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The nature of the response of compact and flexible bodies subject to low velocity
impact is studied. The key parameters which govern the response for such impacts
are identified and their effects on impact response are examined through numerical
simulations. It is shown that three non-dimensional parameters are sufficient to
completely govern the low velocity impact response of such structures. By
knowing the impact conditions the nature of the response as well as the maximum
impact force can be predicted without running a simulation or conducting an
experiment. It is also shown that the impact response of different structures with
arbitrary boundary conditions can be scaled in a similar way. It is anticipated that
the results will be useful in designing for impact loading, in providing guidelines
for choosing appropriate simple models and in scaling experimental results
between different structures.
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1. INTRODUCTION

Impact is a fairly complex event which has been studied extensively. From a
materials point of view, research has been concentrated on the effects of the large
forces generated during impact on material behavior and damage which in turn
affects the load carrying capacity of the structure. For metals, damage involves
plastic deformation and wear in the contact zone [1]. For fiber reinforced
composite materials, damage is in the form of fiber failure, matrix cracking and
delamination [2]. From a dynamic analysis point of view, the interest has been
focussed on the response of the system after impact and ways to control it. In both
areas, an accurate prediction of the impact forces and structural deflections is
essential.

The character of impact between flexible bodies has long been known to differ
from that of impact between compact bodies [3]. Impact models for these systems
have traditionally used Hertzian type contact laws as an input to the dynamic
analysis [4]. In cases where the local damage is significant, elastic–plastic contact
laws have been shown to yield more realistic results [5]. Alternative impact models
such as spring–dashpot and the momentum balance methods utilize the coefficient
of restitution as an input to the dynamic analysis to characterize the local energy
loss due to impact [6–8]. It has been shown that both models are essentially similar
to the elastic–plastic contact law provided that an adequate coefficient of
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restitution is used [9, 10]. The effect of flexibility is in reducing the severity of
impact at the contact zone. This is due to the fact that part of the impact energy
is transferred to the flexible body in the form of structural vibrations.

Since a rigorous solution of impact problems is generally quite complex,
approximate methods which omit one or more basic characteristics of the impact
phenomenon are invariably employed [11]. For example, in many impact
situations involving flexible bodies, it is desirable to use computationally efficient
models since the use of the impact models mentioned above can be
computationally extensive depending on the nature of impact response [12].
Furthermore, a simplified model may produce substantially incorrect results
though for certian cases it may be adequate [13]. Therefore, the type of impact
response must be known a priori without running a full simulation in order to
choose an adequate impact model. In addition, predicting the response correctly
is also very useful in designing experimental set-ups and planning the experimental
studies dealing with impact of flexible bodies.

Depending on the characteristics of the impacting bodies, the impact event may
be localized in nature with no structural response, or global: i.e., although the
impact forces are local the response is mostly structural. It is of interest to identify
key parameters which affect the response and consequently be able to characterize
the type of impact response based on these parameters. There have been some
traditional rule of thumb approaches regarding some extreme cases. For example,
it has been known that a ‘‘heavy’’ impactor may yield a quasi-static impact [11].
Swanson [14] gave a more precise account for the limits of the quasi-static
approximation in terms of the ratio of impactor mass to a lumped equivalent of
the structural mass. Recently Yigit and Christoforou [15] proposed a method to
characterize impact of beams through normalization of the governing equations.
It was shown that a single non-dimensional parameter completely governs the
initial response, and can be used to predict whether the response is locally or
globally dominated in nature. This work was based on the initial response,
however (i.e., before the waves generated by impact are reflected back from the
boundaries), and the results are of limited use and valid only when the size effects
can be neglected. In a more recent study on impact of plates [16], it was shown
that another parameter called relative plate stiffness also plays an important role
in determining the nature of impact response and accounts for the size effects.
Limited experimental data were shown to confirm these findings in the case of
composite plates [17]. The current paper extends the findings of references [16] and
[17] to beams and presents a unified methodology for characterizing the nature of
impact response of compact bodies as well as beams and plates with different
support conditions and material systems. It is shown that three non-dimensional
parameters are sufficient to govern completely the low velocity impact response
of such structures. By knowing the impact conditions the nature of response as
well as the maximum impact force can be predicted without running a simulation
or conducting an experiment. Thus, the results may be useful in designing for
impact loading, in providing guidelines for choosing appropriate simple models
and scaling experimental results between different structures.
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The results of this study are limited to low velocity impacts where the rate effects
and perforation are not considered. Furthermore, the effects of various structural
damages, such as global plastic deformation, delaminations and matrix cracking
are beyond the scope of this paper.

