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A uniformizing method is presented for the free vibration analysis of
metal–piezoceramic composite thin plates which are popular structures of thin
plate-type ultrasonic motors. A metal–piezoceramic composite thin plate is
normally composed of a metal plate with one surface adhering to a piezoelectric
ceramic plate. The uniformizing method described in this paper aims to obtain an
equivalent single-layer uniform thin plate which has the same free vibration
characteristics as the metal–piezoceramic composite thin plate. Hence the free
vibration analysis for a metal–piezoelectric composite thin plate can be performed
through investigating the free vibration behaviors of the equivalent single-layer
uniform thin plate by using classical thin plate theory.

In order to confirm the validity of the uniformizing method in this paper, two
actual configurations of the metal–piezoceramic composite thin plate structure are
constructed. By comparing the measured natural frequencies and vibration models
with those yielded by the uniformizing method, one finds not only excellent
agreement but also satisfying precision for engineering uses.
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1. INTRODUCTION

The structures of metal–piezoceramic composite thin plates have found ever
increasing application as electro–acoustic transducers in naval and ocean
engineering system and also in ultrasonic motors as piezoelectric vibrators.

Increasing use of these structures in various engineering fields necessitate the
investigation of vibration analysis for metal–piezoceramic composite plates. There
are three common theories for laminated plates: classical laminated plate theory
[1], first order shear deformation laminated plate theory and third order shear
deformation laminated plate theory [2, 3]. Some studies on the vibration analysis
of laminated plates have been conducted by Liew [4, 5] and Nosier et al. [6], but
the problem becomes more complicated when piezoelectric composite plates are
involved because the piezoelectric effect must be taken into consideration. In 1973
Denkman [7], employing the Rayleigh–Ritz method, calculated the approximate
natural frequencies of thin piezoceramic composite circular plates, which were not
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precise enough to be used practically. Woollette [8] obtained the first order natural
frequency which has satisfactory precision for engineering use. In 1980, Adelman
and Stavsky [9] and Stavsky and Loewy [10] gave the exact solution for the
vibration of composite piezoelectric circular plates. In 1983, Mu [11], using
Hamilton’s principle, presented the motion differential equation and boundary
conditions of metal–piezoceramic composite circular disks, as well as the
generalized solution and frequency equation under resonant condition.

All the studies were limited to the axisymmetrical vibration analysis for some
special and concrete configurations, e.g., circular or annular plates using energy
and variation methods. In 1959, Pister and Dong [12] proposed in their layered
plates theory that, when introducing equivalent bending stiffness De , layered plates
can be treated as single-layer uniform plates. They also obtained the equivalent
bending stiffness of the layered plate which was symmetrical about the adhered
layer which divided the layered plate in halves equally.

The purpose of this paper is to develop a uniformizing method for the free
vibration analysis of metal–piezoceramic composite thin plates which are not
symmetrical about the adhered layer, and the piezoelectric effect will be taken into
consideration. By using the uniformizing method, the vibration of metal–
piezoelectric composite thin plates can be expressed as equivalent single-layer
uniform thin plates having the same free vibration characteristics. Consequently,
the complicated problems about the metal–piezoelectric composite plates are
converted into problems of single-layer uniform thin plates.

The uniformizing method proposed in this paper is able to investigate free
vibration of metal–piezoceramic composite thin plates with various shapes, e.g.,
circular disks or rectangular plates, various vibration modes, e.g., axisymmetric
or non-axisymmetric modes and various boundary conditions, e.g., clamped,
simply-supported and free. The uniformizing method of this paper is based on
Kirchhoff’s thin plate theory and g-piezoelectric constitutive equations. To
uniformize a piezoelectric composite plate, two fundamental assumptions are
made: i.e., besides the continuous strain condition at adhered points, the shearing
stress components tzx , tzy , Tzx , Tzy of both the metal and the piezoceramic are also
equal in the adhered layer.

2. UNIFORMIZING A METAL–PIEZOCERAMIC COMPOSITE THIN PLATE

In this section, in order to uniformize a metal–piezoceramic composite thin plate
into a corresponding equivalent single-layer uniform thin plate, the following
procedures are employed: first, several fundamental assumptions are proposed;
next, the midplane position h0 is calculated by using Kirchhoff’s thin plate
theory and the g-piezoelectric constitutive equations; after this, the differential
motion equation is established for the metal–piezoelectric composite plate together
with three kinds of boundary conditions; finally, through comparing the
motion equation and boundary conditions of the metal–piezoelectric composite
plate with those of a typical single-layer uniform thin plate, one obtains the
equivalent quantities De , ue , Ee , re , he of an equivalent single-layer uniform
thin plate.
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2.1.  

