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Several equations are proposed which relate the time-average energy of a forced
vibrating linear structure to the structure input impedance and mobility. When
the structure is driven at one point, the equations allow one to obtain the kinetic
and potential energy, loss factor and other energy characteristics by the most
economic way: without measuring or computing the response all over the structure
and using only the data measured at the driving point. Computer simulation
examples with typical structures show that the equations provide reliable estimates
in the range of low and middle frequencies.
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1. INTRODUCTION

In experimental mechanics and acoustics, an important problem is that of
minimizing the measured data necessary for characterizing a mechanical system.
It follows not only from the natural requirement of economy but also from the
practical restrictions: for many engineering structures, installation of sensors and,
hence, the direct measurement of the needed structural characteristics is
undesirable or even impossible.

In structural dynamics, Bolotin [1] was probably the first who rigorously
formulated and solved one such problem called the problem of planning the
vibration measurements on structures: for a structure vibrating under a random
load, he gave several criteria (such as the minimum condition number) for how
to choose the amount and co-ordinates of the measurement points necessary to
reconstruct the statistical moments of the time-spatial random vibration field. In
the last few years, a similar problem has been discussed in the literature on modal
analysis, the problem of planning modal tests, consisting of the selection of
excitation positions and response measurement locations which are the best for
the model (mostly, a FE-model) validation [2]. One more such problem, called the
field reconstruction problem, was formulated and studied in reference [3]; it
consists of reconstructing the vibration displacement and stress fields inside an
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elastic solid from the displacement amplitudes measured on a part of its boundary
surface. There are other publications containing attempts to extract the maximum
information from the minimum experimental data—see, e.g., references [4–6].

In the present paper, an extreme problem of this type is considered. It consists
of finding the time-average energy characteristics of a vibrating mechanical
structure driven at one point if only the data measured at this single point are
given. As is shown in the paper, the problem has no exact solution: mathematically
one can find only the power dissipated in the structure and the Lagrange function
(the difference between the kinetic and potential energy). Other energy
characteristics of the structure cannot, in the general case, be expressed through
the measurements at one point. However, it turns out that, for finite and not highly
damped structures, simple approximate equations can be obtained which give
rather accurate estimates for all the energy characteristics of the structure.
Derivation and analysis of these equations is the main objective of the present
paper.

The key result of this work is the equation which relates the total vibration
energy of a structure to the derivative of the input impedance (or mobility) of the
structure with respect to frequency. This equation is mathematically correct for
finite lossless structures [7]. Here, it is applied to structures with arbitrary damping.
Several computer simulation examples illustrate the accuracy and the range of
validity of the estimates thus obtained. Some of the results have been presented
in reference [8]. They can be useful in developing techniques for analysis of
vibration in complex practical systems which at present are urgently required [2].
In particular, they can provide a technique for direct measurement of some
energetic parameters of subsystems used in the prediction methods based on the
energy balance equations—see, e.g., reference [9].

2. ENERGY RELATIONS FOR AN nDOF-SYSTEM DRIVEN AT ONE POINT

2.1.    

The following problem is considered: a finite linear structure is driven at one
point by a harmonic force; find all the time-average energy characteristics of the
structure (kinetic energy, potential energy, loss factor and others), if only the
complex amplitudes of the force and the velocity response at the driving point,
f and v, are given (measured). The question is, thus, in finding the energy
characteristics without measuring or computing the response over the whole
structure.

2.2. n-

It is assumed that the structure is modelled by a linear mechanical system with
n degrees of freedom (nDOF) whose forced vibration of angular frequency v is
described by a set of algebraic equations

f=Zv=(R+iX)v, (1)
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where f=[f1, . . . , fn ]T and v=[v1, . . . , vn ]T are n-vectors of the complex
amplitudes of external forces and the velocity response of the system, Z is the full
impedance n× n-matrix, and superscript T means transposition. The time
dependent factor exp (−ivt) is implied. (A list of symbols is given in Appendix
C.) The real part of the impedance matrix, the resistance matrix R, and its
imaginary part or reactance X relate to the system parameter matrices as

R=C+(1/v)H, X=(1/v)K−vM. (2)

Here, C and H are the n× n-matrices of viscous and hysteretric damping, K and
M are the static stiffness and mass n× n-matrices. All the square matrices in
equations (1) and (2), except Z, are assumed to be real-valued and symmetric. The
impedance matrix Z is complex and symmetric. The damping matrices, C and H,
are not necessarily proportional to K and/or M. The nDOF-system and equations
(1) and (2) thus model a rather general class of mechanical structures.

The following time-average energy characteristics of the system will be of further
interest: the complex power flow into the system

F= I+iQ= 1
2v*f, (3)

of which the real and imaginary parts are the active and reactive power flow;
dissipated power

F= 1
2v*Rv; (4)

kinetic and potential energies

T= 1
4v*Mv, U=(1/4v2)v*Kv; (5)

total energy and Lagrange function

E=T+U, L=T−U; (6)

loss factor of the system

h=F/vE, (7)

defined at each frequency as the ratio of the energy dissipated during one period
of oscillation to the time-average total energy of the system. The asterisk denotes
the Hermitian conjugate, i.e., transposition plus complex conjugate. Though the
velocity amplitude vector v is complex, the dissipated power (4) as well as the
energy characteristics (5), (6) are real (and positive) since the resistance, mass, and
stiffness matrices are assumed symmetric.

The problem posed in section 2.1 can be reformulated for the nDOF-system
driven at one, say the first, DOF (f1 = f, f2 = · · ·= fn =0), as follows: find the
characteristics (4)–(7) if the complex amplitude f1 = f and the velocity response
component v1 = v are given, while the velocity vector components v2, . . . , vn and
the matrices M, K, C, H remain unavailable.
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2.3.  