2. IMPACT OF COMPACT BODIES

In impact of compact bodies the vibrations of both the impactor and the target
are negligible, and the deformations are confined in the vicinity of the contact
region. Furthermore, for low velocity impacts the elastic wave motion is ignored
and a static contact law (e.g., Hertzian contact) is used in a quasi-static type
analysis [1]. If permanent deformation is present an elastic–plastic contact law
should be used [5].

A representative example of impact of compact bodies is the impact of a rigid
sphere with a half-space. In this case the motion of the impactor is described by

miẅi =−F(t) (1)

where mi and wi are the mass and the displacement of the impactor, respectively,
and F is the impact force given as

F(t)=6Fc

0
if Fc e 0
if Fc Q 0 7, (2)

in which Fc is obtained from an appropriate contact law.
The initial conditions of the impact problem are

wi (0)=0, ẇi (0)=V0, (3)

where V0 is the initial impact velocity.
The contact law used here was developed in reference [5] and accounts for

permanent deformation. For completeness, a brief description follows.
phase I, elastic loading,

Fc (a)=Kha
3/2, 0E aE ay ; (4)

phase II, elastic–plastic loading,

Fc(a)=Ky (a− ay )+Kha
3/2
y , ay E aE am ; (5)

phase III, elastic unloading and reloading,

Fc (a)=Kh (a3/2 − a3/2
m + a3/2

y )+Ky (am − ay ), af E aE am . (6)

Here a is the indentation, and am and af are the maximum and permanent
indentations, respectively. Kh is the Hertzian stiffness, ay is the critical indentation
for ‘‘local yield’’ to occur, and Ky is the linear stiffness of the elastic–plastic loading
phase. The Hertzian stiffness Kh depends on the material properties and the contact
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geometry, and in the case of a spherical body of radius R in contact with a flat
surface is given by Goldsmith [3] as

Kh = 4
3zRE*, (7)

where E* is given by

1
E*

=
1− n2

i

Ei
+

1− n2
t

Et
, (8)

in which ni , Ei and nt , Et are the Poisson ratios and the Young’s moduli of the
impactor and the target, respectively.

The critical indentation ay is given by

ay =0·68S2
yp

2R/E*2, (9)

where for metals Sy is the yield strength of the softer material, and for composites
Sy =2Su , with Su being the shear strength of the fibers. Ky is the linear stiffness
given as

Ky =1·5Khzay. (10)

In impact of compact bodies it is of primary interest to characterize the energy
loss during contact. The coefficient of restitution, e, which is defined as the ratio
of relative velocities at the end and the beginning of contact has traditionally been
used for characterizing the energy loss as well as an input parameter to determine
the post-impact response [11]. It is clear that the use of the elastic–plastic contact
law facilitates a consistent account for the energy loss during contact. Thus, the
coefficient of restitution can be obtained as a function of all relevant impact
parameters [5]. Figure 1 shows the variation of e with the normalized impact
velocity, b, given as

b=V0/vay , (11)

Figure 1. Variation of coefficient of restitution with normalized impact velocity.
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where v is the contact frequency given as

v2 =Kha
1/2
y /mi . (12)

It was also shown in reference [5] that for this type of impact, b alone characterizes
the impact response: i.e., the coefficient of restitution and the impact response can
be determined for various impact situations with this single parameter. In other
words, Figure 1 covers all possible impact situations such as different material
pairs and geometries. Thus, for impact models such as the momentum balance
method [6, 8], where the coefficient of restitution is used as an input parameter,
Figure 1 is of great value [10].

3. IMPACT OF FLEXIBLE BODIES

The impact of flexible bodies has long been known to differ from that of
compact bodies [3]. The nature of impact response depends on the impactor as
well as the target characteristics. In general, the impact of flexible bodies is
characterized by relatively short impact durations, the possibility of multiple
collisions and significant energy transfer into vibrations. The impact of a compact
spherical impactor with flexible plates and beams are considered as representative
examples for the impact of flexible bodies. In these cases in addition to the motion
of the impactor, the motion of the target has to be considered.