An arbitrary element from the metal–piezoceramic composite thin plate in
Cartesian co-ordinates as shown in Figure 1 is taken. The upper layer is a metal
plate while the lower one is a piezoceramic plate. One assumes that the position
of the mid-plane is h0 along the z-axis. t1, t2 are the thicknesses of the metal layer
and piezoceramic layer respectively. The metal–piezoceramic composite thin plates
in the present study satisfy the following basic assumptions:

(1) The thickness of the metal–piezoceramic composite thin plate is sufficiently
small compared to the other dimensions. Normally the ratio of the thickness to
the smaller span length is less than 1/20 so that the composite plates are subject
to the fundamental assumptions of the Kirchhoff–Love thin plate theory [13]. The
components of strain in the metal layer parallel to the x and y-axis and the xy
direction can be given as follows

ex =−(z− h0) 12v/1x2, ey =−(z− h0) 12v/1y2,

gxy =−2(z− h0) 12v/1x 1y, (1)

where v is the transverse displacement, ex , ey , gxy are strain components of the
metal thin plate parallel to the x-, y- and xy-directions respectively. In the
piezoceramic layer

S1 =−(z− h0) 12v/1x2, S2 =−(z− h0) 12v/1y2,

S3 =−2(z− h0) 12v/1x 1y, (2)

where Sk (k=1, 2, . . . , 6) denotes the strain components of the piezoelectric plate,
using IEEE standard notation [14].

(2) The metal and the piezoceramic are assumed to adhere perfectly. At the
connected points the strain components of both the metal layer and the
piezoelectric layer are continuous.

(3) The lateral shearing stress components are also equal in the adhered layer.
So one has

tzx =z= t1 =Tzx =z= t1, tzy =z= t1 =Tzy =z= t1. (3)

Figure 1. The metal–piezoelectric composite plate element.
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where tzx , tzy are lateral shearing stress components of the metal plate. According
to the IEEE standard notation, Tk (k=1, 2, . . . , 6) represents components of
stress of the piezoelectric element. In this paper one defines Txx =T1, Tyy =T2,
Tzz =T3, Tzx =T5, Tzy =T4, Txy =T6.

(4) The moment of inertia is neglected. The differential equations of motion
along the x- and y-axes in the metal layer can be written as

1tzx /1z+ 1tyx /1y+ 1sx /1x=0, 1tzy /1z+ 1txy /1x+ 1sy /1y=0. (4, 5)

Correspondingly one deduces the following equations in the piezoelectric layer

1Tzx /1z+ 1Tyx /1y+ 1Txx /1x=0, 1Tzy /1z+ 1Txy /1x+ 1Tyy /1y=0. (6, 7)

(5) The electric field density in the piezoceramic is uniform along the thickness
of the piezoelectric layer.

2.2.     h0

2.2.1. tzx in the metal layer

According to the generalized two dimension Hooke’s law in isotropic materials,

ex =(1/E1)sx −(u1/E1)sy , ey =−(u1/E1)sx +(1/E1)sy ,

gxy =2(1+ u1)/E1 txy , (8)

in the metal layer where E1 is the Young’s modules, u1 is the Poisson ratio, and
sx , sy , txy are the stress components parallel to the x, y and xy directions
respectively. Equation (8) can also be written as

sx =E1/(1− u2
1 )(ex + u1ey ), sy =E1/(1− u2

1 )(ey + u1ex ),

txy =E1/[2(1+ u1)]gxy . (9)

Substituting equation (1) into equation (9), the resulting equations are

sx =−
E1(z− h0)

1− u2
1 012v

1x2 + u1
12v

1y21, sy =−
E1(z− h0)

1− u2
1 012v

1y2 + u1
12v

1x21,
txy =−

E1(z− h0)
1+ u1

12v

1x 1y
. (10)

Differentiating sx , txy with respect to X, Y respectively, and introducing the results
into equation (4), one obtains

1tzx /1z=[E1(z− h0)/(1− u2
1 )](1/1x)92v, (11)

where 92v= 12v/1x2 + 12v/1y2. Integrating equation (11) over z, one obtains

tzx =[E1/(1− u2
1 )](z2/2− h0z)(1/1x)92v+ f1. (12)

Here f1 is determined by the surface stress condition of the metal plate.



