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Experimental data of the acoustic impedance of multiply perforated plates
exposed to fully developed grazing gas flow in a duct, both with and without a
backing layer of porous material, are presented. Both circular perforations and
‘‘louvres’’ are included in the investigation. Empirical formulae are presented for
the impedance of plates with no porous backing layer, in terms of dimensionless
parameters, and an heuristic method of including the effects of the porous medium
is described. It is observed that the porous backing layer has a large effect on the
impedance of plates with circular perforations, and little or no effect on louvred
perforates.
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1. INTRODUCTION

The use of perforated plates and tubes is common in applications such as vehicle
exhaust silencers, attenuators in air moving ducts and duct linings in jet engines.
The perforates are usually exposed to the mean gas flow, and it is known that this
has an effect on the acoustic performance of the silencer. In exhaust silencers,
perforates are used in both reactive and dissipative elements. In dissipative
silencers, which are of particular interest here, the perforate commonly takes the
form of a concentric tube which is surrounded by a porous sound absorbing
material contained in a box, and prevents loss of or damage to the material while
still being permeable to sound. In most cases the perforate is subjected to a grazing
gas flow. An understanding of the acoustic behaviour of perforates under such
conditions is necessary for the formulation of accurate methods of dissipative
silencer modelling. Investigations of the effects of grazing flow have so far been
confined to perforates in the absence of porous media. Although in dissipative
silencers it is common for a porous material to be situated adjacent to one side
of the perforate, the influence that this perforate has on the overall acoustic
characteristics of a silencer has received very little attention in the literature.

†A shorter version of this paper was presented at the Inter-Noise 96 conference in Liverpool,
30 July–2 August 1996.

0022–460X/98/440619+18 $30.00/0 7 1998 Academic Press



.   . 620

Indeed it is common in most dissipative silencer models to ignore the acoustic
influence of the perforate altogether. It will be reported in this paper that,
especially when both a grazing flow and a porous material are present, the acoustic
impedance of perforates cannot be ignored in silencer design, and that this applies
even to perforates with a high percentage open area.

The mechanisms that lie behind the acoustic behaviour of perforates with
grazing gas flow are still not fully understood. It is well established that the
presence of mean flow (grazing or normal) increases the resistance and decreases
the mass end correction as compared to the zero flow situation (see for example
the experimental data of reference [1]). The mechanisms behind this observation
have been the subject of considerable debate. In an effort to investigate the physical
reasons behind the change in impedance, flow visualization techniques and
hot-film and laser anenometry have been used by a number of authors in order
to observe the flow patterns close to the orifice (see for example references [2, 3]).
Investigations have been concentrated on describing how sound energy is
dissipated in the near field of the orifice and theoretical models have been
developed, although in order to make the models tractable the problem has
generally been oversimplified. For example, Howe [4]—in a theoretical
investigation of a two-dimensional slot—proposed a model based upon vortex
shedding from the upstream lip of the orifice but omitted the effects of mean shear
in the slot, which may be of importance at higher flow speeds. Walker and
Charwat [5] included the effect of the free shear layer by formulating a
‘‘hinged-lid’’ model to account for the influx and efflux of the free shear layer at
the downstream edge of the orifice. Their model is strongly dependent upon where
the approaching boundary layer separates, and the influence of vorticity transport
was suppressed in the model. Various other theoretical models have been devised,
generally based upon the behaviour of the free shear layer (see, for example,
references [6–8]), but only qualitative agreement with experimental data has been
reported in all cases.