The governing equations for a specially orthotropic plate subject to lateral
loading including transverse shear deformation are given as

D11
12cx

1x2 +D66
12cx

1y2 + (D12 +D66)
12cy

1x 1y
− kA550cx +

1w
1x1=

rh3

12
12cx

1t2 , (13)

(D12 +D66)
12cx

1x 1y
+D66

12cy

1x2 +D22
12cy

1y2 − kA440cy +
1w
1y1=

rh3

12
12cy

1t2 , (14)

kA5501cx

1x
+

12w
1x21+ kA4401cy

1y
+

12w
1y21+ p(x, y, t)= rh

12w
1t2 , (15)

where Dij and Aij are the bending and shear stiffnesses defined as usual, h is the
plate thickness, r is the material density, w is the transverse deflection, cx and cy

are the shear rotations, p is the lateral load per unit area, k is the Mindlin shear
correction factor, x and y are the space variables, and t is the time.

The governing equations for a specially orthotropic beam subject to lateral
loading including transverse shear deformation are given as

bD11
12c

1x2 − kbA550c+
1w
1x1= rI

12c

1t2 , (16)

kbA5501c

1x
+

12w
1x21+ p(x, t)= rA

12w
1t2 , (17)
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where b, A and I are the width, cross-sectional area, and moment of inertia of the
beam, respectively, and p now is the lateral load per unit length. The motion of
the impactor is described by equations (1)–(3).

In the case of impact of flexible bodies, a linearized form of the elastic–plastic
contact law given in the previous section is used,

Fc (a)=Kya, (18)

where a is the local indentation defined as the difference between the displacement
of the impactor and the deflection of the target at the impact point, i.e.,

a(t)=wi (t)−wt (t). (19)

As will be shown later, the use of a linear contact stiffness is useful in the
normalization procedure and in the identification of the key impact parameters.

The equations of motion are discretized by a standard modal analysis procedure
and numerically solved to obtain the response. In order to manage the various
impact parameters and the simulations effectively, however, the governing
equations are normalized by defining the following non-dimensional variables:

x̄= x/a, ȳ= y/b, t=vt,

w̄=w/a*, c�x =(a/a*)cx , c�y =(b/a*)cy , ā= a/a*. (20)

Here v=zKy /mi is the linear contact frequency and a*= v0/v is the maximum
indentation obtained from the half-space solution (i.e., with no structural
response), and a and b are the length and the width of the plate, respectively. Note
that for the beam case, the y dependence disappears and a= l. The normalized
equations of motion and initial conditions are then given in general form as

q̈+[v̄2]q= f, v� i =−F�(t), F�c = ā, (21–23)

q(0)=0, q̇(0)=0, (24)

ā(0)=0, a� (0)=1, (25)

where q is the vector of normalized modal co-ordinates, f is the vector of
normalized modal forces, and [v̄] is the matrix of normalized natural frequencies
with respect to the contact frequency. The normalized impact force F�(t) is given
as

F�(t)=F(t)/miv0v. (26)

4. IDENTIFICATION OF KEY IMPACT PARAMETERS

The approach taken in this paper for identifying the key parameters in impact
is to isolate and examine the physical phenomena involved through asymptotic
cases. There are three basic phenomena which play a role in shaping the impact
response: (i) the local contact behavior, (ii) wave propagation and (iii) the initial
interaction of the impactor and the target dynamics. Impact on a half-space
(compact bodies), quasi-static impact, and the impact on an infinitely large
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structure, respectively, are used to isolate the above mentioned phenomena and
identify the key parameter involved.

The nature of impact response depends on the impactor as well as the target
characteristics. If the impactor mass is very small, and the target is fairly stiff,
impact does not produce significant structural response and can be approximated
by impact on a half-space. In this case the flexibility of the structure is negligible
and the impact response is localized in nature. As mentioned in section 2, the
normalized impact velocity, b alone characterizes the impact response. In general,
the local contact problem is non-linear, and therefore an analytical solution is not
possible. However, a linear contact law, such as the one given in equation (18),
facilitates analytical solution. Furthermore, this linear contact law results in a
normalized impact velocity of unity for all cases. Thus, the impact force can be
obtained from equation (22) by neglecting the structural response as

F�hs (t)= sin t. (27)

Therefore, in general, for a locally dominated impact response the maximum
normalized impact force will be close to unity.