–    265

2.2.2. Tzx in the piezoelectric layer

To obtain Tzx in the piezoelectric layer, the classical thin plate theory needs to
be combined with the g-piezoelectric equation

Sh =SD
hkTk + gjhDj , ei =−gikTk +(1/eT

ij )Dj (h, k=1, 2, . . . , 6; i, j=1, 2, 3).

(13)

where Di (i=1, 2, 3) represents the electric displacement along the x-, y- and
z-axes respectively. To distinguish the electric field density from the Young’s
modules, ei is substituted for Ei to represent electric field density. eT

ij is the
permittivity of piezoelectric material, gjh is piezoelectric voltage constant, and SD

hk

is elastic constant when electric displacement is constant.
The piezoelectric plate in the present study is two-dimensional isotropic

resulting in

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0
G
G

G

G

G

K

k

G
G

G

G

G

L

l

S=
0 0 0 s44 0 0

. (14)

0 0 0 0 s44 0

0 0 0 0 0 2(s11 − s12)

Equation (13) can be listed as follows

S1 =SD
11T1 +SD

12T2 + g31D3, S2 =SD
11T2 +SD

12T1 + g31D3,

S6 =2(SD
11 −SD

12)T6, e3 =−g31T1 − g31T2 + (1/eT
33)D3 (15)

Equation (15) can be rewritten as

T1 =
1

SD
11[1− (−SD

12/SD
11)2]

S1 +
−SD

12/SD
11

SD
11[1− (−SD

12/SD
11)2]

S2

−
g31

SD
11[1− (−SD

12/SD
11)2]

D3,

T2 =
−SD

12/SD
11

SD
11[1− (−SD

12/SD
11)2]

S1 +
1

SD
11[1− (−SD

12/SD
11)2]

S2

−
g31

SD
11[1− (−SD

12/SD
11)2]

D3,

T6 =
1

2SD
11[1+ (−SD

12/SD
11)]

S6, e3 =−g31(T1 +T2)+ bT
33D3. (16)

By defining

E2 =1/SD
11, u2 =−SD

12/SD
11 (17)
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and inserting equation (2) and (17) into (16) and rewriting equation (16), one
obtains

T1 =−[E2(z− h0)/(1− u2
2 )] 12v/1x2 − [E2u2(z− h0)/(1− u2

2 )] 12v/1y2

−[E2g31/(1− u2)]D3, (18)

T2 =−[E2(z− h0)u2/(1− u2
2 )] 12v/1x2 − [E2(z− h0)/(1− u2

2 )] 12v/1y2

−[E2g31/(1− u2)]D3, (19)

T6 =−[E2/(1+ u2)] 12v/1x 1y, e3 =−g31(T1 +T2)+ (1/eT
33)D3. (20, 21)

Substituting equations (18), (19) into (21), and integrating equation (21) over z
from t1 to t1 + t2, one obtains

g
t1 + t2

t1

e3 dz=E2g31012v

1x2 +
12v

1y21>(1− u2) g
t1 + t2

t1

(z− h0) dz

+ 02E2g2
31

1− u2
+

1
eT

331t2D3. (22)

According to the fifth assumption

g
t1 + t2

t1

e3 dz=V, (23)

where V is the voltage applied to the piezoelectric ceramic along the z direction.
Introducing equation (23) into (22) one obtains

D3 = [−g31(t1t2 + 1
2t

2
2 − h0t2)92v+(1/E2)(1− u2)V]/{[2g2

31

+(1/eT
33)(1/E2)(1− u2)]t2}. (24)

By defining

K1 = g2
31(t1t2 + 1

2t
2
2 )/[2g2

31 + bT
33(1/E2)(1− u2)]t21/E2(1− u2),

K2 =−g2
31t2/{[2g2

31 + bT
33(1/E2)(1− u2)]t2(1/E2)(1− u2)},

K3 =1/{[2g2
31 + bT

33(1/E2)(1− u2)]t2}, bT
33 =1/eT

33

and multiplying expression (24) by −E2g31/(1− u2) results in

−[E2g31/(1− u2)]D3 = (K1 +K2h0)92v− g31K3V. (25)

