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A numerical design tool is presented for minimizing radiated sound power from
a vibrating shell structure using a material tailoring approach. A finite element
method using shell elements is used to predict the vibration response of the shell.
The sound power generated by the shell under a harmonic force input is computed
with a lumped parameter/wave superposition method. A simulated annealing
algorithm is used to find optimal point mass distributions for minimum sound
power. It is shown that optimal designs are achieved through converting certain
mode shapes of the shell into ‘‘weak radiators’’, i.e., modes with low net volume
velocities. Close agreement is found between predicted noise levels and
experimental measurements, thus providing initial validation of the method as an
effective means of finding optimal structural designs for minimum sound power.
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1. INTRODUCTION

In contemporary mechanical design, it is becoming more common for the potential
noisiness of a machine or structure to be treated as a design consideration. In the
design of transportation systems, for example, many of the structures involve thin
plates or shells (usually in the form of enclosures) which can be optimized for
minimum sound transmission. The design of automobile engines includes
sheet-metal valve covers, which protect the rocker-arm/valve assemblies from dirt
and seal in lubricating oil. It has long been recognized that the area around the
valves is one of the noisiest areas in an engine, due to both combustion noise as
well as the impact noise created by the valves in operation. Since valve covers are
usually made of relatively thin sheet metal (due to weight and cost considerations)
they tend to radiate the engine noise outward from the engine rather than
containing it. If a design method were found to convert the valve covers into
‘‘weak radiators’’, that is, structures which vibrate in such a way as to minimize
their acoustic power, then automobile engines could be made quieter.

The first part of this paper summarizes some of the current literature in the field
of noise reduction and optimization, and demonstrates the need for a fully
integrated, structural–acoustic optimization tool. A design methodology is then
presented which fills this need, and experimental results are given which show the
potential of this new design tool.
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1.1. ---

Noise-control-by-design is a design procedure wherein the potential noisiness of
a machine is treated as a design consideration. Traditionally, noise control is
achieved by integrating large mass, stiffness or damping elements within the
structure to minimize vibration and noise. However, in designing modern
transportation vehicles, e.g., airplanes or automobiles, weight is at a premium, and
consequently more elegant solutions are required. This ultimately leads to the
application of optimization strategies.

One of the earliest mentions of the use of optimization to achieve a quiet
structure was by Lang and Dym [1], who developed an analytical technique for
predicting noise propagation through sandwich panels. The thicknesses and layer
densities were used as design variables to achieve optimal transmission losses
through the panels. Lamancusa [2] presented a method for optimizing the pipe
lengths of an intake manifold system to control low frequency inlet noise on a
4-cylinder automobile engine. In a later work, Milsted et al. [3] optimized an
engine block for a minimum volume velocity condition by varying panel
thicknesses and stiffnesses at connections between engine block subcomponents.
In the area of rail transportation, Vincent et al. [4] determined optimal values for
rail–tie stiffness and rail damping for minimum rolling noise in freight trains
through the use of computer simulation.

Noise-control-by-design can be applied to both interior and exterior noise
problems. In an enclosure one usually attempts to minimize sound pressure levels
globally by maximizing the transmission loss of the enclosing surfaces. In an early
paper on the determination of noise levels in interior spaces, Bernhard [5] gave
a procedure for calculating the acoustical effects of geometry changes in enclosed
cavities. Pal and Hagiwara [6] presented a method of optimization for a coupled
structural–acoustic interior noise problem. Specifically, they were interested in
solving the ‘‘inverse problem’’, that is, finding the minimum change in design
variables (e.g., panel thicknesses) which achieve a certain performance criterion.
More recently, Engelstad et al. [7] reported the use of combined commercial
software packages for interior noise minimization. MSC/NASTRAN was used to
solve the vibration problem of an acoustically excited aircraft fuselage, and, using
the structural vibration as a boundary condition, COMET/Acoustics was used to
solve the acoustic problem in the interior. The combination of the two software
packages, coupled with an optimizer, is able to find fuselage thicknesses for
minimum noise transmission from the engines.