Using the amplitudes f and v, one can immediately compute the input
impedance z(v) and input mobility y(v) at the driving point,

z(v)= f/v, y(v)= v/f, (8)

as functions of frequency, as well as the active and reactive power flows

I= 1
2 Re (v̄f,) Q= 1

2 Im (v̄f). (9)

To find the energy characteristics (4)–(7), one has to obtain equations which
relate them to the known quantities (8) and (9). Two such equations can be derived
by substituting equations (1) and (2) into equation (3) and comparing the result
with equations (4)–(6). These are

I=F, Q=−2vL. (10, 11)

Equation (10) is equivalent to the energy conservation law: the power flow into
the structure is equal to the dissipated power. Equation (11) gives one more
physical interpretation of the reactive power flow Q: it is a measure of closeness
of the structure to a resonance. (Note that the time-average potential energy is
equal to the time-average kinetic energy only at the natural frequencies.)

From equations (10) and (11) one can find two of the needed energy
characteristics of the structure—the dissipated power and Lagrange function:

F= 1
2=v=2 Re [z(v)], L=−1

4=v=2 Im [z(v)/v]. (12)

Unfortunately, that is all that can be calculated exactly via the input data (8) and
(9). For other energy characteristics, only approximate values can be found.

2.4.     

For the time-average total energy E, the following estimate via the input
impedance is proposed here:

E3−1
4=v=2 Im [1z(v)/1v]. (13)

This equation gives exact values for the total energy of lossless structures for which
the input impedance is a purely imaginary quantity. It was rigorously proved for
this case in reference [7]; its derivation together with a brief review of related
literature is presented in Appendix A. For damped structures, equation (13) is
approximate. Accuracy of the approximation depends upon the amount of
damping in the structure: the smaller the damping, the lower the approximation
error. The examples given in section 3 show that equation (13) gives rather realistic
estimates for the total energy in many practical cases at low and middle frequencies.

Combining equations (12) and (13), one can easily obtain the following
estimates for the time-average kinetic and potential energy separately,

T3−1
8=v=2 Im $1z(v)

1v
+

z(v)
v % , U3−1

8=v=2 Im $1z(v)
1v

−
z(v)
v % ,

(14, 15)
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and for the loss factor (7) of the system

h3−2 Re $z(v)
v %>Im $1z(v)

1v % . (16)

2.5.     

As is shown in Appendix A, the total energy of a lossless nDOF-system relates
to the input mobility in just the same manner as it does to the input
impedance—see equation (A11). Therefore, the estimates, similar to equations
(13)–(16), for the energy characteristics via the input mobility can be easily derived.
By repeating the procedure of the preceding section with the input impedance
replaced by the input mobility, the following equations can be written:

F= 1
2=f=2 Re [y(v)], E3−1

4=f=2 Im [1y(v)/1v], (17, 18)

T3−1
8=f=2 Im $1y(v)

1v
−

y(v)
v % , (19)

U3−1
8=f=2 Im $1y(v)

1v
+

y(v)
v % , (20)

h3−2 Re $y(v)
v %>Im $1y(v)

1v % . (21)

Equations (12)–(21) solve the posed problem. They allow one to obtain all the
time-average energy characteristics of a forced vibrating finite mechanical
structure from the measurements only at one single point, i.e., without measuring
or computing the responses all over the structure: one needs for this to measure
the input impedance or mobility and the amplitude of the velocity response (or
force) at the driving point.

3. COMPUTER SIMULATION EXAMPLES

To illustrate the accuracy and the range of validity of the estimates obtained,
three vibrating structures are studied in this section: nDOF-system with viscous
damping (n=2), and two continuous structures with hysteretic damping—a
longitudinally vibrating uniform rod (one dimensional structure), and flexurally
vibrating rectangular plate (two dimensional structure).

3.1. 2-

This system consists of two masses m1 and m2, two springs k1 and k2, and two
dashpots c1 and c2—as shown in Figure 1. The external load is applied to the lower
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Figure 1. Two-degree-of-freedom-system.

mass m1. The response of the system is described by equations (1) and (2) with
the system matrices

M=$m1

0
0
m2% , K=$k1 + k2

−k2

−k2

k2 % , C=$c1 + c2

−c2

−c2

c2 % .

The energy characteristics (4), (5) are

F= 1
2c1=v1=2 + 1

2c2=v2 − v1=2, T= 1
4m1=v1=2 + 1

4m2=v2=2,

U= 1
4k1=u1=2 + 1

4k2=u2 − u1=2, (22)

where uj and vj =−ivuj are the complex amplitudes of the mass displacement and
velocity. Some results of computation are presented in Figures 2–8. They
correspond to the system with the following parameters (22): k1 = k2 = k;
m1 =4m2; the loss factor of the first contour m1 − c1 − k1 is equal to
h1 = c1/m1v1 =0·2 and the loss factor of the second contour m2 − c2 − k2 is equal
to h2 = c2/m2v2 =0·05 where v2

1 = k1/m1 and v2
2 = k2/m2 are the partial

eigenfrequencies of the two uncoupled contours.
Two cases of the external load are considered separately—force loading and

kinematic excitation. In the first case, the driving force remains constant at all
frequencies: f1(v)= f=const. Kinematic excitation means in general that the
amplitude of displacement, velocity or acceleration remain constant independently
of the driven system. In our case, the velocity amplitude of the first mass is kept
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Figure 2. Velocity amplitude of the driven mass of a 2DOF-system under force excitation.

up constant at all frequencies: v1(v)= v0 = const; never mind what force is needed
for this.

3.1.1. Force excitation

The velocity response =v1= of the first mass normalized with =f=/m1v1 is presented
in Figure 2 as a function of frequency. One can see two resonances at the system
eigenfrequencies v/v1 =0·87 and 2·3, and one anti-resonance in between at the
frequency v/v1 =2·0. This is the partial eigenfrequency of the second contour
which acts here as a dynamic silencer in relation to the first mass. Figures 3–6
depict the energy characteristics of the 2DOF-system vibrating under the force
excitation. The kinetic, potential and dissipated energies as well as their
combinations L and E are normalized with the quantity =f=2/4k. The solid line
curves in Figures 3–6 show the exact values of the characteristics (22) while the
dotted lines correspond to the estimates computed by using equations (12)–(16)
or (17)–(21). As expected and clearly seen in Figure 3, there is a full coincidence
between the exact values and the values computed by equation (12) for the
time-average Lagrange function and the energy dissipated in the system during one
period. Figure 4 shows the total energy of the system as a function of frequency.
It is apparent from Figure 4(a) that the estimate through the input impedance,
according to equation (13), is practically indistinguishable from the exact values
in all the frequency range except the vicinity of the anti-resonance frequency where
it even becomes negative. Alternatively, the estimate using the input mobility
according to equation (18) gives erroneous results at the resonance frequencies
(negative values), though at the anti-resonance and all other frequencies (see
Figure 4(b)) the results coincide with the exact ones.
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Figure 3. Time-average Lagrange function (a) and the energy dissipated during one period (b) in
a 2DOF-system excited by a force.