The difficulties associated with theoretically modelling the acoustic behaviour
of perforates subjected to grazing flow have resulted in a reliance upon
experimental data. Measurement of the impedance of perforated plates has
generally been restricted to single orifices, and it has been assumed that the results
could be extrapolated to multi-orifice perforated plates via the percentage open
area (or porosity) of the perforate. Ronneberger [1] measured the acoustic
impedance of a single orifice under grazing flow and related the acoustic
impedance to the reciprocal Strouhal number based upon the mean flow velocity
Uo , orifice radius a and the radian frequency v. In these experiments, however,
the boundary layer was very thin; similar measurements under a thin boundary
layer were also performed by Narayana Rao and Munjal [9]. It became apparent
in later work (see reference [10]) that the boundary layer thickness affects the
impedance of the orifice; this is particularly important in the study of exhaust
silencers where, in most cases, fully developed turbulent flow is present.
Consequently a method for quantifying the boundary layer thickness became
necessary. Goldman and Panton [10] measured the boundary layer thickness close
to an orifice and showed that in their particular study a ‘‘young’’ turbulent
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boundary layer was present. They proposed using the friction velocity u* to
characterize the boundary layer. The friction velocity is a measure of the properties
of the inner boundary layer (see reference [11]), and was used by Goldman and
Panton to replace the free stream velocity in the Strouhal number. Goldman and
Chung [12] confirmed that the orifice impedance was affected only by the inner
region of the boundary layer and concluded that the use of the friction velocity
in the Strouhal number was correct. Kooi and Sarin [13], who also measured the
friction velocity, re-defined the parameters used for the resistance and mass end
correction. They wrote the resistance as a function of the inverse Strouhal number
u*/fd (where f is frequency and d the orifice diameter) and the mass end correction
as a function of u*/ft (where t is the orifice depth). By carrying out tests on a range
of different plates with a young turbulent boundary layer, Kooi and Sarin found
that the resistance could also be written as a function of t/d and they were able
to derive simple algebraic expressions for both the resistance and mass end
correction. Cummings [14], who also investigated perforates with a range of t/d
values but for fully developed turbulent pipe flow, found similar expressions
though with slightly different forms. He found systematic differences between his
results and those of Kooi and Sarin [13], and attributed this to the differing
boundary layer conditions between his tests and those of Kooi and Sarin.
Cummings concluded that boundary layer turbulence is an important parameter
in the measurement of perforate impedance and it is necessary to measure
perforates under conditions similar to those in which they are to be used. The
experimental method used by Cummings [14] appears to be best suited to the
present investigation; it must be assumed that any interaction between holes (see
references [15, 16]) will be properly accounted for in the use of this method.

A notable deficiency in the literature on perforates subjected to grazing flow is
that, to the best of the authors’ knowledge, the effect of a porous material backing
the perforate has not been measured. The only published work to be found
involving combinations of perforates and porous media is concerned with reacting
absorbers with no mean flow, for example the investigations of Ingard and Bolt
[17] and Davern [18]. This is surprising considering the widespread use of porous
materials in exhaust silencers.

The aim of the present investigation was to examine, experimentally, the effect
of grazing gas flow on the impedance of a perforated plate backed by a porous
medium for a range of parameters. To establish the additional influence of the
porous material upon the impedance of the perforate, measurements are reported
both with and without its presence. In addition to accounting for the extra effect
of the porous medium, these measurements form the basis of a new semi-empirical
model accounting for the influence of the porous material in determining the
impedance of the perforate. Two types of plate perforation, both in common use
in vehicle exhaust silencers, were studied in these tests: plain, circular holes and
louvred holes. These cover the great majority of practical situations.

2. EXPERIMENTAL METHOD

The experimental arrangement used by Cummings [14] is appropriate here
for measurements both with and without absorbing material. It is shown in
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Figure 1. A square section pipe was used to carry the airflow from a variable speed
air supply to the test section of the duct. The air supply was silenced by means
of a large dissipative silencer close to its outlet. A square pipe was used in order
to allow small test samples of perforate to be mounted easily into the wall. This

Figure 1. Apparatus for the measurement of the acoustic impedance of a perforate.
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would not cause a significant departure from conditions encountered in a circular
pipe provided the perforate were located away from the very corners of the pipe.
To allow a turbulent boundary layer to develop, the perforate was located
approximately 2·5 m from the outlet of the air supply. A sinusoidal signal, fed via
a power amplifier to a loudspeaker mounted near to the air supply outlet, was used
to generate the superimposed sound field. The perforate, once it had been mounted
flush with the inner surface of the pipe, was backed by a small cavity. Depending
upon the tests performed, the cavity was either filled with porous material or left
empty.

The impedance measurements carried out on the perforates were based upon
the two-microphone method used by both Kooi and Sarin [13] and Cummings [14].
This required sound pressure data to be taken from one microphone located in
the base of the cavity and one situated in the test duct upstream of, but close to,
the perforate, located flush with the wall. The two microphones together with the
measuring amplifiers were phase matched to within 0·5° over the frequency range
of interest, approximately from 70 Hz to 1 kHz. The ‘‘perforate impedance’’ or
‘‘orifice impedance’’ (these terms being used here interchangeably) is defined as the
sound pressure differential across the perforate, divided by the particle velocity in
an orifice. To determine the acoustic impedance of the perforate, measurement of
the ratio of sound pressures between the two microphones was necessary, and this
was performed at discrete frequencies by using an FFT analyser. If the sound
pressure at the microphone in the pipe is denoted p1 and that in the cavity p2, then
the sound pressure ratio p2/p1 can be written in the form

p2/p1 =R eif. (1)