1.2.    

One of the most effective means of minimizing the sound power output from
a structure is to change a mode shape (or mode shapes) of the structure into a
‘‘weak radiator’’ using material tailoring. A weak radiator is a mode which
radiates sound very inefficiently due to a correspondingly low net volume velocity.
Several recent noise-control-by-design papers have applied this concept, including
Belegundu et al. [8], St. Pierre and Koopmann [9] and Naghshineh et al. [10] All
of the preceding researchers used various types of material tailoring to achieve a
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weak radiator mode in flat plates or beams. In an interesting twist on the weak
radiator concept, Naghshineh and Koopman [11] used active vibration control to
force a beam to vibrate as a weak radiator. From the successes of the above-cited
authors, one may conclude that the weak radiator concept is an effective means
of achieving significant noise reductions in vibrating structures. It will be the
approach used in this research.

1.3.  

In most optimization problems, the cost function is either linearly or
quadratically dependent upon the design variables; thus, a gradient-based
optimization algorithm is the most efficient means to find optimal solutions.
However, as noted in a series of papers by Hambric [12–14], gradient-based
methods have difficulty optimizing acoustic/structural problems due to their
non-linearity, as well as the presence of local minima in the design space. Hambric
concluded that non-gradient methods such as the genetic algorithm or the
simulated annealing technique should be used in acoustic–structural problems. In
an overview of the available structural optimization routines, Keane [15] also found
that non-gradient based techniques may have significant advantages over older,
gradient-based methods. Further, Szykman and Cagan [16, 17] demonstrated the
use of the simulated annealing (SA) algorithm in highly non-linear problems such
as three-dimensional routing and component packing. They found that SA was
especially effective in problems where the objective function space is discontinuous
and/or possesses local minima, a feature which makes the simulated annealing
algorithm a logical choice for use in structural/acoustic optimization problems.

A review of the available literature shows that a need exists for a general
structural/acoustic optimizer capable of minimizing radiated sound power from
three-dimensional structures. Some success has been reported in using a finite
element structural response code in conjunction with a boundary element noise
prediction code, but it appears as though an integrated, structural sound power
minimizer does not yet exist.

The approach taken in this research is to combine a finite element method
vibration prediction code with a lumped parameter/wave superposition method
for predicting sound power. Upon combining the codes into a single unified
package, a simulated annealing algorithm is used to find optimal structural designs
from an acoustic power perspective. To the authors’ knowledge, this is the first
generalized, three-dimensional sound power optimizer for designing thin shell
structures. The following sections describe the finite element and lumped
parameter/wave superposition codes, followed by a description of the optimization
technique. Finally, an example problem is discussed, and comparisons with
experimental results are presented.

2. SHELL OPTIMIZATION FOR ACOUSTIC RADIATION

The final result of this research is a computer code called SOAR, which stands
for Shell Optimization for Acoustic Radiation. SOAR is comprised of two major
components: a sound power prediction code and a simulated annealing optimizer
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which, in combination, are used to predict, and subsequently minimize noise
generated by a vibrating thin shell structure. The shell may be driven at any
number of locations and can have fixed, simple-supported or free boundary
conditions. If desired, point masses and springs may be attached to nodal locations
on the shell. Finally, if the shell covers a sealed mass of air, the stiffness provided
by the air can be accounted for in the program.

The sound power prediction program is composed of a vibration prediction
section and a noise prediction section. The vibration prediction section uses a finite
element method code to predict nodal velocities from a shell driven by a harmonic
force. These nodal velocities are then input into the noise prediction section, which
uses a boundary element/wave superposition method to predict sound power from
the vibrating shell.

2.1.   