Inserting equation (25) into equations (18) and (19), one can rewrite them as

T1 =−[E2(z− h0)/(1− u2
2 )] 12v/1x2 −E2u2(z− h0)/[(1− u2

2 )] 12v/1y2

+ (K1 +K2h0)92v− g31K3V, (26)

T2 =−E2(z− h0)u2/[(1− u2
2 )] 12v/1x2 − [E2(z− h0)/[(1− u2

2 )] 12v/1y2

+ (K1 +K2h0)92v− g31K3V. (27)
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Differentiating T1, T6 with respect to x, y respectively and substituting the results
into equation (6), one obtains

1Tzx /1z=[E2(z− h0)/(1− u2
2 )](1/1x)92v−(K1 +K2h0)(1/1x)92v

−g31K3 1V/1x, (28)

where 1V/1x=0 (excluding the boundary of the composite plate). Integrating
equation (28) over z results in

Tzx =[E2(z2/2− h0z)/(1− u2
2 )](1/1x)92v−(K1 +K2h0)z(1/1x)92v+ f2, (29)

where f2 is determined by the surface stress condition of the piezoelectric plate.
Putting formula (12) and (29) together, one has

tzx =[E/(1− u2
1 )](z2/2− h0z)(1/1x)92v+ f1,

Tzx =[E2(z2/2− h0z)/(1− u2
2 )](1/1x)92v+ f2. (30)

By defining

Px =(1/1x)92v, Q1 =E1/(1− u2
1 ), Q2 =E2/(1− u2

2 )

equation (30) can be simplified as

tzx =Q1Px (z2/2− h0z)+ f1, Tzx =Q2Px (z2/2− h0z)+ f2 − (K1 +K2h0)zPx .

(31)

2.2.3. Obtaining h0

By considering the third assumption (equation 3) and the free surface stress
conditions of the piezoelectric composite layer, one has

tzx =z= t1 =Tzx =z= t1, tzx =z=0 =0, Tzx =z= t1 + t2 =0. (32)

Introducing equation (31) into (32) results in

Q1Px (t2
1 /2− h0t1)+ f1 =Q2Px (t2

1 /2− h0t1)+ f2 − (K1 +K2h0)t1P,

Q1Px (0/2−0)+ f1 =0,

Q2Px [(t1 + t2)2/2− h0(t1 + t2)]+ f2 − (K1 +K2h0)(t1 + t2)Px =0. (33)

Solving this equations group gives the following resolutions:

f1 =0, f2 = (K1 +K2h0)(t1 + t2)Px −Q2Px [(t1 + t2)2/2− h0(t1 + t2)],

h0 = 1
2(Q1t2

1 +Q2t2
2 +2Q2t1t2 −2K1t2)/(Q1t1 +Q2t2 +K2t2). (34)
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2.3.       

2.3.1. Differential equation of motion

In order to derive the equilibrium equation of motion of the metal–piezoceramic
composite thin plate, the shear force resultant Qx , is first obtained and which is
given by

Qx =g
t1

0

tzx dz+g
t1 + t2

t1

Tzx dz.

Inserting f1, f2 into tzx , Tzx and introducing the results into Qx , one has

Qx =Q1Px (t3
1 /6− (h0/2)t2

1 )+Q2 Px{[(t1 + t2)3 − t3
1 ]/6− (h0/2)[(t1 + t2)2 − t2

1 ]}

+ (K1 +K2h0)Px (t1 + t2)t2 − [(K1 +K2h0)Px /2][(t1 + t2)2 − t2
1 ]

− Q2Px [(t1 + t2)2/2− h0(t1 + t2)]t2. (35)

By defining

De =−{Q1(t3
1 /6− (h0/2)t2

1 )+Q2[(t1 + t2)3 − t3
1 ]/6− (h0/2)(t2

2 +2t1t2)]

+ [(K1 +K2h0)/2]t2
2 −Q2[(t1 + t2)2/2− h0(t1 + t2)]t2}

=−{Q1(t3
1 /6− (h0/2)t2

1 )+Q2([h0t2
2 − t1t2

2 − 2
3t

3
2 ]/2)+ [(K1 +K2h0)/2]t2

2}.
(36)

Equation (35) can be simplified as

Qx =−PxDe . (37)

Similarly, one can obtain

Qy =−PyDe , (38)

where Py =(1/1y)92v. In Figure 1, the element is cut from the metal–piezoceramic
composite plate by two pairs of planes parallel to co-ordinate planes xz and yz.
For equilibrium of this element it is necessary that the sum of the forces acting
on this element and the sum of their moments about the x, y and z-axes should
be equal to zero separately. Here, the motion equilibrium equation along the z-axis
is set up.