If the cross-sectional areas of the orifice and cavity are, respectively, Ao and Ac (Ao

being the total area of all orifices in the test sample), and if k=v/c (c being the
sound speed), then it may be shown that the impedance of the orifice, zo , when
no porous material is present, is given by

zo = rc(Ao /Ac )[−sin f+i(R cos kL−cos f)]/R sin kL, (2)

where r is the mean fluid density and L is the depth of the cavity. It is convenient
here to write the perforate impedance in the form

zo = ro +ivrl, (3)

where ro is the resistance and l is the effective orifice length, and so

ro =−rcAo sin f/AcR sin kL (4)

and

l=Ao (R cos kL−cos f)/AckR sin kL. (5)

The total orifice end correction (both sides) is found by subtracting the geometrical
orifice length t from the effective length l. If a porous material is present in the
cavity then rc is replaced by za and k by −iG in equations (4) and (5), where za

is the characteristic impedance of the material and G the propagation constant
(equal to ika , ka being the complex wavenumber in the absorbent).



.   . 624

The introduction of mean flow parameters is accommodated here by use of the
friction velocity (see section 1). This can be written in terms of the wall shear stress
tw [19] as u*=ztw /r . It was measured here by use of a Preston tube [20]. The
method involves measuring the skin friction directly by placing a circular
Pitot-static tube along the pipe wall, facing the flow. In calibrating a number of
different Pitot-static tubes, Patel proposed the relationship

x*= y*+2 log10 (1·95y*+4·1), (6)

where x*= log10 (Dpd2
p/4rn2) and y*= log10 (twd2

p/4rn2), for 5·6Q x*Q 7·6. Here,
Dp is the measured difference between the stagnation and static pressures, dp is the
outside diameter of the Pitot-static tube (a Pitot-static tube 3 mm in diameter was
used here) and n is the fluid kinematic viscosity. Equation (6) can be solved to give
tw and hence u* at any position on the wall of the pipe. Wall shear stress data
measured by using the Preston tube method proved to be similar—to within
engineering accuracy—to those predicted from published data of friction factor
and wall shear stress distribution, as in the study of Cummings [14].

3. EXPERIMENTAL RESULTS

As mentioned in section 1, perforates with both circular and louvred holes were
studied here. The circularly perforated samples will be referred to here simply as
‘‘plates’’ and numbered 1 to 3; the louvred perforates are also numbered 1 to 3
and referred to as ‘‘louvres’’. Each perforate was chosen to have a different t/d
ratio. The geometry of a typical louvred hole is shown in Figure 2. The equivalent
hole diameter is that of a circle having the same area as that presented by the
louvred hole to the test duct. The dimensions and porosity (fractional open area)
of each perforate are given in Tables 1 and 2.

3.1.      

Initially, the acoustic impedances of the perforates were measured without a
porous material in the cavity in order both to compare the present results to those
of other authors and to provide the basis for a semi-empirical model accounting
for the presence of a porous material. The experimental data of acoustic
impedance are presented here in the format used by Cummings [14]. This involves
non-dimensionalizing both the resistance and the mass end correction, such that
the normalized acoustic impedance z is given by

z= zo /rc= ro /rc+ikl= u+ix. (7)

Equation (2) allows u and x to be written as

u=−Ao sin f/AcR sin kL (8)

and

x=Ao (R cos kL−cos f)/AcR sin kL. (9)

The resistance of the orifice, u, has two components: the resistance induced by the
flow, uf , and the resistance attributable to the viscous acoustic boundary layer on
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Figure 2. Geometry of a louvred hole.

T 1

Dimensions of circularly perforated plates

Plate t (mm) d (mm) t/d Porosity

1 1·5 3·1 0·484 0·210
2 1·5 2·8 0·536 0·205
3 1 3·5 0·286 0·272

T 2

Dimensions of louvred plates

Louvre t (mm) dequiv (mm) t/d Porosity

1 1 2·25 0·444 0·04
2 1 2·92 0·342 0·09
3 1 2·73 0·366 0·08
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the solid surface, uvisc , where u= uf + uvisc . Now uvisc =(t/cd)z16pnl [13], and so
the flow induced resistance of the orifice is given by

uf =−Ao sin f/AcR sin kL−(t/cd)z16pnl. (10)

For the total mass end correction d, the orifice length t is subtracted from the
effective orifice length l, to give

d= l− t, (11)

where l= x/k.
The flow induced resistance is non-dimensionalized here in the form ufc/fd and

the mass end correction is expressed as d/d0 (see also reference [14]), where d0 is
the mass end correction without flow. This is approximately equal to 0·85d for an
isolated orifice if d�l, l being the wavelength; in the case of louvred holes, the
reference end correction d0 was put equal to that for a circular hole of the
equivalent diameter, and so this would not be an accurate representation of the
actual end correction. The resistance data are expressed as a function of u*/fd and
the mass end correction as a function of u*/ft.