To predict sound power levels from a vibrating shell, it is first necessary to know
the velocity at each nodal point on the shell. The finite element code used here
employs three-noded, discrete Kirchhoff triangular shell elements. Each node has
six degrees of freedom: three translations and three rotations. The stiffness matrix
for each element in local co-ordinates is

k'= &k'in-plane

k'bending

k'uz', (1)

where k'in-plane represents the plane stress stiffness due to membrane action, k'bending

represents bending stiffness and k'uz is a fictitious stiffness needed when all elements
connected to a node are flat. The element mass matrices are given by

m'=$m'in-plane

m'bending%, (2)

where

m'bending = rtm'1 + (rt3/12)m'2, (3)

r being the density of the shell material, t the thickness of the shell, m'1 is a matrix
corresponding to the translational inertia terms and m'2 is a matrix corresponding
to the rotational inertia terms. If one wishes to add point masses to the global
stiffness matrix, one may use the equation

Mnn =Mnn +mn , (4)

where mn is the mass of the point mass. (Refer to Cook [18] and Zienkiewicz [19]
for additional details.) To determine the vibration behavior of the shell, one must
solve the differential equation

Mẍ+(K+iH)X=F, (5)
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where X is the nodal displacement vector, F is the force vector, and

H= adK+ bdM (6)

is the damping matrix, and ad , bd are damping coefficients. Assuming a hormonic
solution, and using modal superposition, the nodal velocities are found to be

X� = iv̄ s
m

j=1

yjQj, (7)

where yj is the modal participation factor, v̄ is the excitation frequency and Qj is
the jth eigenvector. The resonance frequencies and mode shapes are determined
by solving the eigenvalue problem

KQj =v2
j MQj, (8)

which is accomplished using the inverse iteration method [20]. The normal (w')
components of the nodal velocities are passed on to the sound power prediction
portion of the program, which uses them to calculate volume velocities and finally
sound power.

2.2.  /  

Koopmann et al. [21] describe a method of simulating the acoustic radiation of
a structure by placing small acoustic point sources in the interior of the structure
and matching the volume velocity boundary condition at the surface. Once the
strengths of the small sources are known, the total sound power can be found by
wave superposition. This enables a continuous structure to be simplified into a
lumped parameter model [22] which can be analyzed using numerical methods.

To approximate the acoustic pressure field generated by this collection of simple
and dipole sources, the acoustic fields from all of the sources are added together
in the following manner:

p̂(x)1 s
N

m

ŝmPm (x). (9)

The caret notation indicates the complex amplitude of a function, p̂(x) is the
acoustic pressure at the point x, Pm (x) is a basis function describing the pressure
field of a single unit acoustic source, and ŝm is the set of undetermined coefficients
which are the strengths for each of the sources.

Since this is a boundary element method, the basis functions must satisfy the
governing differential equation (the Helmholtz equation) exactly in the domain,
and must satisfy the boundary conditions approximately. The method used here
for approximately satisfying the boundary conditions is called volume-velocity
matching, and consists of finding the source strengths, ŝm , which cause the volume
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velocities over each element to be equal to those given by the finite element code.
The volume velocity over an element is defined as

û=gg
S

v̂ · n dS, (10)

where S is the surface area of an element, v̂ is the velocity over the element, and
n is the unit normal vector to the element. The volume velocity of an element may
be thought of as the average normal velocity of the element multiplied by the
surface area of the element. For this approximation to the boundary condition to
be accurate, the normal velocity over the surface of the element must not vary a
great deal, so that it can be approximated as a piston vibrating with a velocity
v̂average . Thus, for this method to be accurate, the condition kaQ 1 should be met,
where k is the acoustic wavenumber (v/c) and a is the largest characteristic
dimension of the element.

