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Statistical Energy Analysis (SEA) methods have been used to obtain the mean
square vibrational energy levels of connected structures under certain conditions
of coupling and excitation by random, uncorrelated forcing. Simple relationships
between spatially averaged energies or velocities to stress and strain have been
developed. However, the prediction of spatial variations in dynamic stress
distribution at boundaries and discontinuities is more difficult and very few studies
have been made in the SEA context. This paper first compares SEA predicted
spatially averaged mean square stress to that of a FEA model of a simple two-plate
system. Then it studies the behaviour of the dynamic stress concentration factors
at the clamped boundary and also at the corner of a square hole in a flat plate
at different frequency ranges using FEA models. The method used here is
particulary useful for SEA applications, the stresses being normalized to unit
power input. Certain assumptions for stress prediction at boundaries from SEA
derived uniform stresses are also verified.
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1. INTRODUCTION

Statistical Energy Analysis (SEA) methods are increasingly used to predict the
mean square response (averaged over space and time) of connected structures
subjected to random rain-on-the-roof type of excitation and certain conditions of
inter-structural coupling, resulting in a diffuse wave field. SEA is an energy
response model, the fundamental variable being the time averaged energy of
vibration. Indeed, one of the attractions of using energy as a primary variable is
the ability to work out simple expressions for the mean square velocities and
strains from kinetic and strain–energy equations. Several simple relations for
deriving spatially averaged velocity, pressure and strain responses from energy
levels of uniform homogenous structures are discussed in Lyon and DeJong [1].

The theoretical foundations of SEA and the extent and validity of the many
SEA assumptions are not yet fully understood and still a subject of ongoing
research. For example, in Dimitriadis and Pierce [2], the requirement of weak
coupling between structures considered necessary for the application of SEA has
been investigated for a system of plates rigidly joined along an edge and found
not critical. Hence, the concept of structural coupling defined as a barrier to the
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transfer of vibrational energy between subsystems, rather than ‘‘weak’’ or
‘‘strong’’, is now more appropriate from the point of view of SEA. An extensive
overview of the limitations and criticisms of SEA are presented by Fahy [3]; the
study lists a number of deficient areas requiring more investigation. Chief among
them are the effects of coupling strength, modal overlap, indirect coupling loss
factors (CLFs), transient power input, periodicity of structures, damped coupling
and the spatial variation of responses.

This paper is concerned with the spatial variation of stress response, i.e., stress
concentrations, at the corners of a hole or clamped edges of a flat plate and their
frequency dependent behaviour. The current analysis being conducted at this
NASA Centre on the dynamic response of the International Space Station (ISS)
structure, involves the use of SEA methods and the prediction of stresses in flat
and curved panels from SEA predicted energy levels. However, there is a need to
better understand the effect of cutouts, corners and other boundary conditions in
causing variations in the spatial stress distribution, in order to avoid failure of
malfunction of that component. Application of the simple ‘‘stress doubling rule’’
of SEA mentioned later in this section is often resorted to, however, a better
understanding of the limitations of this rule and the deviations from it due to
effects of wavelength and size of the hole is desirable, to have confidence in its
predictions. Hence, the numerical simulation (using an FEA package) of a plate
with a square cutout is resorted to here and results presented in non-dimensional
form to enhance the application of SEA from predicting the average stresses to
understanding local stress concentrations.

The spatial variance of SEA response variables in uniform structures have been
studied by Stearn [4]. Expressions for the upper and lower bounds of the
normalized deviation, i.e., the ration of standard deviation to mean, of uniform
flat plates and cylinders are found to be of the form C/zN, where C is a constant
and N the number of excited modes. Norton and Fahy [5] conducted experiments
on the mean square velocities and strain of small diameter cylinders representative
of industrial pipeline systems. The simple relationships mentioned earlier in this
section were used to predict spatially averaged RMS strains, then the ratio of the
predicted to measured strains were plotted for a range of frequencies and modal
densities. It is observed that the higher the modal densities and the smaller the
wavelength of vibration the more acceptable agreement is obtained with the
theoretical values of spatially averaged stresses.