Similar behavior is demonstrated by the kinetic energy (Figure 5(a)), the
potential energy (Figure 5(b)), and the loss factor (Figure 6). The estimates
(14)–(16) via the input impedance are very good at all frequencies with the
exception of a small frequency band around the anti-resonance frequency. The
estimates (19)–(21) via the input mobility (not shown in Figures 5 and 6), on the
contrary, fail at the resonance frequencies and give good approximation in the rest
of the frequency range (as in Figure 4(b)). It can be concluded from Figures 3–6
that, for a system under force loading, the estimates (12)–(16) via the input
impedance give much better results than the estimates (17)–(21) which use the
input mobility.

3.1.2. Kinematic excitation

In this case, the velocity amplitude of the first mass is assumed to be constant
v0 at all frequencies. The amplitude of the velocity response of the second mass
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Figure 4. The time-average total energy of the forced vibrating 2DOF-system as a function of
frequency: exact values (solid lines) and the values estimated (dotted lines) via the input impedance
(a) and the input mobility (b).

normalized with =v0= is shown in Figure 7. The only peak is seen here at the
frequency v/v1 =2 which corresponds to the anti-resonance, as was established
in the previous section (compare with Figure 2), while the natural frequencies of
the system, v/v1 =0·87 and 2·3, that is to say resonance frequencies, do not
display in the response. This feature is intrinsic to a kinematic loading.
Nevertheless, the energy estimates under study hold their properties in this case
too: the estimate via the input impedance fails only at the anti-resonance frequency
and the estimate through the input mobility gives good results everywhere but at
the natural (resonance) frequencies. This is clearly seen in Figure 8. Comparing
Figures 4 and 8 that show the frequency dependence of total energy of the
2DOF-system in these two cases, one comes to the following conclusion.

When a mechanical system is subject to a force excitation in a broad frequency
band, its response is determined by the resonances and most of the vibrational
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energy is concentrated near the resonance frequencies. Consequently, the energy
estimates via the input impedance give the best results, since the erroneous values
of these estimates near the anti-resonance frequencies contribute only a little to
the overall response level.

On the other hand, when the system is subject to a broad band kinematic
excitation, the total energy of its response is located mostly near the anti-resonance
frequencies, in which case the energy estimates based on the use of the input
mobility give the best results. In the next section it is shown that this conclusion
also holds for continuous mechanical systems with hysteretic damping.

3.2.    

Consider a thin straight uniform rod of a finite length l executing longitudinal
vibrations under the action of an external harmonic load applied to the left end

Figure 5. The time-average kinetic (a) and potential (b) energy of the forced vibrating
2DOF-system: exact values (solid lines) and the values estimated via the input impedance (dotted
lines).
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Figure 6. The loss factor of the forced vibrating 2DOF-system as a function of frequency: exact
values (solid lines) and the values estimated via the input impedance (dots).

x=0—see Figure 9(a). It is assumed that the vibrations are governed by the
classical equation of Bernoulli [10]: EcSu0(x)+ rSv2u(x)=0 with a complex
Young’s modulus

Ec =E0(1− ih0), (23)

where h0 is the material loss factor independent of frequency, r is the material
density and S is the cross-sectional area. The right end of the rod is free of tension.
The boundary condition at the left end depends on the type of the load.

Figure 7. Velocity response of the undriven mass of the 2DOF-system under kinematic excitation.
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Figure 8. The time-average total energy of the kinematically excited 2DOF-system as a function
of frequency: exact values (solid lines) and the values estimated (dots) via the input impedance (a)
and the input mobility (b).

The problem has a simple analytical solution [10]. In the case when the rod’s
left end is loaded by a force of a constant complex amplitude f, the velocity
response is

v(j)=
if cos [V(1− j)]

z0 sin V
, (24)

where z0 = (EcrS2)1/2 is the so-called characteristic impedance, j= x/l and

V=V0/z1− ih0, V0 =vlzr/E0, (25)

is the dimensionless frequency.
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Figure 9. A rod driven at the left end (a) and a simply supported rectangular plate driven at one
point.

When the rod is excited kinematically, i.e., when the left end vibrates at all
frequencies with a constant velocity amplitude v0, the rod response is

v(j)= v0
cos [V(1− j)]

cos V
. (26)

Figure 10. Velocity response of the left rod end.
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Figure 11. The time-average total energy (a) and loss factor (b) of the forced vibrating rod: exact
values (solid lines) and estimates via the input impedance (dots); the material loss factor h0 is equal
to 0·05 (a) and 0·01 (b).

The input impedance of the left end is equal to

z(v)=
f

v(0)
=−iz0

sin V

cos V
, (27)

and the input mobility is the inverse of this expression. The exact values of the
energy characteristics (4)–(7), calculated by integration over the rod length, as well
as their estimates (12)–(21), can also be easily expressed in the analytical form but
are omitted for brevity. Instead, in Figures 10–14 some of them are presented
graphically.