Euler’s equation is now used to rearrange equation (9) into the following form:

v̂ · n1 1
ikrac

s
N

m

ŝm9Pm (x) · n, (11)

where ra is the average density of air and c is the speed of sound in air. Integrating
over the surface of an element, one writes the elemental volume velocity in terms
of the source strengths and basis functions:

ûn =gg
Sn

v̂ · n dS1 1
ikrac

s
N

m

ŝm gg
Sn

9Pm (x) · n dS. (12)

To avoid non-uniqueness problems (discussed in much greater detail in the paper
by Fahnline and Koopmann [22]) the present basis functions are choosen as the
following:

Pm (x)= a((1/R) eikR)+ b9((1/R) eikR)nqm , (13)

where R is the distance between a field point x and the source location qm , and
n is a vector normal to the acoustic source (that is, normal to the element). The
first term in equation (13) represents the acoustic pressure field of a unit simple
source, while the second term represents the acoustic field of a dipole source. The
coupling constants, a, b determine the relative strengths of the simple and dipole
sources. Substituting the basis functions into the volume velocity equation, one
writes equation (12) in matrix form,

u=Us, (14)

where s is the vector of source strengths. All of the terms in the expression for
the U matrix are known and may be calculated using numerical integration
techniques. The volume velocity vector is calculated from the nodal velocities given
by the finite element solution. The source strengths of the acoustic sources are
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calculated by inverting equation (14). Without going into the details, the power
output of a collection of a simple and dipole sources is given by

Pav = 1
2 sHSs, (15)

where the superscript H denotes the Hermitian transpose, and the matrix S is a
Hermitian matrix which relates the acoustic power to the source strengths. The
elements of the S matrix are presented in detail in the paper by Fahnline and
Koopmann and follow from a derivation by Levine [23, 24].

To summarize, the lumped parameter/wave superposition section of the code
first calculates the volume velocities of each element using the nodal velocities
provided by the finite element section. The volume velocities provide the needed
boundary condition for ultimately predicting sound power with the boundary
element method.

2.3.  

When choosing an optimization algorithm, one needs to decide whether a
gradient or non-gradient routine should be used. Gradient methods have the
advantage of (typically) converging on an optimal solution rapidly, especially if
the objective function is well-behaved. However, in dynamic problems such as the
ones considered in this paper, mode switching can occur, causing the objective
function to have ‘‘peaks and valleys’’. Further, in such problems, use of divided
differences leads to inaccurate gradient information. Hence, the authors have
elected to use a non-gradient algorithm: the simulated annealing technique.

Simulated annealing is a stochastic optimization method. It begins its search at
a user-specified design point and then moves in a random direction, searching for
a minimum. If the move was in the downhill direction (i.e., if the sound power
at the new design is lower than in the original design) the new design is accepted
and the algorithm moves again in another random direction. If the move was
uphill, however, the new design point has a certain probability of being accepted
anyway, depending upon the size of the uphill move and a parameter called the
‘‘temperature’’. In this fashion, the algorithm may escape local minima to converge
onto a global minimum.

To understand why the algorithm is called ‘‘simulated annealing’’, consider the
annealing process. When a metal is at a high temperature, the atoms within the
metal are relatively free to move about in random directions. As the temperature
decreases, the atoms become more and more constrained to move within a smaller
region, until freezing occurs. Thus, metals find the ‘‘optimal’’ atomic packing by
first moving in random directions at high temperatures, with the range of
movement decreasing as the temperature decreases. The simulated annealing
algorithm works in much the same way, with very large, random steps taken in
the beginning, and smaller steps (with less likelihood of uphill steps being
accepted) taken as the algorithm proceeds. The simulated annealing algorithm
used here is based upon the paper by Corana et al. [25].

As design variables in the computer program, one may choose discrete point
masses, shell thicknesses, composite properties, to name a few. In this work, point
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masses have been chosen as these are simple to build and test in a laboratory to
validate the computer simulations.

