0
0

C
9,

7
C

9,
8

C
9,

9
C

9,
10

0
0

0

0
C

10
,2

C
10

,3
0

0
0

C
10

,7
C

10
,8

C
10

,9
C

10
,1

0
C

10
,1

1
0

0

0
C

11
,2

C
11

,3
0

0
C

11
,6

C
11

,7
0

0
C

11
,1

0
C

11
,1

1
C

11
,1

2
0

0
0

C
12

,3
C

12
,4

0
C

12
,6

C
12

,7
0

0
0

C
12

,1
1

C
12

,1
2

C
12

,1
3

0
0

C
13

,3
C

13
,4

C
13

,5
C

13
,6

0
0

0
0

0
C

13
,1

2
C

13
,1

3

K G G G G G G G G G G G G G G G G G k

L G G G G G G G G G G G G G G G G G l



(a)

0

5

10

15

20

25

30

35

40

45

50

10000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

Driving frequency (Hz)

R
a

ti
o

 o
f 

d
is

p
er

si
o

n

(b)

0

5

10

15

20

25

30

35

40

45

50

10000 2000 3000 4000 5000 6000 7000 8000 9000 10 000

Driving frequency (Hz)

R
a

ti
o

 o
f 

d
is

p
er

si
o

n

. .   . 62

Figure 8. Ratio of dispersion measures for different uncertainty models; damping model (a). (a)
Member 3; (b) member 5; ––, case C (with oi7=0·05)/case B; - . - . - , case C (with oi7 =0·01)/case
B; - - - , case A/case C (with oi7 =0·05).

A non-zero coefficient Cij in this matrix indicates the existence of a possible direct
coupling path between the subsystems i and j. To determine these coefficients, the
same procedure as described in the previous section is followed but with a
difference: the calculations are now performed on a set of substructures. Thus, to
determine the quantities C2,2, C2,3, C2,10, C2,11, C3,3, C3,2, C3,11, C3,10, C10,10, C10,2, C10,3,
C10,11, C11,2, C11,3, C11,10 and C11,11 in the above matrix (see joint 3 in Figure 3), the
substructure shown in Figure 10 is considered. A four-member SEA model for this
sub-problem is made, as shown in Figure 11. This reduced problem is analyzed
again by using the procedure described in the preceding section. Similarly, the
remaining quantities of the C-matrix are evaluated by considering SEA models for
substructures obtained by isolating members at each of the truss joints.
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6.2.       

Having determined the C-matrix, the problem of determining the energy
distribution in the truss when it is driven by a point harmonic excitation is now
considered (Figure 3). The power input P5(v) is computed using

P5(v)= 1
2 Real [PV*y5(v)], (22)

where P=amplitude of the harmonic forcing and Vy5(v)=amplitude of velocity
at node 5 in the y direction. The energy levels Ei (v), (i=1, . . , 13) are determined
using

{E(v)}=[C(v)]−1{P}. (23)

Here P denotes the vector of power input with P5(v) as given by equation (22)
and Pi (v)=0 for all i$ 5. Numerical work has been carried out for the damping
models listed in section 4 and using the two methods of finding C(v) described
in the previous section. Figures 12 and 13 show the spectra of E(v) for members
5 and 3 for the damping model (a). These spectra are now averaged over frequency
bands, as is done in the traditional SEA. The 1/3 octave bands with center
frequencies of 20, 31·5, 50, 80, 125, 200, 315, 500, 800, 1250, 2000, 5000 and
8000 Hz are selected [5]. This way of averaging amounts to assuming that the
spectra consist of segments of random processes which are ergodic within each of
the frequency bands considered. The frequency band averages of E(v) obtained
using methods I and II, are compared with the ensemble statistics in Figures 14
and 15. The ensemble averages correspond to the randomness model A (see section
5). It can be observed that the ensemble mean and frequency average using method
I compare reasonably well with each other, especially for driving frequencies
beyond 1 kHz, for all the five damping models studied. This lends credence to the
computation of the C-matrix using the approach described in section 6.1.1. On
the other hand, the results of method II tend to overestimate the mean energy
especially for member 3 which is away from the point of driving. This feature arises
due to the effect of indirect coupling between near and far subsystems, which
method II does not take cognizance of.

Figure 9. SEA model for the truss example.
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Figure 10. Substructure for computation of the C-matrix.

7. TRUSS EXAMPLE: PROBABILITY DISTRIBUTIONS

The relationship between the random variables Uij describing the system
randomness and the spectra of energy is highly non-linear with no clearly
discernible patterns. Consequently, determining the probability distribution E(v)
by rules of transformation of random variables or by invoking any of the limit
theorems of probability is difficult. In view of this, it is of interest to investigate
if the digitally simulated data on E(v) can be described by empirical distributions
[12]. Given that E(v)q 0, the usefulness of fitting exponential, Rayleigh, gamma
and lognormal distributions to the simulated data has been investigated. The
usefulness of Gaussian distribution with non-zero mean in describing the data was
also considered. The parameter estimation capabilities of MATLAB statistics
toolbox was employed in this investigation. The range of system parameter
variations surveyed included: damping models (types a–e, see section 4), sources
of randomness (types A and B, see section 5) and driving frequency (central
frequencies of 1/3 octave bands up to 8 kHz). The probability distribution function
of E(v) for members 5 (close to the point of driving) and 3 (away from the point
of driving) were studied. A limited amount of results are shown in Figures 16–18.
In each of these figures, the probability distribution of E(v), estimated using 5000
samples (marked in the caption as simulation results), is shown together with the
empirically fitted probability distribution function (marked in the caption as