The results for the force excited rod are presented in Figures 10–12. The velocity
response of the driving point normalized with the quantity =f/z0= is shown in
Figure 10, where the horizontal axis corresponds to the dimensionless longitudinal
wavenumber (25) proportional to frequency, and the loss factor (23) of the rod
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material is equal to h0 =0·05. The response consists of a number of peaks
(resonances) at the natural frequencies V0 = pm of the free–free rod which are
separated by the anti-resonances with minimum response amplitudes. The
frequencies of the anti-resonances are equal to the natural frequencies of the rod
with the fixed left end: V0 = pn+ p/2. It should be noted that a similar form is
obtained for the response function at the right end or other cross-section of the
forced excited rod. The energy characteristics for this case of loading are presented
in Figures 11 and 12. The total energy (Figure 11(a)), as well as the kinetic and
potential energy (Figure 12), have the same maxima and minima as the velocity
response in Figure 10. Again, the estimates (12)–(16) using the input impedance
(dotted lines in Figures 11 and 12) provide excellent agreement with the exact
values at all frequencies, with the exception of small frequency bands around the
anti-resonance frequencies. The accuracy of the estimates for the kinetic and

Figure 12. The time-average kinetic (a) and potential (b) energy of the forced vibrating rod: exact
values (solid lines) and estimates via the input impedance (dots); h0 =0·05.
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Figure 13. The velocity response of the right end of the rod kinematically excited at the left end;
h0 =0·05.

potential energy is of the same order as that for the total energy—see equations
(14) and (15). As for the estimates (17)–(21), their behavior is just similar to that
demonstrated in Figure 4(b). Note that the energy characteristics in Figures 11 and
12 are normalized with the quantity = f 2/4(EcS/l)=.

Figure 14. The time-average total energy of the kinematically excited rod: exact values (solid lines)
and estimates via the input mobility (dotted lines); h0 =0·05.
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Figure 15. The loss factor of the kinematically excited rod: exact values (solid lines) and estimates
via the input mobility (dots); the material loss factor is equal to 0·05.

When the rod is excited kinematically, the resonances and anti-resonances
change their roles. As seen in Figure 13, the velocity response (26) of the right rod’s
end normalized with =v0=, has maxima just at the anti-resonance frequencies
V0 = pn+ p/2 and minima at the resonance frequencies V0 = pm. Therefore, for
obtaining the best estimation of the total energy and other characteristics, one has
to use the input mobility. Figure 14 confirms this: the exact values (solid lines) and
the estimates via the input mobility (dots) are almost identical in all the frequency
range. The same high accuracy is obtained for the estimates via mobility for the
kinetic and potential energies. However, for the loss factor of the rod, the estimates
are much worse (Figure 15), especially near the frequencies V0 = pm, where the
total energy is minimum valued. It will be shown in section 4 that when the loss
factor and other energy characteristics are estimated in frequency bands, the
estimation accuracy improves considerably.

3.3.     

As the last example, consider a thin rectangular plate flexurally vibrating under
the action of an external point load (Figure 9(b)). It is assumed that the vibrational
motion of the plate is governed by the classical equation of Germain–Lagrange
[10] with a complex Young’s modulus (23), and that all four sides of the plate are
simply supported. For this structure, an analytical solution based on the expansion
into the normal modes is available in the literature (e.g., in reference [11]). The
necessary mathematics is outlined in Appendix B, while in this section the
graphical material is presented. Again, two extreme cases of loading, force and
velocity excitation, are considered separately. The results presented in Figures 16
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and 17 correspond to the plate of dimensions b/a=1·3, to the load applied to the
point (0·2a, 0·3b), and to the material loss factor equal to h0 =0·05.

As can be seen from Figures 16 and 17, the main features of the estimates
(12)–(21) for the energy characteristics of the plate vibration manifest themselves
just in the same manner as they do in the more simple structures studied above.
Figure 16 is obtained for the case of force excitation. The velocity response as well
as the total energy have maxima at the natural frequencies (resonances), which are
separated by the minima at the anti-resonance frequencies. The estimate (13) via
the input impedance (dotted line in Figure 16(b)) works well at low frequencies
and at the resonance frequencies but fails at the anti-resonances. In the case of
velocity excitation, when the point (0·2a, 0·3b) has the prescribed velocity
amplitude v0, the response of the plate has maxima at the anti-resonance

Figure 16. The velocity response at the driving point (a) and time-average total energy (b) of the
forced vibrating plate: exact values (solid lines) and estimates via the input impedance (dots). The
velocity is normalized with =f/(Brh)1/2=, the total energy is normalized with the quantity =f=2/(Babp4),
B=E0I/a4.
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Figure 17. The velocity response at point (0·5a, 0·5b) normalized with =v0= (a) and the time-average
total energy (b) of the plate kinematically excited at point (0·2a, 0·3b): exact values (solid lines) and
estimates via the input mobility (dots). The total energy is normalized with M=v0=2p4/16, where
M= rhab is the plate mass.

frequencies (Figure 17) and does not notice the resonance frequencies. The
estimate (18) via the input mobility for the total energy (as well as for other energy
characteristics not shown here) is the best in this case of loading, as clearly seen
in Figure 17(b) (dotted line).

It follows from these results that estimation via the input impedance and
mobility of the energy characteristics in a vibrating plate, as a two-dimensional
structure, is just similar to estimation in one-dimensional structures and in
mechanical systems with lumped parameters, at least at low and middle
frequencies.
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4. ANALYSIS OF THE RESULTS

4.1.        

The examples of computer simulation of section 3 clearly show that the
estimates via the input impedance work well at all frequencies but the frequencies
of anti-resonance, and the estimates via the input mobility give a good
approximation to the energy characteristics in a wide frequency range with the
exception of the frequencies of resonance. This is the main feature of the proposed
estimates, which exhibits itself in discrete mechanical systems as well as in
continuous elastic structures. The explanation of the feature is the following.

First of all, it is worth recalling that if a linear mechanical system is driven by
an external force at one point, the maximum response (resonance) of the system
occurs at the natural frequencies of the system with the driving point free of
tension, and the minimum response (anti-resonance) takes place at the natural
frequencies of the system with the fixed driving point. For systems without
damping, the resonance and anti-resonance frequencies interchange (between any
two resonance frequencies there is an anti-resonance frequency, and between any
two anti-resonances there is a resonance), so that the slope of the frequency
response function never changes its sign in all the frequency range, except the
resonance frequencies where the function jumps from −ia to +ia. This result,
known in the theory of electric circuits as Foster’s theorem, is also valid for
mechanical systems [11,12] and explains why the vibrational energy characteristics
relate to the geometric property of the frequency response function as stated by
the estimates under consideration.