3. EXAMPLE PROBLEM: OPTIMIZATION OF A HALF-CYLINDRICAL SHELL

To determine the validity of the sound power predictions of SOAR, numerical
and physical experiments were undertaken. The optimization problem is an
aluminum half-cylinder, mounted on a rigid plate. Figure 1 shows the finite
element model of the 2 mm thick half-cylinder, which is 304·8 mm long, with a
158·75 mm inside diameter. The bottom of the half-cylinder is bonded into small
grooves in the rigid plate using epoxy, creating a clamped boundary condition. The
shell is driven at its top center point with a harmonic shaker. The shaker is bolted
to a force transducer, which is used to ensure that the shaker produces a constant
force at each resonance frequency. A constant force of 0·8 N was used to drive
the shell throughout the optimization and experiments.

The objective of the optimization problem is to minimize the sound power
radiated by the half-cylindrical shell from its first five modes. To quieten the shell,
two masses were affixed to its surface. The locations of the masses are determined
by the optimization algorithm. Mathematically, the optimization problem can be
written:

Minimize{W1 +W2 +W3 +W4 +W5}, (16)

where Wi is the sound power at the ith resonance frequency. The design variables
are the locations of the two masses. The masses are small tungsten cylinders, each
weighing 35·8 g. Tungsten was chosen because of its high density, in order that
the masses might more closely approximate point masses. The value 35·8 g was
chosen for convenience; i.e., masses of this weight were readily available from
another experiment.

Figure 1. Finite element mesh for half-cylinder.
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Figure 2. Optimal mass locations for half-cylinder.

3.1.     

To model the half-cylindrical shell, a finite element mesh was created with 81
nodes and 128 elements. Some of the more important node numbers are shown
in Figure 1, as they will be referred to later. At the top center node a 19·0 g point
mass was added, to simulate the mass of the moving part of the driver. The point
masses were constrained to lie at nodal locations on the finite element mesh. A
curvilinear co-ordinate system was mapped onto the finite element nodes so that
each nodal location could be described by two co-ordinates: the distance along the
long axis of the cylinder and circumferential location. Thus, each mass had two
independent design variables, for a total of four.

Figure 2 shows the optimal locations for the point masses found by SOAR, at
nodes 14, 59. It is noteworthy that the optimal mass placement is asymmetric with
respect to the transverse axis of the cylinder, even though the structure and excitation
are symmetric. The mode shapes of the shell before optimization are shown in
Figure 3–7. The first mode shape (Figure 3) is called a ‘‘sway’’ mode; it radiates
very little noise since the excitation force is in the vertical direction. The second
mode (the ‘‘piston’’ mode shown in Figure 4) produces the largest amount of

Figure 3. Mode 1—‘‘sway’’ mode.
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Figure 4. Mode 2—‘‘piston’’ mode.

sound power. The third mode (the ‘‘rocking’’ mode shown in Figure 5) creates only
a small amount of noise, due to the effect of volume velocity cancellation. That
is to say, one side of the shell moves up and compresses the air while the other
side moves downward and rarefies the same amount of air. The overall effect is
that very little net volume velocity is created; i.e., the rocking mode behaves as
a ‘‘weak radiator’’.

The fourth and fifth modes (shown in Figures 6 and 7) also create a small
amount of noise due to volume velocity cancellation. They are included in the
numerical portion of the analysis because ‘‘mode switching’’ was found to occur
during optimization; that is, for certain mass placements a piston-type mode was
the fourth eigenvalue extracted by inverse iteration, instead of the second. Thus,
the fourth and fifth modes are kept in order to ensure that the optimal design is
quiet over a fairly broad frequency range.

Table 1 shows the predicted results of optimization by the SOAR program. The
first columns list the sound power and frequencies from the shell with no added
masses, while the third shows the optimal sound power. The middle columns show
the sound power results from the shell with the two masses in a ‘‘sub-optimal’’

Figure 5. Mode 3—‘‘rocking’’ mode.
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Figure 6. Mode 4—‘‘rocking 2’’ mode.

location, at the nodes 32 and 50. All sound power measurements in this paper are
given in decibels relative to 10−12 W.