The so-called response variables of SEA discussed above refer to spatial
averages significantly away from the boundaries and generally deal with uniform
structures. However, near the boundaries and certain discontinuities, the responses
can be expected to be biased from the average. From a modal point of view, this
can be explained as the concentration of anti-nodes or nodes at the free or clamped
edge of a structure whereas the interior space includes both anti-nodes and nodes.
The concentration of SEA responses such as stress and velocity along the
boundaries are expressed as ‘‘response concentration factors’’, this paper being
concerned about the behaviour of stress concentration factor. There can also be
‘‘modal concentration factors’’ in certain frequency bands due to coherence
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between modes. However, if the excitation is broad-band, these are reduced
substantially.

For the prediction of spatial variation of stresses, consistent with the simplicity
of the SEA approach, a doubling of the mean square stress for every constrained
boundary is recommended [1]. For example, at a rigidly clamped boundary
(having both rotary and translatory constraints) the mean square peak stress must
be four times the spatially averaged stress and at a clamped corner (the junction
of two edges) there is a further doubling, i.e., a total factor of 8. The respective
stress concentrations are given by square roots, i.e., 2 and 2·8. However, as shown
in reference [5], in the testing of constrained pipes, the measured concentration
factors at discontinuities are dependent on the wavelength of the excitation and
the implications of assigning a constant value, as the above rule suggests, requires
further studies.

The exact analysis of dynamic stress concentration is rendered difficult due to
the complex behaviour of stress waves arriving at a boundary. Stearn [6] studies
the case of concentration of dynamic stress due to a change in area of an infinite
flat plate. Depending on its angle of incidence with a junction, a bending wave
may be subjected to partial or total reflection, the resulting interference leading
to stress concentration. Under SEA assumptions of a diffuse wave field, waves are
incident from all angles and is it required to numerically integrate the stress
equation over a range of incident angles for each change of thickness; the method
yields a stress concentration factor which is a combination of four ‘‘concentration’’
factors dur to partial and total reflection, transmission and non-transmission. Such
wave based studies which deal directly with the reflection and transmission of
waves at junctions are presented by Cremer et al. [7] and are rather complex except
for the simple geometry changes, due to the conversion of one wave-type to many
others caused by mechanisms of reflection and transmission.

Pan et al. [8] use numerical simulations of finite beams subjected to different
boundary conditions and study the spatial variation in dynamic stress. It is shown
that their spatial distribution depends on the driving force location, characteristics
and the mode shapes. The observation is made that, when the forcing is of flat
spectrum type, the mode shapes and the location of forcing influence stress
distributions; otherwise, the distribution of responses are controlled by the
variations in the forcing spectrum, the former being easier to predict from a
knowledge of boundary conditions.

2. STRESS COMPARISON BETWEEN FEA AND SEA MODELS OF A
TWO-PLATE SYSTEM

In this section, the spatial and time averaged stress levels of a system of two
plates joined at right angles and subjected to unit power input are calculated using
SEA and FEA models and compared. The purpose of this comparison is to verify
the procedure used to study the dynamic stress concentrations later in this paper.
It may be noted that when comparing stress levels predicted by SEA and FEA,
it is important to normalize the FEA stresses to the same input power as used in
the SEA model (in this case, unity).
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The physical properties of the plates are: area (A)=1×1 m, thickness
(t)=1 mm, modulus of elasticity (D)=2·0×1011 N/m2, density (r)=7890 kg/m3

and the Poisson ratio (m)=0·3.

2.1. SEA 

The SEA calculations consist of calculating the frequency dependent coupling
loss factors (CLFs) and using them to obtain the time and spatially averaged
energy levels, from which the mean square stresses are derived. The following
calculations are based on reference [1]. Although the stresses predicted by SEA
theory are approximate, the configuration of a simple two-plate system used here
is a classic case of application of SEA theory; not only has it been extensively
studied from the point of SEA theory but also widely used as a benchmark for
experimental and finite element studies provided the necessary conditions such as
rain-on-the-roof forcing are correctly simulated.