1Qx /1x+ 1Qy /1y= m̄ 12v/1t2. (39)

Substituting Qx and Qy into equation (39) results in

1Px /1x+ 1Py /1y=−(m̄/De ) 12v/1t2, (40)

where m̄ is the mass per unit area of the metal–piezoceramic composite plate and
is given by

m̄= r1t1 + r2t2, (41)
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where r1, r2 are the mass density of the metal and piezoceramic respectively.
Inserting expressions Px , Py into equation (40), the equilibrium equation of motion
becomes

14v/1x4 +2 14v/1x2 1y2 + 14v/1y4 =−(m̄/De ) 12v/1t2. (42)

Defining 94 =9292 = (12/1x2 + 12/1y2)(12/1x2 + 12/1y2), equation (42) is reduced
to

94v=−(m̄/De ) 12v/1t. (43)

2.3.2. Obtaining the boundary condition expressions

In this section, the three kinds of boundary conditions of the metal–piezoelectric
composite plate will be established.

(1) Clamped edge: if the edge y=0 of the composite plate is clamped as shown
in Figure 2, both the flexion and the rotation angle at the points of this edge is
zero giving

v=y=0 =0, 1v/1y=y=0 =0. (44)

(2) Simply supported case: if the edge (x=0) of the plate is simply supported,
the deflection and bending moment at this edge must be zero. So, one has

v=x=0 =0, Mx=x=0 =0. (45)

The bending moment of this layered plate is given by

Mx=x=0 g
t1

0

sx (z− h0) dz+g
t1 + t2

t1

T1(z− h0) dz. (46)

Figure 2. Three boundary conditions for the metal–piezoceramic plate.
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Substituting equation (9) and (16) into equation (46), one obtains

Mx=x=0 =g
t1

0

−Q1(z− h0)2(12v/1x2 + u1 12v/1y2) dz

+g
t1 + t2

t1
$−Q2(z− h0)

12v

1x2 −Q2u2(z− h0)
12v

1y2 + (K1 +K2h0)92v

−g31K3V%(z− h0) dz=− aQ1012v

1x2 + u1
12v

1y21− bQ2012v

1x2 + u2
12v

1y21
+c(K1 +K2h0)012v

1x2 +
12v

1y21− cK3g31V, (47)

where

a= 1
3t

3
1 + h2

0t1 − t2
1h0, b=[(t1 + t2)3 − t3

1 ]/3+ t2h2
0 − h0(t2

2 +2t1t2),

c=(t2
2 +2t1t2)/2− h0t2.

In this paper only free vibration is investigated. So one can put V=0.
Substituting expression 47 into relation (45) results in

−[aQ1 + bQ2 − c(K1 +K2h0)]012v

1x2 +
aQ1u1 + bQ2u2 − c(K1 +K2h0)

aQ1 + bQ2 − c(K1 +K2h0)
12v

1y21=0.

(48)

The following equation (49) was obtained with the help of MathCAD 6.0 by
Collabra Software, Inc.. The detailed process of derivation can be found in
Appendix B of this paper

aQ1 + bQ2 − c(K1 +K2h0)=De . (49)

By defining

ue =[aQ1u1 + bQ2u2 − c(K1 +K2h0)/][aQ1 + bQ2 − c(K1 +K2h0)], (50)

and introducing equations (49) and (50), formula (48) can be written as

−De (12v/1x+ ue 12v/1y)=x=0 =0. (51)

(3) Free case: when the edge BC is free, according to the thin plate theory one
has

Mx =x= a =0, (Qx + 1Mxy /1y)=x= a =0. (52)

In the same way of deriving simply supported boundary condition, the relation
Mx =x= a =0 can also be written as

−De (12v/1x+ ue 12v/1y)=x= a =0. (53)
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Mxy can be written as