After optimization, the asymmetric placement of mass along the ridge of the
shell has the effect of converting the noisy ‘‘piston’’ mode into an asymmetric
‘‘rocking’’ type mode, which produces only a small amount of sound power. This
is clearly seen in Figure 8, which shows the second and third mode shapes of the
shell after optimization. Thus, the shell has been changed into a weak radiator,
through the addition of only 71·6 g of mass (08% of the total shell weight). The
final result of this conversion is a 9·5 dB reduction in overall sound power at the
first three modes.

The simulated annealing algorithm required 160 function evaluations, or 5% of
the total design space, to converge to the optimal solution (one function evaluation
consists of eigenvalue/vector extraction and sound power calculation for the first
five modes.) However, convergence is strongly dependent upon the starting
temperature, step size and other input parameters to the SA code, as well as the
nature of the design space itself. For very large problems evaluation of 5% of the
design space may be infeasible, but this quantity may be reduced by using a lower
starting temperature and smaller initial step sizes. Of course, the higher the starting

Figure 7. Mode 5—‘‘piston 2’’ mode.
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T 1

Natural frequencies and sound power of shell before and after optimization

Sub-optimal masses Optimal masses
No. masses nodes 32, 50 nodes 14, 59

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
Mode Freq (Hz) Power Freq (Hz) Power Freq (Hz) Power

1 325·1 29·48 299·7 27·51 299·8 26·78
2 676·4 84·67 546·1 77·48 541·9 72·86
3 740·7 69·08 691·7 57·25 580·6 71·34
4 1184·3 62·45 1176·9 57·44 1139·9 57·17
5 1345·5 61·73 1345·5 57·12 1345·5 56·81

Total 84·83 77·60 75·31

temperature, the more confident a researcher may be in the ‘‘optimality’’ of the
converged solution.

3.2.  

The experimental analysis of the half-cylinder problem took place in two stages:
modal analysis and acoustic intensity measurement. The division is due in large
measure to the structure of the SOAR code itself, which is divided into the FEM
vibration analyzer and the BEM sound power predictor. Experimental modal
analysis and acoustic intensity measurements were performed for the half-cylinder
without point masses, with the masses in their optimal locations and with the
masses in the ‘‘sub-optimal’’ location (nodes 32, 50).

Modal analysis is necessary in order to confirm the results of the FEM code.
Since the sound power produced by the structure is so strongly dependent upon
its mode shapes, an inaccurate finite element code would yield incorrect sound
power predictions. Acoustic intensity measurements are needed to confirm the
results of the BEM sound power code.

3.2.1. Experimental modal analysis

The modal analysis experiments were performed using an impact hammer, a
laser vibrometer, and the STAR Modal Analysis System software. The

Figure 8. Second and third modes after optimization.
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Figure 9. Experimental modal analysis apparatus.

experimental apparatus is shown in Figure 9. Of primary interest were the first few
natural frequencies of the shell, and the mode shapes at these frequencies. The
experimentally determined resonance frequencies of the first three modes are
shown in Table 2, along with the predicted values. The largest discrepancy is 5·5%,
which is good for a shell vibration problem. The mode shapes found by the STAR
System were also in close agreement with those predicted by SOAR; that is, the
shell clearly exhibited the ‘‘piston’’ and ‘‘rocking’’ modes at its second and third
natural frequencies. The fourth and fifth modes were impossible to distinguish
experimentally, due to the relatively small amount of displacement created by these
modes.

3.2.2 Acoustic intensity measurements

The next set of experiments were undertaken to determine the accuracy of the
SOAR sound power predictions. This was accomplished through the use of sound
intensity measurements in a hemi-anechoic chamber. In the experiments, an HP
35660A dynamic signal analyzer was used to drive the harmonic shaker (through
a power amplifier) with a pure tone at each of the first three resonance frequencies
of the shell. The analyzer was also used to monitor the signal from the force
transducer in the shaker assembly. This ensures that the shell is driven with a
constant force at each frequency. Sound power measurements were made with the
use of the HP 3569A Real Time Signal Analyzer in conjunction with a B & K
Acoustic Intensity Probe.