The average frequency spacing (df) of a two-dimensional flat plate in pure
bending is given by df=2kCL /A, where k is the radius of gyration, CL is the
longitudinal wave speed. These are obtained by k= t/z12 and CL =
zD/r(1− m2).

The modal overlap factor (MOF) at any frequency f can be calculated using
MOF(f)= hf/df, knowing the damping loss factor h. The value of h is taken as
0·04 as it is the minimum (lightest) damping to give MOFs greater than unity in
the entire frequency range of interest.

The general expression for the coupling loss factor for a line connected system,
of two coupled plates [1] is represented as a multiple of the normal incidence
transmission coefficient t(0) (after averaging the exact expression over incident
angles from 0 to p/2, assuming that energy is uniformly distributed over incident
angle),

h12(f)=
df
pf

I12(k1, k2)
t12(0)

2− t12(0)
, (1)

where

I12 =
L
4$ k4

1k4
2

k4
1 + k4

2%
1/4

. (2)

Here k1 and k2 are the wavenumbers at any frequency and L the length of the joint;
for a symmetric plate k1 = k2 =zv/kCL and I12 =0·2 L k1, and the zero incidence
transmission coefficient t12(0) is 0·5.

The parameters from equations (2) and (3) are evaluated first and substituted
into equation (1) to obtain the CLFs (h12 and h21) for each frequency. The SEA
equations,

6P1

P27=$h11 − h21

−h12h22%6E1

E27, (3)
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where P1 and P2 are the input powers (both set to unity) and the h’s represent the
loss factor terms, are used to calculate the time and spatial average energy levels
E1 and E2 which are of course equal due to the symmetric forcing and geometry.

According to reference [1], the mean square tensile strain across a section of a
plate of energy E and total mass M, �o2�, is given by

�o2�= �v2�/C2
L , �v2�=E/M, (4)

the maximum strain on the top and bottom fibres being 3�o2� and the
corresponding mean square stress is given by �s2�=3D2�o2�.

Values of the modal overlap factor, CLF and the square root of �s2� are
calculated and plotted in the 100–200 Hz range in Figure 1.

2.2. FEA 

The FEA model of two plates (each 1×1 m) coupled at right angles consisted
of 450 quadrilateral plate elements (ANSYS53 Shell-63) and 496 nodes. This was
within keeping with the solver capacity dictated by the memory limitations of the
computer. The element dimensions were 0·067×0·067 m, i.e., each side of a plate
being divided into 15 square elements. The nodes were constrained to prevent
inplane translational and rotary motions. The frequency range of interest is
100–200 Hz.

The bending wavespeed (Cb ) of an isotropic flat plate is given by

Cb =zvkCL =z1·8CLtf, (5)

and the wave speed at f=200 Hz is 43·7 m/s with a wavelength (lB ) of 0·22 m
which is about three times the length of an element and thus assures sufficient
modal accuracy up to that frequency limit. Hence, the study is confined to the
200 Hz upper limit.

Figure 1. SEA—modal overlap factor and coupling loss factor; ––, MOF; - - - , CLF.
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The equation for the x-stress (sx ) at a point x, z on a flat isotropic plate due
to a pure bending displacement is given by [6]

sx =
itD

2(1− m2)v $12y
1x2 + m

12y
1z2%, (6)

where from a modal point of view, the response of the system can be written as

y(x, z, t)= s
N

j=1

fj (x, z)cj (t), (7)

where fj (x, z) is the normal mode j at (x, z) and cj (t), the generalized
displacement of mode j. The substitution of equation (7) into equation (6) gives
the so-called modal stresses f� j (x, z), used in the modal summation approach by
FEA packages. The ANSYS53 post-processor calculates the response power
spectral densities of the stress using the transfer functions of single-degree-of-free-
dom systems, H(v). The general form of equation [9] giving the stress X(v)i at
the ith degree-of-freedom due to an input cross spectral density Y(v)lm between
nodes l and m is given by

X(v)i = s
N

j=1

s
N

k=1

f� ijf� ik$s
r

l=1

s
r

m=1

gljgmkH*j (v)Hk (v)Ylm (v)%. (8)

Here, r is the total number of nodes subjected to forcing, N the total number of
modes, f� j the modal stress and gj the participation factor for nodal excitation for
the jth mode. It may be noted that for spatially uncorrelated forcing, the cross
PSDs are zero (i.e., 1$m) are zero. In this study, the normal mode summation
method with 400 plate modes (ensuring satisfactory convergence) was used to
calculate the mean square stress responses due to the application of many spatially
uncorrelated point forces over random locations on the plate.