Mxy =g
t1

0

txy (z− h0) dz+g
t1 + t2

t1

T6(z− h0) dz

Inserting formulas (10) and (20) into Mxy , one has

Mxy =g
t1

0

−
E1

1+ u1
(z− h0)2 12v

1x 1y
dz+g

t1 + t2

t1

−
E2

1+ u2
(z− h0)2 12v

1x 1y
dz

=6− E1

1+ u1 0t3
1

3
+ h2

0t1 − h0t2
11−

E2

1+ u2 $(t1 + t2)3 − t3
1

3

+h2
0t2 − h0(t2

2 +2t1t2)%7 12v

1x 1y

By defining

Kxy =−
E1

1+ u1 0t3
1

3
+ h2

0t1 − h0t2
11−

E2

1+ u2 $(t1 + t2)3 − t3
1

3
+ h2

0t2 − h0(t2
2 +2t1t2)%

Mxy can be rewritten as

Mxy =Kxy 12v/1x 1y. (54)

Introducing equations (37) and (54) into equation (52), one has

−De [13v/1x3 + (1−Kxy /De ) 12v/1x 1y]=0. (55)

equation (56) is obtained with the help of MathCAD 6.0 by Collabra Software,
Inc.. The detailed derivation can be found in Appendix C of this paper.

1−Kxy /De =2− ue . (56)

Substituting equation (56) into (55) results in

−De [13v/1x3 + (2− ue ) 12v/1x 1y]=0. (57)

2.4.         

    - 

The differential equations of motion and boundary conditions of both the
metal–piezoelectric composite plate and a single layer uniform thin plate are listed
in Table 1. One finds that the motion equation and boundary conditions of both
the metal–piezoelectric composite plate and the single-layer uniform plate have
identical forms. Hence, there must be an equivalent single layer uniform thin plate
which has the same free vibration characteristics as the metal–piezoelectric
composite thin plate. De is defined as the equivalent bending stiffness of the
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Figure 3. Metal–piezoceramic composite thin circular plate.

piezoelectric composite plate, and ue the equivalent Poisson ratio. Other elastic
parameters Ee , he , re can be determined by the equations

De =Eeh3
e /[12(1− u2

e )], m̄= rehe , (58)

where he , Ee , re represent equivalent thickness, equivalent modulus of elasticity
and equivalent mass density respectively. When (58) is satisfied, arbitrary values
of Ee , he , re will have no influence on the results of free vibration analysis of the
equivalent thin plate. Normally, one defines

Ee =(E1 +E2)/2. (59)

Introducing equation (59) for Ee into equation (58), one obtains

he =[24De (1− u2
e )/(E1 +E2)]1/3, re =(r1t1 + r2t2)/he . (60)

Now all the elastic quantities of the equivalent single-layer thin plate have been
calculated.

3. RESULTS AND EXPERIMENTS

In this section, two actual configurations of metal–piezoceramic composite thin
plates are constructed in order to confirm the validity of the uniformizing method.
Firstly, one expresses these two composite plates as a corresponding equivalent
single-layer uniform thin plates using the uniformizing method. Secondly FEM is
employed to compute the natural frequencies of the vibration models of the
equivalent thin plates. Lastly, the actual resonant frequencies are measured for the

T 2

Parameters of the experimental materials

r E SD
11 SD

12 g31 bT
33

Materials (Kg/m3) (GPA) u (×10−12 m2/N) (×10−12 m2/N) (Vm/N) (×108 m/F)

Metal 2·7×103 70 0·33 — — — —
Piezoceramic 7·9×103 — — 12·5 −4·125 0·01139 1·1309
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T 3

Natural frequencies of the circular plate

Mode Theoretical analysis (KHz) Experimental measured (KHz) Error (%)

(2,1) 9·61 — —
(3,1) 15·46 16·7 7·43
(4,1) 22·40 24·5 8·57

Figure 4. Vibration modes of the equivalent single layer circular plate: (a) FEM mesh; (b) Mode
(2,1); (c) Mode (3,1); (d) Mode (4,1).

vibration models and compared with the experimental results obtained by using the
uniformizing method.

3.1.  –  

Figure 3 shows a metal–piezoceramic composite circular plate with an inner
radius of 8·5 mm and an outer radius of 30 mm. Thickness of both the metal layer
and the piezoelectric layer is 1 mm. These two thin layers are attached by ethoxyline.
The edge is simply supported and the piezoceramic is polarized along the thickness
direction. The electric polar of the piezoceramic surface is divided into 12 areas or

Figure 5. Rectangular piezoelectric laminated plate.
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Figure 6. Vibration modes of the equivalent rectangular layer plate: (a) FEM mesh; (b) Mode
(2,1); (c) Mode (3,3); (d) Mode (4,4).