T 2

Predicted versus measured natural frequencies of shell (Hz)

No masses Optimized
Mode Predicted Actual % Diff Predicted Actual % Diff

1 325 308 5·5 300 290 3·4
2 676 671 0·7 542 541 0·2
3 741 718 3·2 580 562 3·2
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T 3

Predicted versus measured sound power of shell (dB)

Sub-optimal masses Optimal masses
No masses Nodes 32, 50 nodes 14, 59

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
Mode SOAR Actual Diff SOAR Actual Diff SOAR Actual Diff

1 29·48 36·00 6·52 27·51 40·22 12·71 26·78 36·47 9·69
2 84·67 82·84 1·83 77·48 79·84 2·36 72·86 72·91 0·05
3 69·08 68·94 0·14 57·25 56·25 1·00 71·34 70·17 1·17

Total 84·79 83·01 1·78 77·52 79·86 2·34 75·18 74·76 0·42

Owing to the difficulty of obtaining a constant force over a wide frequency range
(the force varied by a factor of 3 over the range of 200–800 Hz with a constant
voltage input) the shell was driven with a pure tone at each of its first three
resonances. This approach has the added advantage of closely approximating
SOAR, which also uses pure tone excitation at resonance. For each of the three
aforementioned mass configurations (no masses, sub-optimal masses and optimal
masses) the shell was driven at its first three natural frequencies and the radiated
sound power was measured. The fourth and fifth modes were indistinguishable
experimentally, and were not measured. As seen in Table 1, these modes are
predicted to produce insignificant amounts of sound power relative to the second
and third modes.

The sound power radiated by the shell as measured in the hemi-anechoic
chamber is shown in Table 3. The sound power at the first resonance is not in
agreement with the SOAR predictions because the predicted and measured sound
power levels are very close to the noise floor in the test chamber. In fact, the
sound produced by driving the shell at its first resonance with a force of 0·8 N
was almost completely inaudible, except at very close range (within 030 cm).
In practical terms, the large discrepancy between predicted and actual sound
power levels for the first mode is unimportant, since so little noise is created by
this mode.

On the other hand, accurate predictions for the second and third modes are
important to this optimization problem, since they are the major noise producers
in the frequency band of interest. As seen in Table 3, the predictions are in
excellent agreement with the measured results, with a maximum discrepancy of
2·36 dB. Thus, the SOAR code is found to be an effective method of minimizing
sound power for a vibrating shell structure.

As a final remark, it should be noted that the shell optimized in this study was
a highly simplified structure. At low frequencies, the half-cylinder has a low modal
density and the excitation force was easily determined a priori. The authors next
task is to use SOAR on a more realistic engineering design problem, for example,
a gearbox which is excited both structurally and acoustically.
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4. CONCLUSION

A half-cylindrical shell structure driven with a point excitation force has been
optimized for minimum sound power. The design variables were the locations of
two 35·8 g tungsten ‘‘point’’ masses. The SOAR code found an asymmetric
optimal solution for minimum sound power in the first three modes; the changing
of a ‘‘strong radiator’’ mode shape into a ‘‘weak radiator’’ was found to be the
key. Experimental confirmations of the predictions made by SOAR were carried
out. Both experimental modal analysis and acoustic intensity measurements
agreed closely with the SOAR predictions. In conclusion, the SOAR code was
found to be an effective optimization routine capable of minimizing radiated sound
power from a three-dimensional shell structure.

REFERENCES

1. M. A. L and C. L. D 1975 Journal of the Acoustical Society of America 57,
1481–1487. Optimal acoustic design of sandwich panels.