The use of FEA models to evaluate SEA parameters such as coupling loss
factors and to check the validity of SEA results is well established. Such numerical
methods are particularly suitable when studying structures having complex
geometry, such as the effect of cutouts (holes) which cannot be easily analyzed by
wave theory nor can the mode shapes be readily obtained analytically. Although
numerical methods simplify these problems, caution must be exercised to correctly
simulate rain-on-the-roof forcing and to constrain the analysis to the frequency
range for which the element size is much smaller than the wavelength. The method
used here to simulate random rain-on-the-roof forcing with an FEA model and
obtain spatially averaged values is the same as that used by Simmons [10], Steel
and Craik [11] and Shankar and Keane [12]. However, references [10–12] were
primarily concerned with the extraction of SEA parameters such as CLFs from
FEA models, to be used later in SEA applications. The aim here is to compare
FEA responses against SEA responses obtained for unit power input, hence the
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issue of normalizing the FEA stress responses to the same input power has to be
dealt with. The procedure for achieving this approximately is given below.

Rain-on-the-roof forcing is simulated by subjecting a plate to point harmonic
forces Re [F(v)] eivt of unit amplitude, acting normal to the plate surface at 25
locations chosen uniformly over the plate. As it was found that the stress produced
in a plate due to excitation of the other plate, i.e., indirect forcing, were negligible
compared to those caused by direct forcing, these were ignored. For the
application of each force, say FP at any point p=1, 2, 3, . . . 25, the temporal mean
square values of complex x-stresses are sampled at 10 locations on the plate (i.e.,
=S1(f)=2, =S2(f)=2. . . =S10(f)=2) over the frequency range of interest. The average of
these mean squares over the 10 locations is taken to obtain =Sp (f)=2, i.e., the spatially
and temporally averaged stress contribution due to the force at p. In this manner
=Sp (f)=2 is calculated for forcing at all points p=1, 2, 3, . . . 25 and
=S(f)=2 =a25

p=1=Sp (f)=2 gives the final averaged mean square stress caused by
rain-on-the-roof forcing. Also, at each forcing point p, the normal component of
the velocity (Vp (f)) is measured. The expression for the time averaged power input
by a harmonic force is 1

2Re [Vp (f)]*, where the asterisk denotes the complex
conjugate. By summing up the absolute value of the input powers of all the 25
points, the total input power is calculated. Then the stress normalization is carried
out by the equation

=SN (f)=2 = =S(f)=2

s
25

n=1

[Re [Vp (f)]*]ABS

. (9)

3. RESULTS

The SEA modal overlap factors and CLFs are shown in Figure 1. The former
are all greater than unity and increase with frequency due to the constant damping
ratio model adopted here Figure 2 also shows the effect of normalizing on the root
mean square FEA stress (=S(f)=/z2) and the resulting normalized stress
(=SN (f)=/z2), obtained after dividing by the total input power to the FEA model.
In this case, the normalizing factor was found to be roughly constant in the
frequency range and for simplicity, an average value is used through the frequency
range (this is not always the case, especially in section 4 where different geometries
are compared). Results here are frequency averaged over the 10 Hz bandwidth
(approximately nine modes) for comparison with SEA values. The SEA predicted
maximum stress (root mean square) on the top or bottom fibre of the plate section
is shown in Figure 2, along with the FEA predicted stresses. There is good
agreement between the SEA and FEA normalized stresses.