16 areas equally in order to produce various vibration modes through applying
voltage to different areas. Other parameters are listed in Table 2.

According to the uniformizing method, we model this piezoelectric composite
thin plate into an equivalent single-layer uniform thin plate as shown in Figure 3.

According to Table 2 and equations (59) and (60), related parameters are
substituted into the expressions of De , ue , Ee , he , re :

ue =0·288, Ee =75 GPa, he =1·979 mm, re =5·354×104 Kg/m3.

(61)

FEM is used to calculate the free vibration frequencies and vibration modes of
the equivalent single layer thin plate. The equivalent single layer circular is meshed
into 350 elements as shown in Figure 4(a), and the circles on the mesh represent
the simply supported boundary condition. Calculated vibration modes are given
in Figure 4(b), (c) and (d). Natural frequencies of measurement and theoretical
calculation are listed in Table 3.

T 4

Natural frequencies of the rectangular plate

Mode Theoretical analysis (KHz) Experimental measured (KHz) Error (%)

(2,1) 4·35 4·7 9·37
(2,2) 15·24 16·4 7·07
(3,3) 25·57 28·0 8·67
(4,4) 44·26 — —



. .   .276

3.2.  –   

A rectangular piezoelectric composite plate is constructed as shown in
Figure 5(a). The piezoceramic surface is divided into 16 areas to produce various
vibration modes and the four edges are free. Both the metal and the piezoceramic
are of 1 mm thickness with a length of 40 mm and a width of 40 mm. Other
parameters are the same as those of the circular composite plate in Table 2.
Figure 5(b) is the equivalent single layer uniform thin plate obtained using the
uniformizing method. Computed equivalent quantities are equal to those of the
circular experimental configuration in expression (61). Vibration modes by FEM
are shown in Figure 7. The calculated and the measured frequencies are listed in
Table 4.

A comparison between measured frequencies and those obtained by the
uniformizing method shows good agreement and errors are less than 10%. Some
other experimental structures of the metal–piezoceramic composite thin plate (not
described in this paper) show the same agreement and precision. It should be
mentioned that the error is also partly attributed to boundary conditions which
are not absolutely free or simply supported edges. Another source of errors is the
computation errors of FEM, especially for the high order modes such as modes
(3,1), (4,1), (3,3), (4,4).

4. DISCUSSION AND CONCLUSIONS

A new approach is presented for the free vibration analysis of metal–
piezoceramic composite thin plates. It is well demonstrated that the
metal–piezoelectric composite thin plates can be modelled as corresponding
equivalent single-layer thin plates which have the same free vibration
characteristics. A large number of experiments have proved that the uniformizing
method can obtain free vibration frequencies and vibration models with enough
accuracy for use in engineering fields (in spite of the added assumption of
continuous lateral shearing stress components at adhered points).

The advantages of exploiting this new approach become more pronounced as
the problems become considerably more complicated, e.g., seeking antisymmetric
vibration natural frequencies for metal–piezoceramic circular plates or
investigating free vibration of a metal–piezoelectric laminated rectangular plate
with a free boundary condition. With the uniformizing method, one can obtain
free vibration characteristics of the metal–piezoelectric composite plates by only
analyzing the corresponding equivalent single-layer thin plates.

It should be mentioned that the uniformizing method has been applied
successfully in the design of ultrasonic motors. The two experimental
configurations described in section 3 come from the stators of a NBDS01
ultrasonic motor [15] and RPS00 USM respectively. When designing an ultrasonic
motor before using the uniformizing method, the piezoelectric effect was neglected
and the mid-plane position was unknown.

There have often been large differences of vibration levels between the actual
motor and the designed model. Design precision is greatly enhanced by employing
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the uniformizing method as stated in this paper as well as being able to obtain the
mid-plane position. Hence the authors are able to design the mid-plane to coincide
with the adhered layer to reduce the width of the glue layer. The authors currently
have work underway related to the error analysis of the uniformizing method.
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APPENDIX A: LIST OF SYMBOLS

v transverse displacement of thin metal plates
ex , ey , gxy strain components of a thin metal plate parallel to the x-, y- and xy directions

respectively
sx , sy , txy stress components of a thin metal plate parallel to the x-, y- and xy directions

respectively
S1, S2, S6 strain components of the piezoceramic thin plate parallel to the x-, y- and xy

direction respectively
T1, T2, T6 stress components of the piezoceramic thin plate parallel to the x-, y- and xy

direction respectively
E1 modulus of elasticity of the metal layer
r1, r2 mass density of the metal and the piezoceramic plate
u1 Poisson ratio of the metal plate
t1, t2 thickness of metal layer and piezoceramic layer
h0 midplane position of the metal–piezoceramic composite thin plate
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he , Ee , re equivalent thickness, equivalent modulus of elasticity and equivalent mass
density