On the other hand, if the impactor is quite heavy, its inertia will dominate and
the response can be approximated by a quasi-static analysis. The quasi-static
approximation involves treating the impact problem as an equivalent static
problem with a static load applied to the impact site. By neglecting the mass of
the structure the system can be thought of as a single-degree-of-freedom system
with the contact stiffness Ky and the static stiffness Kst of the structure in series.
The normalized impact force is then given as

F�qs (t)=zl/(l+1) sin (zl/(l+1)t). (28)

As can be seen the maximum normalized impact force as well as the impact
duration is a function of only the relative stiffness of the structure, l, which is
defined as

l=Kst /Ky . (29)

In cases where the size of the target is large such that the flexural waves due
to impact are not reflected back from the boundaries before the contact is over,
the structural deflection can be approximated by using infinite beam or plate
solutions [18, 19].

For an infinite plate, the velocity at the impact point is related to the contact
force as [19]

ẇt (t)=
1

8zrhD*
Fc (t) dt, (30)

where D* is the effective plate stiffness [20] given as

D*= 1
2 (D12 +2D66 +zD11D22). (31)
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Substitution of equation (30) into the equations of motion and normalization yield

a� +2zpVna� +V2
n ā=0, (32)

where

Vn =1, zp = 1
16zmiKy /rhD*. (33, 34)

For an infinite beam, the velocity at the impact point is related to the contact
force by [18]

ẇt (t)=
1

z2p

1
rh 0rh

D111
1/4

g
t

0

Fc(j)
zt− j

dj. (35)

Substitution of equation (35) into the equations of motion and normalization
yield

a� +2zbVn g
t

0

a� (j)
zt− j

dj+V2
n ā=0, (36)

where

Vn =1, zb =
1

2z2pX mi

rb2h $miKy

rhD11%
1/4

. (37, 38)

Since equations (32) and (36) are obtained by assuming infinite sizes, for a finite
target, they are valid only for the initial impact response until the waves are
reflected back from the boundaries. Clearly, in this case, the impact response is
governed by a single parameter, termed as ‘‘loss factor’’, z, and as the nature of
equations (32) and (36) suggests, this parameter can be used to characterize the
energy ‘‘lost’’ by the impactor to the structure during the contact duration, and
as shown it is evaluated differently for beams and plates. It is interesting to note
that in beams, the resulting equation is a somewhat complicated integro-differen-
tial equation whereas in plates the resulting equation is the well known second
order oscillator with z playing the role of the damping ratio. Therefore, the loss
factor would affect the initial impact response in the same way the damping ratio
affects the response of a second order oscillator.

From the foregoing discussion three non-dimensional parameters can be
identified as key parameters in determining the nature of impact response. The
characteristic impact number, b, was shown to govern the local contact behavior.
The relative stiffness, l, of the structure is related to the structural contribution
and completely governs the response for a quasi-static impact while the loss factor,
z, governs the initial response. Therefore, it is expected that in general, the type
of impact response is related to the values of these three key parameters. For the
purpose of this paper, the dependence on b is eliminated by the use of a linearized
contact law and by normalizing the impact response with respect to the half-space
solution. This should not be a problem since only low velocity impacts without
damage effects are under consideration here.
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Figure 2. Normalized maximum impact force for structures as a function of the loss factor and
relative stiffness: ——, plates; ----, beams.

5. NUMERICAL EXPERIMENTS

From the preceding analysis and discussion, it is clear that the effect of two
non-dimensional parameters, namely, z and l, on the impact response should be
investigated. This has been done by solving the full dynamic equations of beams
and plates with sufficient number of modes for various (z, l) pairs. The maximum
normalized impact force, F�, obtained from each simulation is plotted as a function
of these two parameters in Figure 2. The solid lines represent plate responses
whereas the dashed lines are for beams. For clarity, only two beam cases are
shown. Although the curves for beams and plates with the same relative stiffness
follow a similar trend, they only coincide when the response is either local or fully
global (quasi-static). This is because, in these extreme cases both responses are
governed by the same equations (equations 27, 28). However, in the transition
zone, the dynamics of the two type of structures are inherently different and can
not be matched. This can also be seen by comparing infinite structure solutions
for plates and beams (see equations 32 and 36).