It is also known [11] that near an isolated resonance, i.e., in a vicinity of a
natural frequency, a mechanical system can be modelled by a simple resonance
contour (Figure 18(a)) with m, k, c being the corresponding natural mode mass,

Figure 18. Simplified models of a linear structure which is forced vibrating near an isolated
resonance (a) or anti-resonance (b).
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Figure 19. Imaginary part of the input mobility (susceptance) of the resonance contour; the loss
factor is equal to h=0 (curve 1), h=0·05 (2), h=0·2 (3).

stiffness, and damping parameters, with an external load being applied to the mass.
The input impedance of this contour is equal to

z(v)= c+i(k/v−vm)=mv0[h+i(1/e− e)], (28)

where v0 is the resonance frequency, h is the loss factor, and e=v/v0 is the
dimensionless frequency. It is obvious that the imaginary part of the input
impedance, the reactance, does not depend on the amount of damping c, and its
value for a damped system is just the same as for the corresponding lossless system.
For this reason, the energy estimate (13) via the input impedance, which is
mathematically correct for lossless systems, will also be correct for damped
systems. This explains the good approximation of the estimate (13) near
resonances.

At the same time, the input mobility of the contour in Figure 18(a), i.e., the
inverse of the input impedance (28), y(v)=1/z(v), depends a great deal on the
damping, its imaginary part being equal to

Im [y(v)]mv0 =−(1/e− e)/[h2 + (1/e− e)2].

The graph of this function is plotted in Figure 19 for various values of the contour
loss factor. It is seen from the figure that, at some distance from the natural
frequency e=1, the imaginary part of the input mobility of a damped contour
does not differ from that of the lossless contour, but at the nearest proximity to
the natural frequency the difference becomes drastic, the slope of the curve even
changing its sign. This is an explanation of why the estimates via the input mobility
do not work at the resonance frequencies and give negative values for the energy.
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This also explains the fact that the width of the frequency band where these
estimates fail is proportional to the amount of damping in the system.

In the vicinity of an anti-resonance frequency, the mechanical system under
study can be modelled by a parallel contour (Figure 18(b)) with an external load
being applied to the spring–dashpot connection. A reader can easily verify that,
in this case, the imaginary part of the input mobility of the damped parallel
contour is almost independent of the amount of damping (and does not differ from
that of the contour without damping), while the imaginary part of the input
impedance is strongly dependent on damping (the corresponding graph is very
similar to that in Figure 19). This explains why the estimates via the input mobility
work well at the anti-resonance frequencies and the estimates via the input
impedance do not.

The conclusion is that the proposed estimates for the energy characteristics can
fail only near some natural frequencies of the system, where the imaginary part
of the input mobility or impedance is damping-controlled. At all other frequencies,
including the low frequency range (from zero to the first natural frequency) and
the regions between natural frequencies, the vibration response of the system is
controlled by its reactive elements, and the estimates, both via the input impedance
and mobility, give the approximations of high accuracy.

4.2.    

As is clear from the analysis presented above, the estimates under study can give
good results only if the resonances and anti-resonances of the system are isolated
from each other, i.e., if the distance along the frequency axis between adjacent

Figure 20. The total energy of the flexurally vibrating plate at high frequencies: 1—exact,
2—estimates via the input impedance, 3—estimate via the input mobility. The normalizing factor
is as in Figure 16.
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resonance and anti-resonance is greater than the width of the resonance peak. If
that distance is comparable or smaller, both estimates via the impedance and
mobility become invalid because of the destructive influence on each other. An
example is presented in Figure 20. It corresponds to the high frequency flexural
vibrations of the plate studied in section 3. In the frequency range of Figure 20,
the density of the natural frequencies of the plate is such that, for the given
material loss factor h0 =0·05, the difference between adjacent resonances is an
order of magnitude smaller than the resonance band width, and the overlapping
resonances and anti-resonances produce a smooth frequency response, as shown
by line 1 in Figure 20. Lines 2 and 3 in this figure represent the corresponding
estimates through the input impedance and mobility. It is clearly seen that both
the estimates do not work under such conditions. The range of validity for the
proposed estimates, thus, comprises the frequencies v which satisfy the inequality
Dvq h0v, where h0 is the material loss factor, and Dv is the mean distance
between the adjacent resonances and anti-resonances which can be expressed
through the density of the natural frequencies of the particular structure. For real
structures of steel or aluminum having the loss factor h0 =0·01–0·05, the range
of validity comprises low and middle frequencies.

4.3.    

Among the energy characteristics investigated, the loss factor (7) has the lowest
accuracy when estimated via the input impedance (16) or the input mobility
(21)—see, e.g., Figures 6, 11 and 15. In this section it is shown that the accuracy
can be remarkably improved if the estimation is made in a frequency band.

Consider, for example, the kinematically excited rod studied in section 3.2. The
loss factor in a frequency band can be computed by summarizing the total and
dissipated energy of all the harmonics in the band and using the general definition
(7). Figures 21 and 22 present some results of the computation in 1/4- 1/2- and
1-octave bands. Ten equally spaced harmonics were taken into account in each
band. Negative values of the total energy in the vicinity of resonance frequencies
were replaced by zeros. Comparison of Figures 15 and 21 shows that the broader
the frequency band, the better the estimate of the loss factor at low and middle
frequencies: V0 Q 10. The explanation of the increase in accuracy with the width
of a frequency band is rather simple: the error in the estimated loss factor is caused
by the error in the total energy estimation near certain natural frequencies where
the energy itself has minimum values, the relative contribution of these values to
the general level of the energy in the frequency band diminishes as the band width
increases.

When the material loss factor decreases, the frequency range of validity becomes
broader and the estimation accuracy gets better—see Figure 22 which corresponds
to h0 =0·01.

4.4.     