2. J. S. L 1988 Journal of Sound and Vibration 127, 303–318. Geometric
optimization of internal combustion engine induction systems for minimum noise
transmission.

3. M. G. M, T. Z and R. A. H 1993 Proceedings of the Institution of
Mechanical Engineers 207, 135–143. A numerical method for noise optimization of
engine structures.

4. N. V, P. B, D. J. T and P. E. G 1996 Journal of Sound
and Vibration 193, 161–171. Theoretical optimization of track components to reduce
rolling noise.

5. R. J. B 1985 Journal of Sound and Vibration 98, 55–65. A finite element
method for synthesis of acoustical shapes.

6. C. P and I. H 1993 Finite Elements in Analysis and Design 14, 225–234.
Dynamic analysis of a coupled structural–acoustic problem: simultaneous multimodal
reduction of vehicle interior noise level by combined optimization.

7. S. P. E, 1995 Proceedings of Inter-Noise ’95, Optimization strategies for
minimum interior noise and weight using FEM/BEM.

8. A. D. B, R. R. S and G. H. K 1994 Structural
Optimization 8, 113–119. A general optimization strategy for sound power
minimization.

9. R. L. S. P J and G. H. K 1995 ASME Journal of Mechanical Design
117, 243–251. A design method for minimizing the sound power radiated from plates
by adding optimally sized, discrete masses.

10. K. N, G. H. K and A. D. B 1992 Journal of the
Acoustical Society of America 92, 841–855. Material tailoring of structures to achieve
a minimum radiation condition.

11. K. N and G. H. K 1994 ASME Journal of Vibration and Acoustics
116, 31–37. An active control strategy for achieving weak radiator structures.

12. S. A. H 1992 Proceedings of the Fourth AIAA/USAF/NASA/OAI Symposium
on Multidisciplinary Analysis and Optimization 1096–1103. Structural–acoustic
optimization of a point-excited submerged cylindrical shell.

13. S. A. H 1995 ASME Journal of Vibration and Acoustics 117, 136–144.
Approximation techniques for broad-band acoustic radiated noise design optimization
problems.

14. S. A. H 1996 ASME Journal of Vibrations and Acoustics 118, 529–532.
Sensitivity calculations for broad-band acoustic radiated noise design optimization
problems.



. .   .350

15. A. J. K 1994 Adaptive Computing in Engineering Design and Control 14–27.
Experiences with optimizers in structural design.

16. S. S and J. C 1995 ASME Design Engineering Technical Conferences 1,
431–438. Synthesis of optimal non-orthogonal routes.

17. S. S and J. C 1995 ASME Journal of Mechanical Design 117, 308–314.
A simulated annealing-based approach to three-dimensional component packing.

18. R. D. C, D. S. M and M. E. P 1989 Concepts and Applications of Finite
Element Analysis. New York: John Wiley; third edition.

19. O. C. Z 1983 The Finite Element Method. New York: McGraw-Hill; third
edition p. 329.

20. T. R. C and A. D. B 1991 Introduction to Finite Elements in
Engineering. Englewood Cliffs, NJ: Prentice-Hall; p. 343.

21. G. H. K, L. S and J. B. F 1989 Journal of the Acoustic Society
of America 86, 2433–2438. A method for computing acoustic fields based on the
principle of wave superposition.

22. J. B. F and G. H. K 1996 Journal of the Acoustical Society of
America 100, 3539–3547. Lumped parameter model for the acoustic power output
from a vibrating structure.

23. H. L 1980 Journal of the Acoustical Society of America 67, 1935–1946. Output
of acoustical sources.

24. H. L 1980 Journal of the Acoustical Society of America 68, 1199–1205. On source
radiation.

25. A. C, 1987 ACM Transactions on Mathematical Software 13, 262–280.
Minimizing multimodal functions of continuous variables with the ‘‘Simulated
Annealing’’ algorithm.