A normalized force close to unity signifies a locally dominated response (e.g.,
single impacts). For a flexible structure, in the range labelled as ‘‘local’’, the impact
durations are relatively short. During this time the structural displacements do not
change significantly. Therefore, the effect of local contact behavior can be included
through the use of an appropriate coefficient of restitution and the momentum
balance method can be used with a very good accuracy to predict post impact
behavior [10]. Furthermore, the impact is completed before the waves are reflected
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back from the boundaries. Therefore, the size effects do not play a major role and
the maximum normalized impact force does not depend on l.

A small F� signifies a more complicated globally dominated response. As z

increases the fraction of the energy transferred to the target increases. For large
values of z the impactor essentially remains in contact with the target throughout
the impact event. Moreover, for globally dominated cases, not only z but also the
relative structure stiffness affect the maximum force. As the relative stiffness of the
structure increases, the maximum impact force approaches that of the half-space.
Also, as z increases, each curve in Figure 2 approaches an asymptote which can
be obtained from the quasi-static approximation. In this region, the maximum
normalized impact force is a function of the relative structure stiffness alone. A
quasi-static impact model which is a single-degree-of-freedom lumped model can
be used to predict the impact response.

For any case on the infinite structure solution, the maximum normalized impact
force is a function of z alone and the response is global in nature, (i.e., the energy
transferred to the structure is not negligible), except for small values of z where
the response can be considered as local. For large values of z the local contact
behavior is not dominant and the response is not sensitive to the details of the
contact law used.

In general, for a given relative stiffness, as z increases the maximum normalized
impact force decreases. However, the functional relationship between F� and z

changes at a certain value of z, exhibiting a local minimum and a local maximum.
This is an indication of a transition from locally dominated to globally dominated
behavior. This transitory behavior can be explained as follows. For locally
dominated cases the maximum impact force is the maximum force due to a single
impact. As z increases, structural effects become more significant and multiple
impacts occur. In these cases the maximum impact force may be due to subsequent
impacts rather than the initial impact. As the relative stiffness of the structure
increases, the response is governed by the global stiffness.

A well known similar transitory behavior is the transition from laminar to
turbulent flow in fluid mechanics where in most cases the Reynolds number is used
to classify the type of flow. In the case of flow inside rough pipes, for example,
the plots of friction factor versus Reynolds number for different roughness ratios
(Moody diagram, see e.g., Figures 6.12 and 6.13 in reference [21]) closely resemble
Figure 2. Although there is no evidence at this point to suggest that the underlying
physics of the two phenomena are similar, an analogy may improve the
understanding of the transitory behavior observed in impact dynamics. The
normalized maximum impact force, loss factor and relative stiffness may be
considered analogous to friction factor, Reynolds number and relative roughness,
respectively. Local response with no size effects is similar to laminar flow (small
Reynolds number with no roughness effects); global response with no size effects
(only z governing the response) is similar to turbulent flow in smooth pipes, where
the friction factor is a function of Reynolds number alone; fully global response
(only l governing the response) is similar to complete turbulence in rough pipes,
where the friction factor is a function of the relative roughness alone. In the
transition zone, as in the case of flow in rough pipes, the response is a function
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of both parameters. Furthermore, the impact force history in locally dominated
and globally dominated cases closely resemble the velocity profiles observed in
laminar and turbulent flows, respectively.

Therefore, as in the case of fluid mechanics, the information provided in Figure
2 could be very useful to analysts and designers in parametric type studies, as well
as in designing experiments to study the impact response of structures. This figure
can be used to estimate the maximum impact force and the type of response for
a given z and l without running any simulation or experiment. Also, determining
the type of response is important since the damage mechanisms involved are
sometimes closely related to the type of response. In addition, knowing the type
of response prior to a simulation, will help in choosing an adequate impact model.