De equivalent bending stiffness
ue equivalent Poisson ratio
m̄ mass per unit area of the metal–piezoelectric composite thin plate
SD

hk elastic constants of the piezoceramic when electric displacement is constant
(h, k=1, 2, . . . , 6)

gik piezoelectric voltage constants (k=1, 2, . . . , 6 i=1, 2, 3)
eT

ij permittivity of the piezoceramic material (i, j=1, 2, 3)
D3 electric displacement along the z-axis ( j=1, 2, 3)
e3 electric field density along the z-axis ( j=1, 2, 3)

APPENDIX B

Proof of the relation (equation 49)

aQ1 + bQ2 − c(K1 +K2h0)=De (B.1)

In Appendices B and C, subscripts are replaced by the following symbols:

Q1−Q1, Q2−Q2, K1− k1, K2− k2, De−De , h0− h0, E1−E1,

E2−E2, Ue− ue , U1− u1, U2− u2, t1− t1, t2− t2, Kxy− kxy .

Before proceeding with the proof following equations have already been obtained:

Q1=
E1

1− (U1)2, Q2=
E2

1− (U2)2,

h0=
Q1(t1)2 +Q2(t2)2 +2t1t2Q2−2K1t2

(Q1t1+Q2t2+K2t2)2
,

a=(t1)3/3+ (h0)2t1− (t1)2h0,

b=[(t1+ t2)3 − (t1)3]/3+ (h0)2t2− h0[(t2)2 +2t1t2],

c=[(t2)2 +2t1t2]/2− h0t2,

Kxy=−E1/(1+U1)a−E2/(1+U2)b,

K1= (G31)2[t1t2+ (t2)2/2]/[2(G31)2 + b33S11(1−U2)](1−U2)t2S11,

K2=−(G31)2(t2)/[2(G31)2 + b33S11(1−U2)](1−U2)t2S11,

K1=−K2(t1+ t2/2).

By defining K=K1+K2h0 then

K1=−K2(t1+ t2/2)+K2 · h0.

By rewriting h0 and De one has

h0= 1
2(Q1t12 +Q2t22 +2t1t2Q2+2K2t2t1+K2t22)/(Q1t1+Q2t2+K2t2)

De=
−E1

(1−U12)
(1
6t1

3 − 1
2h0t12)−

E2
(2−2 · U22)

(h0t22 − t1t22 − 2
3t2

3)

− [12K2(t1+ 1
2t2)+ 1

2K2h0]t22.
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APPENDIX C

The relation to be proved is

1−Kxy /De =2− ue (C1)

The left part is defined as

Left=1−Kxy/De (C2)

and the right part as

Right=2−Ue (C3)

In accordance with the proof in Appendix B and the relationships already
obtained, one has

De= aQ1+ bQ2− kc, Kxy =[E1/(1+U1)]a−[E2/(1+U2)]b,

Ue =(aQ1U1+ bQ2U2− kc)/De (C4)

Introducing Q1, Q2 and equation (C4) into equations (C2) and (C3), one obtains

Left=

−
kcU12U22 − kcU22 −U1E1aU22 +2E1aU22 +U2E2b−U2E2bU12 − kcU12

(1+U2)(1+U1)(U2−1)(U1−1)De

+
−2E1a+2E2+2E2bU12 + kc+U1E1a−2E2b

(1+U2)(1+U1)(U2−1)(U1−1)De

Right=

−
kcU12U22 + kcU22 +U1E1aU22 −2E1aU22 −U2E2b+U2E2bU12 + kcU12

(1+U2)(1+U1)(U2−1)(U1−1)De

+
+2E1a−2E2bU12 − kc−U1E1a−2E2b

(1+U2)(1+U1)(U2−1)(U1−1)De

By comparing the expressions right and left, one sees that

left= right. q