Accuracy of the proposed estimates is strongly dependent on the type of external
excitation: for forced vibrating structures, the best approximation is provided by
the estimates via the input impedance, and if a structure is kinematically excited
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Figure 21. The loss factor of the kinematically excited rod in 1/4-octave (a), 1/2-octave (b), and
1-octave bands (c): solid lines correspond to exact values, stars designate estimates via the input
mobility; the material loss factor is equal to 0·05.

the best are the estimates via the input mobility. In each case, before using the
particular estimates, one has to verify the type of loading.

One way to do it practically is to measure the input impedance zs (v) of the
non-operating source at the point of its attachment to the structure and compare
it with the input impedance z(v) of the structure. It should be emphasized that
the comparison is necessary at the natural frequencies of the structure since these
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are the only frequencies at which the estimates may fail. If the source impedance
is much greater than the structure impedance, =zs (v)=�=z(v)=, the source provides
kinematic excitation of the structure. Such a situation occurs, for example, when
a light-weighted structure is excited by a ceramic disk. Conversely, if the source
impedance is much smaller than that of the structure, =zs (v)=�=z(v)=, the force
excitation is realized. An example is an electrodynamic shaker driving a massive
structure. If the input impedances of the source and structure are of the same order

Figure 22. As Figure 21 for the material loss factor 0·01.
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Figure 23. A rod excited by a source with an internal structure.

of magnitude, the general recommendation is to consider the coupled vibrations
of the source–structure system.

As an example, consider the same rod as in section 3.2, which is excited this
time by a source with a finite internal impedance. A schematic of the source is
shown in Figure 23 (it represents a simplified model of a shaker). The internal force
f0 acts on the moving part of the shaker which is rigidly connected to the driven
structure (rod). The amplitude f0 is assumed to be independent of frequency.

The impedance of the rod z(v) is given by equation (27) and the impedance of
the source is (see equation (28)):

zs (v)= z0s [h+i(v0/v−v/v0)], (29)

where z0s =(mk)1/2 is the characteristic impedance of the source, v0 = (k/m)1/2 is
the natural frequency, and h= c/z0s is the loss factor at the natural frequency v0.

The relation between the impedances of the source and structure is fully
characterized by the impedance ratio in dB,

IR=20 lg =z(v)/zs (v)=, (30)

or, on average, by the ratio of the characteristic impedances

b= z0/z0s . (31)

When b and IR are much greater than unity, the source is much more compliant
than the rod and force excitation takes place. Figure 24 corresponds to b=100
and to the source eigenfrequency Vd = p. In this case, the rod impedance exceeds
the source impedance by more than 20 dB at all the natural frequencies of rod
(Figure 24(a)). It was directly verified that the driving force f is close to f0 in all
the frequency range (deviations are less than 6%); maximum response amplitudes
take place at the resonance frequencies V0 = pn, and minimum response
amplitudes occur at the anti-resonance frequencies V0 = pn+ p/2. Consequently,
the estimates via the input impedance give good results, as seen in Figure 24(b).

Figure 25 corresponds to the same source eigenfrequency and to the ratio (31)
equal to b=0·1. In this case, the source is stiffer than the structure and all the
anti-resonance frequencies V0 = p/2, 3p/2 and 5p/2 are excited: i.e., kinematic
loading takes place. However, in the frequency band V0 =1–5 the impedances are
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of the same order (Figure 25(a)) and therefore the resonance frequency V0 = p is
also well excited. As a result, none of the two proposed estimates can provide a
good approximation in all the frequency range: the estimate via the input
impedance perfectly describes the resonance peak but fails at the anti-resonance
frequencies, as is seen in Figure 25(b), while the estimate via the input mobility,
conversely, describes well the peaks at the anti-resonance frequencies but gives
erroneous results near the resonance V0 = p (not shown in Figure 25(b)).

Here, one has a mixed case when the same source is of different types at various
frequencies. To improve the situation, the internal structure of the source must
be combined with the rod to form a complex structure with the force load f0 (see
Figure 23) to which one can apply the estimates via the input impedance and
obtain necessary characteristics of this complex structure. This procedure, as well
as the subsequent procedure of distinguishing between the energies of the source

Figure 24. Impedance ratio (30) versus frequency for b=100 (a) and the total energy estimate
via the input impedance (dots) together with its exact values (solid lines) for the rod in Figure 23
(b). The internal eigenfrequency of the source is equal to V0 = p.
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Figure 25. As Figure 24 for b=0·1.

and structure under study (rod), require a knowledge of a linear model of the
source similar to that in Figure 23. Models for some sources used in vibration
studies can be found in the literature, e.g., in reference [13], but for most
mechanical sources of vibrations, machines in particular, adequate modelling is
still a problem—see, e.g., references [14,15].

One more interesting observation: the proposed energy estimates normalized
with the exact values do not depend on the type of the source. Figure 26 shows
the frequency dependence of the energy estimate via the input impedance for the
rod in Figure 23 normalized with the exact values of the energy. It was directly
verified that the curve is invariant with the ratio (31): i.e., it does not depend on
the impedance or other source characteristics, being a function of the rod
parameters only. Figure 26 confirms once more that the estimate via the input
impedance gives a large relative error only in narrow bands near the
anti-resonance frequencies. However, the practical significance of the error is
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Figure 26. Estimate via the input impedance for the total energy of the rod normalized with the
exact values.

different for different external loading: for excitation by a velocity source the error
is principal as in Figure 25(b), and it is negligible for the force loading as in
Figure 24(b).

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

Several equations have been proposed in the present paper which allow one to
estimate all the time-average vibration energy characteristics of a linear mechanical
system driven at one point, by using only the data measured at the driving point.
Computer simulation examples show that, for commonly used structures, these
equations provide reliable estimates in the range of low and middle frequencies.
They represent the most economic technique for estimating the energy
characteristics of a structure since there is no need to measure or compute the
vibrational response over the structure; even a structure model does not need to
be known.