4. DYNAMIC STRESS CONCENTRATION FACTORS OF A FLAT PLATE

In this section, the dynamic stress concentration factors at the clamped edge of
a plate and at the corner of a square hole in a plate are studied using the ANSYS53
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Figure 2. SEA and FEA predicted stresses: ––, SEA; - - - - - , FEA normalized; . . . . . , FEA
un-normalized.

package. The dynamic stress concentration factor at an edge or corner (KEDGE or
KCORNER ) is defined as

K=

RMS value of stress at a clamped corner
or edge due to unit input power

RMS value of stress in the datum plate
(spatially averaged) due to unit input power

, (10)

the datum plate being a plate (without hole) of exactly the same dimensions but
having free edges.

The dimensions and properties are the same as that of the plate studied in
section 2. Two FEA models are used for this study; the first one being a flat plate
with 693 quadrilateral plate elements (ANSYS53 Shell-63) and 744 nodes (each
plate edge divided into 25 elements) and the second one being the same plate but
with a square hole of dimension 0·1×0·1 m in the centre, with 740 quadrilateral
plate elements (ANSYS53 Shell-63) and 796 nodes (see Figure 3). The first model
is used to calculate the spatially averaged x-axis stresses of (1) a free–free plate,
which is taken as the datum stress, and (2) at a clamped edge A (see Figure 4(a)).
The second model is used to calculate the x-axis stress at a corner C or D of the
hole (see Figure 4(b)) and also at the mid-point of edge B.

Using the method of equation (5), the frequency at which lB becomes
comparable to the dimension of the elements is calculated as around 1000 Hz,
which is taken as the upper limit of the current analysis. However, unlike in section
2.2, difficulties in the convergence of summation of modal stress participation
factors in the high frequency ranges (due to the increasing slopes of mode shapes)
necessitated using a direct solution of the dynamic stiffness equations using the
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Figure 3. ANSYS53 FEA model; plate with square hole—740 elements, 796 nodes.

ANSYS53 frontal solver. This of course consumes more time, but is free from
modal summation errors.

4.1.   

First, the datum stresses are calculated as follows: the first model is given
free–free boundary conditions and subjected to the same scheme of forcing as

Figure 4. (a) FEA model-1: full plate with clamped or free edges; (b) FEA model-2: plate with
a clamped square hole.
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Figure 5. Dynamic stress concentration factors (K); ––, K-corner; - - - , K-edge.

mentioned in section 2; then the normalized and un-normalized stresses,
=SN (f)=DATUM /z2 and =S(f)=DATUM /z2, are calculated. The same method is used to
calculate the edge stresses =SN (f)=EDGE /z2 and =S(f)=EDGE /z2, the stresses being
averaged over 10 nodes along the clamped edge A. The corner stress is obtained
by averaging over two adjacent corner nodes (corners C and D) of the square hole
to obtain =SN (f)=CORNER /z2 and =S(f)=CORNER /z2.

5. RESULTS

The variation of the normalized dynamic stress concentration factor at the
corner and edge (KCORNER and KEDGE ) with frequency are shown in Figures 5–8, their
respective frequency ranges being 200–300 Hz, 420–476 Hz, 820–876 Hz and
1020–1076 Hz; the values are not frequency averaged. The ratio of lB /L (where
L=length of a side of the plate) at the mid-frequency values of these ranges are
0·2, 0·14, 0·12, 0·11 and 0·095, respectively. The ratio lB /L' (where L'= length of
a side of the hole) is 2·0, 1·4, 1·2, 1·1 and 0·95, respectively. The area ratio of the
plate to the hole (A/A') is 100·0.