Measurements of the acoustic impedance of the perforates were carried out for
four different friction velocities: 0·476, 0·986, 1·626 and 2·192 m/s. Measurement
of the mean flow velocity profile in the boundary layer indicated that the mean
flow was almost fully developed. The turbulent velocity components were not
measured, but the length and width of the pipe leading from the air supply to the
test section were such that the turbulence structure would be fairly representative
of that encountered in typical exhaust silencer applications.

To correlate the experimental data, the curve fitting method of Cummings [14]
was tried. This involves collapsing the data obtained for individual perforates into
a separate pair of algebraic expressions for the resistance and the mass end
correction. Cummings used this method exclusively for flat plates, and it will be
shown later that the method cannot be applied to louvres. The experimental results
for plates 1 to 3 are shown in Figures 3(a–d) and 4(a, b); also shown are curves
from the algebraic data fitting formulae obtained by using the method of
Cummings [14]. For the three flat perforates examined here the resistance curve
is given by

ufc
fd

=626·160t
d1

−0·169

−207 u*
fd

−4·055, (12)

and the mass end correction by

d/d0 =1, u*/ftE 0·18d/t,

d/d0 = (1+0·6t/d) exp{−(u*/ft−0·18d/t)/(1·8+ t/d)}−0·6t/d,

u*/ftq 0·18d/t. (13)

The experimental results for the louvres are shown in Figures 4(c, d) and 5(a–d).
Unfortunately each louvre requires a different curve fitting formula because it was
found to be impossible to derive a universal empirical formula that contained both
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Figure 3. Acoustic impedance of plates 1 and 2. +, experiment; ——, present curve fitting
formulae; –––, curve fitting formulae of Cummings [14]. Plate 1: (a) resistance, (b) end correction.
Plate 2: (c) resistance, (d) end correction.

Figure 4. Acoustic impedance of plate 3 and louvre 1. +, experiment; ——, present curve fitting
formulae; –––, curve fitting formulae of Cummings [14]. Plate 3: (a) resistance, (b) end correction.
Louvre 1: (c) resistance, (d) end correction.
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Figure 5. Acoustic impedance of louvres 2 and 3. +, experiment; ——, curve fitting formulae.
Louvre 2: (a) resistance, (b) end correction. Louvre 3: (c) resistance, (d) end correction.

t/d and u*/fd. For the resistance, second order polynomials were employed, having
the form

ufc/fd=A1 +A2(u*/fd)+A3(u*/fd)2, (14)

where A1 · · · A3 are constants given in Table 3.
The mass end correction is given by the expressions

d/d0 =B1 +B4, u*/ftEB2/B3,

d/d0 =B1 exp{B2 −B3u*/ft}+B4, u*/ftqB2/B3, (15)

where B1 · · · B3 are constants given in Table 4.

T 3

Curve fitting constants for the
resistance of the louvres

Louvre A1 A2 A3

1 1·424 1·128 0·303
2 −0·528 3·359 0·202
3 0·670 2·351 0·432
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T 4

Curve fitting constant for the mass end
correction of the louvres

Louvre B1 B2 B3 B4

1 0·7 0·629 0·286 0·2
2 0·9 0·250 0·250 −0·1
3 0·9 0·707 0·400 −0·1

3.2.      

The experimental method described previously for measuring the impedance
without a porous backing material can also be applied to measurements with a
porous medium on the side of the perforate remote from the flow. However, the
normalized acoustic impedance must be re-defined to take account of the porous
material, and accordingly equation (2) is now written in the form

zo = za
Ao

Ac $−sin f+i(R cos kaL−cos f)
R sin kaL %. (16)

The resistance and reactance are then found by taking, respectively, the real and
imaginary parts of equation (16), since za and ka are complex.

It is still possible to non-dimensionalize the resistance and mass end correction
in the same manner as before, but the problem is complicated by the fact that za

and ka are complex and frequency dependent. When the orifice resistance, for
example, was plotted against u*/fd for a given value of u*, it proved to be
impossible to combine data measured for an individual perforate, with differing
values of u*, in a single plot in the manner employed in the previous section.
Instead, the experimental data obtained here with a porous medium were plotted
against frequency for each value of friction velocity. For the purposes of silencer
design, however, it is highly desirable to be able to express the perforate impedance
as a function of flow speed or friction velocity. Accordingly, a semi-empirical
predictive model was developed, combining the formulae for the perforate
impedance in the absence of a porous medium with the predicted bulk acoustic
properties of the absorbent.