However, at the present stage, the proposed estimates have two serious
drawbacks. First, the frequency range of validity is not as large as required, e.g.,
for SEA applications. Second, the estimates are now divided into two groups, one
of which, based on using the input impedance, works best when the structure
vibrates under force loading, while another group, based on using the input
mobility, gives the best approximation for kinematically excited structures. So, a
preliminary assessment of the type of external loading is required to choose
between the two groups of the estimates before starting the estimation itself.

Meanwhile, some properties (such as this: when the first group fails the second
group works best, and vice versa) indicate that there should exist combined
estimates which accumulate the advantages of both groups, i.e., work equally well
at resonances and anti-resonances. Such combined estimates would widen the
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frequency range of validity and would be applicable to any type of external loading.
Search for these estimates is one of the problems to be solved.

Practical implementation of the proposed estimates is obviously based on
measurement of the input impedance or mobility and taking its derivative with
respect to frequency. Since differentiation is an ill-posed operation very sensitive to
the measurement errors, development of an appropriate impedance head and
adequate differentiation technique for noisy data is another problem to focus on in
the future.
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APPENDIX A: DERIVATION OF EQUATIONS (13) AND (18)

Equation (13), which relates the time-average vibration energy of a linear
mechanical system to the derivative of its input impedance with respect to
frequency, is not entirely new. A similar equation is known in the theory of electric
circuits as the theorem about a reactive twopole [12]: for a twopole consisting of
linear reactive elements, the reactance is proportional to the difference between the
energy of the magnetic field and the energy of the electric field (compare with
equation (12)), and the derivative of the reactance with respect to frequency is
proportional to the sum of these energies, i.e., to the total electro-magnetic energy
of the circuit. A similar result is also known in the theory of acoustic surface waves
(see, e.g., reference [16]): the total energy per unit area in the Rayleigh wave in
a semi-infinite anisotropic solid medium can be expressed in terms of the
displacement amplitude and the derivative of the impedance of the boundary
surface of the halfspace. In reference [17], this result is extended to compound
waveguides consisting of two or several interacting uniform subsystems (e.g., a
cylindrical shell with a fluid): energy of each subsystem is proportional to the
derivative of the subsystem impedance defined on the interaction surfaces.

Among the results cited, the closest to equation (13) is the result of the electric
circuit theory. In principle, by using the electro-mechanical analogy [11], the
theorem about a reactive twopole could be expanded to lossless mechanical nDOF
systems. However, the proof of the theorem about twopoles is based upon
Kirchhoff’s equations and some other results of the electric circuit theory which
are not used in the theory of mechanical vibrations.

Therefore below, for mechanical nDOF systems, equation (13) as well as
equation (18), which has no analogs in the literature, are derived by the direct
method suggested in reference [7] which uses only the concepts of mechanics and
the theory of matrices.

We start the derivation from the following statement: for an arbitrary linear
nDOF-system, if one knows the full impedance n× n-matrix Z and the full
velocity response n-vector v in equation (1), then the time-average total energy of
the system is equal to

E=−1
4[v

(n)]*
1X(n)

1v
v(n), (A1)

where X(n) = Im Z(n). The upper index n is introduced here for the velocity vector,
impedance matrix, and reactance matrix to emphasize their dimensions. The
validity of equation (A1) is immediately established by substitution into it of
equation (2). It is not assumed from the very beginning that there is no damping
in the system. Equation (A1) is evidently valid for any nDOF-system, lossless
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or damped. Equation (A1) holds for all possible external forcing, including the
case we are interested in, namely, the case when the system is driven only at the
first DOF: f1 = f; f2 = f3 = · · ·= fn =0.

The next step is to reduce by one the dimension of the sum in equation (A1)
by using the condition that the nth component of the force vector is equal to zero:

fn = s
n

j=1

Z(n)
nj vj =0.

Expressing from this equation the velocity component vn through the rest of the
velocity components and substituting it into equations (1) and (A1) leads to the
equations

f(n−1) =Z(n−1)v(n−1), (A2)

E=−
1
4

s
n−1

j,k=1

vjA(n−1)
jk vk =−

1
4

[vn−1)]*A(n−1)v(n−1), (A3)

where Z(n−1) is the input impedance (n−1)× (n−1)-matrix of the system defined
with respect to the first (n−1) degrees of freedom. Its elements are expressed via
the elements of the full impedance matrix Z(n) as

Z(n−1)
jk =Z(n)

jk −
Z(n)

jn Z(n)
nk

Z(n)
nn

. (A4)

Elements of (n−1)× (n−1)-matrix A(n−1) in equation (A3) are also expressed
through the elements of the full matrices Z(n) and 1X(n)/1v as

A(n−1)
jk =

1X(n)
jk

1v
−

Z(n)
jn

Z(n)
nn

1X(n)
nk

1v
−

1X(n)
jn

1v

Z(n)
nk

Z(n)
nn

+
Z(n)

jn Z(n)
nk

=Z(n)
nn =2

1X(n)
nn

1v
. (A5)

The key point of the derivation is to find out under what conditions equation (A3)
for the total energy relates to the input impedance matrix (A2) exactly as equation
(A1) relates to the full impedance matrix (1), or, in other words, when element
(A5) is equal to the derivative of the imaginary part of element (A4) with respect
to frequency:

A(n−1)
jn =

1

1v
[Im Z(n−1)

jk ]. (A6)

Detailed analysis shows that equation (A6) is valid if and only if the elements of
the full impedance matrix (1) are pure imaginary, that is to say, if the
nDOF-system under study is lossless: H=C= 0. In that case, the total energy of
the system E can be expressed through the derivative of the input impedance
matrix of order (n−1):

E=−1
4[v

(n−1)]*
1X(n−1)

1v
v(n−1). (A7)
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Thus, for lossless nDOF-systems, it is possible to reduce by one the number of
the velocity responses vj (or degrees of freedom) involved in computing the total
energy of the system.