6. SCALING OF IMPACT RESPONSE

At this point, it is important to reiterate the power and usefulness of
characterizing impact response by the two non-dimensional key parameters
proposed. Although the curves in Figure 2 were obtained for simply supported
beams and square plates of certain material systems, each point on these curves
may represent many different impact cases with different material and support
conditions. Seemingly different impact situations may be similar in non-dimen-
sional form and need not be duplicated. The difficulty of covering all possible
impact situations in an experimental program is well known. Thus, the reduction
of the various impact parameters into two non-dimensional parameters not only
has provided physical insight into the impact problem but also has provided a
valuable tool for generalizing and correlating experimental results through the use
of minimum data and model tests.

From the foregoing discussion, it is clear that plates or beams having the same
relative stiffness and loss factor will result in the same normalized response.
Therefore, by using the information provided here, scaling impact response among
the same type of structures is straightforward. In order to demonstrate how Figure
2 can be used for scaling impact response among different structures, full
simulations for a plate and a beam with the same relative stiffness (l=0·425), and
loss factor (z=11·3) were carried out. As would be predicted from Figure 2 both
responses of the plate and the beam shown in Figures 3 and 4 approach the quasi
static or fully global type response. As can be seen, both impact force and
deflection scale well between the two structures. Though the overall behavior is
similar, naturally the frequency content is different. As z increases, the accuracy
of the quasi-static approximation will improve and the results asymptotically
approach each other. Practically, however, in most real tests, the high frequency
components will be attenuated, and the results will be more similar for scaled
problems. It should be noted that a quasi-static approximation (equation (28)) for
both the plate and the beam will be identical and can be used instead of the results
of the full simulation.

Figures 5 and 6 show a locally dominated case with z=0·038. Again, both the
beam and the plate result in very similar impact force responses. Note however
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Figure 3. Scaling of impact force for a fully global impact (l=0·425, z=11·3); key as Figure 2.

that the deflections are only similar during the initial response. Therefore, while
the impact force can be scaled between the two structures for these type of impacts,
the deflections can not be scaled. This is to be expected, since the similitude is only

Figure 4. Scaling of central deflection for a fully global impact (l=0·425, z=11·3); key as
Figure 2.
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Figure 5. Scaling of impact force for a locally dominated impact (z=0·038); key as Figure 2.

valid during the initial response, before the waves are reflected back from the
boundaries. Clearly, after the impact, the dynamics of the beam and the plate are
different.

Figure 6. Scaling of central deflection for a locally dominated impact (z=0·038); key as Figure 2.
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Figure 7. Scaling of impact force for an impact in the transition zone (l=0·425, z=1·198); key
as Figure 2.

Figure 8. Scaling of central deflection for an impact in the transition zone (l=0·425, z=1·198);
key as Figure 2.
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In the transition region, though the type of impact response can be predicted well,
the actual impact force and deflection may not be scaled with the same
accuracy as can be seen in Figures 7 and 8 (l=0·425, z=1·198). The maximum
impact force for a specific structure in this region can still be predicted from Figure
2 to a reasonable accuracy. However, the actual impact responses can not be scaled
among different structures. Therefore, if the objective is to obtain impact response
for a structure in the transition region one has to carry out a full simulation with
sufficient number of modes.

7. CONCLUSIONS

The dynamic behavior of structures subject to low velocity transverse impact
has been investigated. The effects of impact parameters as well as the flexibility
of the target have been examined through numerical simulations. It has been
shown that the normalized impact force and the type of impact response can be
predicted through the functional relationship between the normalized maximum
impact force and two non-dimensional parameters termed as ‘‘loss factor’’ and
‘‘relative stiffness’’. It is expected that the results of this study will be of great value
in choosing adequate impact and computational models for the dynamic analysis
of structures subject to transverse impacts as well as in scaling experimental results
through the use of minimum data and model tests. Specifically, simple models can
be suggested for cases where the response is governed by either the loss factor
alone, or the relative stiffness alone. For the cases in the transition region,
however, a full simulation or test may be needed. It is also anticipated that, in this
region, the structural damage may be more severe since both local and global
structural effects contribute to the energy transfer to the structure. Thus, the ideas
proposed here may also be used to predict the type of dominant impact damage
mode.
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