The graphs presented here are raw data i.e., not frequency averaged, in order
to better study the fluctuation of stress behaviour with wavelength size at corners
and edges. Values for KCORNER and KEDGE in the low frequency ranges are shown
in Figure 5. They fluctuate with frequency, KEDGE becoming less than unity in
certain frequency bands. However, KCORNER is always significantly greater then
KEDGE altough it fluctuates as well from 1·5 to 3·5. This fluctuation at low
frequencies could be ascribed to the large wavelengths of the low frequency mode
shapes which could cause significant differences in the drive point impedances and
hence the input power at the different forcing points. In Figure 6, the curves are
much smoother. Here, KCORNER assumes a peak value of 2·4 and KEDGE 1·7 with small
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Figure 6. Dynamic stress concentration factors (K); ––, K-corner; - - - , K-edge.

variations; the ratio KCORNER /KEDGE being around 1·5 to 1·7 (the predicted value as
per the stress doubling rule being z2). At higher frequencies (see Figure 7), there
is a small drop in both KCORNER and KEDGE , their ratio being roughly the same as
above. At still higher frequencies (see Figure 8) there is a further small decrease
in KCORNER and KEDGE , their values being around 2·2 and 1·2, respectively, the curves
being very smooth and KEDGE assuming a fairly constant value. Thus, it is seen that
with decreasing wavelength, there is not only a small drop in the stress
concentration factor, but also the curves become smoother and more constant with

Figure 7. Dynamic stress concentration factors (K); ––, K-corner; - - - , K-edge.
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Figure 8. Dynamic stress concentration factors (K); ––, K-corner; - - - , K-edge.

frequency. It may be noted that the values of stress concentration factors shown
above are much less then those recommended in reference [1], i.e., the doubling
of the mean square value at every constrained boundary. According to this
approach, KCORNER and KEDGE should be taken as 2·8 and 2·0, respectively; the
present study shows these to be on the safe side of stress prediction except in the
very low frequency range discussed in Figure 5.

Figure 9. Un-normalized stress concentration factors (K); ––, K-corner; - - - , K-edge.
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Figure 10. Un-normalized stress concentration factors (K); ––, K-corner; - - - , K-edge.

The next two figures deal with KCORNER and KEDGE obtained without normalizing
the stresses to unit input power Figures 9 and 10 deal with two frequency ranges,
corresponding to lB /L=0·14 and 0·095, respectively. The stress concentration
factors obtained are different than those with normalized stresses (Figures 5–8).
The discrepancy is much more acute in KCORNER , the reason being that the clamped
square hole in the centre leads to significantly different geometry and boundary
conditions, and hence significantly different drive point impedances and injected
power from those of uniform flat plate used to calculate the datum stresses.
However, in the case of KEDGE , the drive point impedances far away from the
clamped edge A may approximate those of the datum uniform plate leading to
less significant differences in the power injected at those points. In both cases it
must be expected that with decreasing lB /L and lB /L', the need to normalize the
stresses decreases. The next figures (Figures 11 and 12) give KMID , the normalized
stress concentration at the mid-point of an edge B of the square hole, in the
frequency ranges where lB /L'=1·4 and 0·95, respectively. It can be seen that KMID

is much less than unity (which implies stress relaxation) but has increased in Figure
12 compared to Figure 11 with decreasing lB /L'. It must be expected that with
further decrease in lB /L' at higher frequencies, KMID will increase slowly and
approach the value of KEDGE .

6. CONCLUSIONS

The behaviour of dynamic stresses in a flat plate with a clamped edge and then
a square clamped hole, subjected to random uncorrelated forcing is studied using
the ANSYS53 FEA package. The stresses are normalized to the input powers to
make the results useful when studied in the context of SEA applications. There
is good agreement between the SEA and FEA predicted uniform dynamic stresses
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Figure 11. Mid-point stress concentration factor, K-mid, for frequency range lB /L'=1·4.

in the first part of this study. The frequency domain behaviour of the stress
concentration factors KCORNER and KEDGE are observed. It is seen that they diminish
with increasing frequency, being dependent on the relative size ofthe bending
wavelength to the dimension of the fixed boundary. However, the ratio
KCORNER /KEDGE is roughly constant and the curves are fairly smooth at high
frequencies. Current recommendations given in reference [1] for estimating the
spatial dynamic stress concentrations from SEA results, which call for a doubling

Figure 12. Mid-point stress concentration factor, K-mid, for frequency range lB /L'=0·95.
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of the mean square stress at every constrained boundary, are shown to over-predict
the stress concentration factors KCORNER and KEDGE with increasing frequency and
hence to be on the safe side.
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