Starting from equations (A2) and (A7), which have dimension (n−1), and
excluding the velocity component vn−1 from the condition fn−1 =0, one can in a
similar manner further reduce the dimension of equations (A2) and (A7) by one
and obtain the equations

f(n−2) =Z(n−2)v(n−2), E=−1
4[v

(n−2)]*
1X(n−2)

1v
v(n−2). (A8, A9)

Here the (n−2)-vectors f(n−2) and v(n−2) are composed of the first (n−2)
components of the full force and velocity response vectors f(n) and v(n), Z(n−2) is the
(n−2)× (n−2)-matrix of the input impedances of the system with elements

Z(n−2)
jk =Z(n−1)

jk −
Z(n−1)

j,n−1 Z(n−1)
n−1,k

Z(n−1)
n−1,n−1

,

and X(n−2) is the imaginary part of the matrix Z(n−2). Again, this procedure of
reducing dimension is possible only for lossless systems with Z(n−2) = iX(n−2).

Continuing the process, one can, by induction, exclude the velocity components
of all DOFs free of external forcing and obtain equations of type (A8) and (A9)
for any dimension k: 1E kE n. In the limiting case of k=1, one comes to the
required result (13):

f1 =Z(1)v1, E=−1
4=v1=2

1X(1)

1v
, (A10)

where Z(1) = z(v) is the scalar input impedance at the first DOF of the system,
and v1 = v.

Equation (18), which relates the total energy to the input mobility
y(v)=1/z(v), can easily be obtained by taking into account the equality
[y(v)]2 =−=y(v)=2 (the system is lossless and the mobility is pure imaginary) and
starting from equation (A10):

E=−1
4=f1=2 Im $1y(v)

1v % . (A11)

APPENDIX B: FORCED VIBRATING SIMPLY SUPPORTED
RECTANGULAR PLATE

In this appendix, a solution for a flexurally vibrating plate is presented which
is used in section 3.3 for plotting the graphs of Figures 16 and 17.

A thin rectangular uniform plate performs flexural vibrations under the action
of a point load (Figure 9(b)). The thickness, width, and length of the plate are h,
a, and b. Young’s modulus of the material is complex—see equation (23). An
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external force of complex amplitude f is applied to point (x0, y0). The lateral
displacement w(x, y) of the plate satisfies the classical equation [10]

EcID2w(x, y)− rhv2w(x, y)= fd(x− x0)d(y− y0) (B1)

and the boundary conditions

w(0, y)=w(a, y)=w(x, 0)=w(x, b),

12w
1x2 + n

12w
1y2 =0=x=0,a ,

12w
1y2 + n

12w
1x2 =0=y=0,b . (B2)

Natural frequencies and the corresponding normal modes, which satisfy the
homogeneous equation (B1) and conditions (B2), are

vmn =$0pm
a 1

2

+0pn
b 1

2

%XE0I
rh

, wmn (x, y)=
2

zab
sin

pmx
a

sin
pny
b

,

(B3, B4)

where m, n are natural numbers, the normal modes (B4) being orthogonal:

g
a

0 g
b

0

wmn (x, y)wpq (x, y) dx dy= dmpdnq . (B5)

The solution of the forced vibration problem is sought in the form of an
expansion in the normal modes:

w(x, y)= s
a

m=1

s
a

n=1

gmnwmn (x, y). (B6)

Substituting equation (B6) into equation (B1) and using equations (B3)–(B5) leads
to the following equation for the expansion coefficients:

gmn =
fa4

E0I
wmn (x0, y0)

Dmn
, Dmn =U4

mn −U4 − ihU4
mn . (B7, B8)

Here U= kfa is the dimensionless flexural wavenumber proportional to the square
root of frequency (k4

f = rhv2/E0I) and Umn = p(m2 + n2/a2)1/2 is the value of U at
the natural frequency (B3), a= b/a.

The exact values of the energy characteristics (4)–(7) are computed by using the
solution (B6) with a finite number of the terms. For example, the kinetic and
potential energies are respectively

T= 1
4rhv2 g

a

0 g
b

0

=w(x, y)=2 dx dy=
=f=2a4U4

4E0I
s
M

m=1

s
N

n=1

w2
mn (x, y)
=Dmn =2

, (B9)
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U= 1
4E0I g

a

o g
b

0 6=Dw=2 +2(1− n)$b 12w
1x 1yb−Re012w

1x2

12w
1y21%7 dx dy

=
=f=2a4

4E0I
s
M

m=1

s
N

n=1

U4
mnw2

mn (x0, y0)
=Dmn =2

. (B10)

The input mobility of the plate is

y(v)=−
iva4

E0I
s
M

m=1

s
N

n=1

w2
mn (x0, y0)

Dmn
, (B11)

and the input impedance is calculated as the inverse of this expression.
The solution for the kinematic excitation (when at the driving point the velocity

amplitude v0 is prescribed) can be obtained from the solution (B6)–(B10) by
replacing the force amplitude f by the quantity v0/y(v).

The expansion coefficients (B7) as well as the terms in the series (B10) and (B11)
decay very rapidly with m and n (as m−4 and n−4) and for the kinetic energy (B9)
the decay is even more rapid—as m−8 and n−8. All the series (B6)–(B11) thus have
very good convergence and, in computing the characteristics of the flexural vibration
field, it is sufficient to limit the number of the normal modes involved by 100:
M=N=10.

APPENDIX C: LIST OF SYMBOLS

a, b plate edge lengths
C, c, cj viscous damping matrix and coefficients
E time-average total energy
Ec , E0 complex and real Young’s modulus
F, F complex power flow
f, f, fj external force vector and components
H matrix of hysteretic damping
i imaginary unit
K, k, kj static stiffness matrix and coefficients
L Lagrange function
l rod length
M, mj mass matrix and coefficients
M, m, N, n natural numbers
T, U time-average kinetic and potential energy
u(x) rod displacement
v, vj , v0 velocity vector and components
w(x, y) plate displacement
X reactance matrix
y(v), z(v) input mobility and impedance
Z impedance matrix
a plate aspect ratio b/a
d(·) Dirac delta function
dmn Kronecker’s symbol
F time-average dissipated power
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h, h0 structure and material loss factor
n Poisson’s ratio
U dimensionless flexural wavenumber
r material density
v circular frequency
V, V0 complex and real dimensionless longitudinal wavenumber