Figure 11. SEA model for the substructure.
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Figure 12. Energy spectra for member 5 before frequency band averaging computed using SEA
methods; damping model (a); ––, method I; - . - . - , method II.

empirical results). The following were the observations made: (1) lognormal
distribution was observed to fit the data better than the other models considered;
the goodness of the fit was examined using the Kolmogorov–Smirnov test and in
most (but not all) of the cases, it was observed that at 5% significance level, the
data could be taken as being lognormal distributed; the cases in which the data
did not pass the test includes the cases shown in Figures 16(b), 16(c) and 18(b);
(2) the effect of randomness in geometry of the truss was to produce probability
distributions which were highly non-Gaussian and had long upper tails, especially
in frequency ranges above about 200 Hz and (3) in frequency ranges below about
200 Hz, the data could be well described by Gaussian, gamma or lognormal
distributions.

Figure 13. Energy spectra for member 3 before frequency band averaging computed using SEA
methods; damping model (a); ––, method I; - . - . - , method II.
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Figure 14(a–c)
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Figure 14. Comparison of ensemble averages and SEA results for member 5; -w-w-, ensemble
mean; ––, 50 percentage point; -×-× -, SEA: method I; -*-*-, SEA: method II. (a) Damping type
(a); (b) damping type (b); (c) damping type (c); (d) damping type (d); (e) damping type (e).

Thus, it may be observed that knowledge of the mean and standard deviation
of the energy spectra, in conjunction with the assumption that the spectra are
lognormal distributed, enables the estimation of 5% and 95% probability points.
An attempt was also made to fit lognormal distributions to the single realization
of energy spectra obtained using the SEA approach (section 6) using the frequency
band mean and standard deviation. This required the assumption that the spectra
consist of segments of random processes which are ergodic not only in the mean,
but also in standard deviations over the 1/3 octave frequency bands. The results
obtained, however, were highly distorted and did not compare well with the
distributions estimated using ensemble averaging. Further work is clearly needed
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Figure 15(a–c)
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Figure 15. Comparison of ensemble averages and SEA results for member 3; -w-w-, ensemble
mean; ––, 50 percentage point; -×-× -, SEA: method I; -*-*-, SEA: method II. (a) Damping type
(a); (b) damping type (b); (c) damping type (c); (d) damping type (d); (e) damping type (e).

to validate the ergodicity assumptions underlying the frequency band averaging
of the energy spectra.

8. CONCLUSIONS

This study reports on numerical experiments conducted on statistics of vibration
energy flow characteristics in randomly parametered lattice structures. The direct
dynamic stiffness matrix method and Monte Carlo simulation procedures have
been used in this study. The vibration analysis of sample problems is exact and,
within the framework of accuracy of Monte Carlo simulation procedures, the
statistical treatment of the problem is also exact. Particular attention is paid to
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Figure 16. Probability distribution function of E(v) for member 3; damping type (a); ––,
uncertainty model A, simulation; . . . . . , uncertainty model A, empirical; - - , uncertainty model B,
simulation; - . .- . .- , uncertainty model B, empirical; *, extreme values, uncertainty model A; w,
extreme values, uncertainty model B. (a) Driving frequency=80 Hz; (b) driving fre-
quency=500 Hz; (c) driving frequency=2000 Hz.
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Figure 17. Probability distribution function of E(v) for member 3; damping type (c); ––,
uncertainty model A, simulation; . . . . . , uncertainty model A, empirical; - - , uncertainty model B,
simulation; - . .- . .- , uncertainty model B, empirical; *, extreme values, uncertainty model A; w,
extreme values, uncertainty model B. (a) Driving frequency=80 Hz; (b) driving fre-
quency=500 Hz; (c) driving frequency=2000 Hz.
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Figure 18. Probability distribution function ofE(v) formember 3; damping type (e); ––, uncertainty
model A, simulation; . . . . . , uncertainty model A, empirical; - - , uncertainty model B, simulation;
- . .- . .- , uncertainty model B, empirical; *, extreme values, uncertainty model A; w, extreme values,
uncertainty model B. (a) Driving frequency=80 Hz; (b) driving frequency=500 Hz; (c) driving
frequency=2000 Hz.
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the role played by different damping models and uncertainties associated with
structure geometry. Comparisons of the ensemble averages with results from SEA
formalisms involving frequency band averages are also made.

The following conclusions emerge from this study: (1) When the subsystems
have strain rate viscous/hysteretic damping, the mean response prediction by SEA
is likely to yield satisfactory results with the confidence bands narrowing on to the
mean for increasing frequencies. For subsystems with velocity dependent
viscous/hysteretic damping, the confidence bands, even for large driving
frequencies, do not converge on to the mean. (2) Uncertainties arising from truss
geometry affect the vibration energy variability significantly. (3) The energy
spectra are non-Gaussian in nature. In the majority of cases, lognormal
probability distribution was found to fit the energy spectra data well over a wide
range of system parameters. This fit was obtained with the knowledge of the mean
and standard deviation of the energy spectra. Thus, not withstanding the fact that
the energy spectra are non-Gaussian distributed, knowledge of the mean and
standard deviation enables the prediction of 5% and 95% probability points with
reasonable accuracy. (4) SEA results based on frequency band averages and which
take into account the ‘‘far’’ coupling effects, produce mean results which compare
well with the ensemble mean. The estimation of standard deviation by frequency
band averaging does not produce acceptable results. Accordingly, it would follow
that the problem of confidence band estimation in SEA is intractable within the
framework of frequency band averaging over a single realization of energy spectra.
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