This prediction method for the perforate impedance in the presence of a porous
medium is based on the heuristic assumption that the hydrodynamic effects of
grazing flow on the orifice resistance and end correction on the side of the orifice
facing the flow are unaltered by the presence of the porous medium, which has
the principal effect of changing the mass end correction on the side of the orifice
facing the porous material. For a single orifice with no porous backing and no
mean flow present, the normalised mass end correction is given by [21]

x=0·425kd. (17)
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The equivalent mass end correction when a porous material is present is obtained
[17] by substituting the properties of air for the properties of the porous medium,
namely,

xabs =0·425dzaG/rc. (18)

Note that the end correction is now complex, and has a resistive component. The
perforate impedance is given in terms of the empirically-predicted impedance z

from equations (7)–(15) as

zo /rc= z−i0·425kd+0·425dzaG/rc, (19)

where the mass reactance of equation (7) has been replaced by the complex value
from equation (18). Values for the propagation constant and characteristic
impedance of porous materials are well documented; see, for example, the
empirical study by Delany and Bazley [22]. More recently Kirby and Cummings
[23, 24] introduced a semi-empirical model, describing the bulk acoustic properties
of a number of porous media over a wide frequency range and avoiding the
‘‘non-physical’’ predictions which can often occur at low frequencies when the
Delany and Bazley empirical approach is used. The semi-empirical approach to
predicting the bulk acoustic properties is adopted here and, in addition, the three
fibrous porous materials studied in reference [24] are also included in the present
investigation. These are ‘‘A glass’’, ‘‘E glass’’ and basalt wool.

Once values for the bulk acoustic properties have been obtained, equation (19)
can be employed to predict the behaviour of the perforate with a porous backing.

Figure 6. Acoustic impedance of perforates backed by a porous material. +, experiment; ——,
semi-empirical predictions; –––, formulae for no absorbent backing. Plate 1, basalt wool,
u
*

=2·2 m/s: (a) resistance, (b) end correction. Plate 2, E glass, u
*

=2·2 m/s: (c) resistance, (d) end
correction.
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Figure 7. Acoustic impedance of perforates backed by a porous material. +, experiment; ——,
semi-empirical predictions; –––, formulae for no absorbent backing. Plate 3, A glass, u

*
=2·2 m/s:

(a) resistance, (b) end correction. Plate 1, basalt wool, u
*

=1·6 m/s: (c) resistance, (d) end correction.

Figure 8. Acoustic impedance of perforates backed by a porous material. +, experiment; ——,
semi-empirical predictions; –––, formulae for no absorbent backing. Plate 3, A glass, u

*
=1·6 m/s:

(a) resistance, (b) end correction. Plate 2, E glass, u
*

=0·9 m/s: (c) resistance, (d) end correction.
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The accuracy of the semi-empirical predictions can be assessed by comparing them
to measured data. In the case of perforates with a porous backing, we define uf

and d in terms of zo /rc in equation (19) as

uf =Re (zo /rc)− uvisc , d=Im (zorc)/k− t, (20a, b)

with d0 being defined as before, in the absence of a porous medium. Now, both
uf and d include the effects of the porous medium as well as those of flow.

Experimental measurements were performed for both types of perforate and for
the aforementioned three porous materials at three friction velocities: 0·986, 1·626
and 2·192 m/s. In Figures 6–8, experimental data are shown for plates 1 to 3
backed by various materials. (Some of the results are not shown here because of
the large amount of data obtained.) The semi-empirical predictions (equation (19))
and the empirical formulae for the perforates without a porous backing (equations
(12) and (13)) are also shown. The predictions with no absorbent present have been
included in order to show the additional effect of the porous material.

Next, the louvred plates were measured with a porous backing, but no
detectable difference between the results with and without the porous material was
observed. The reasons for this will be discussed in the following section.

4. DISCUSSION OF RESULTS AND CONCLUSIONS

The experimental results obtained for the flat plates without a porous backing
material will be discussed here first since these allow a straightforward comparison
to be made with the data published by Goldman and Chung [12], Kooi and Sarin
[13] and Cummings [14]. It is evident from Figures 3 and 4 that the data obtained
without a porous material present agree qualitatively with other published data
in that the resistances of the flat plates exhibit a linear relationship with u*/fd, and
for the mass end correction, decreasing values are observed as u*/ft increases. A
constant negative value for the mass end correction has been assumed at very high
values of u*/ft in accordance with the assumptions made by Cummings [14]. As
expected, the spread of the resistance data is small; this is principally because the
resistance can be measured with reasonable accuracy. The difficulties in measuring
the mass end correction have been well documented and this is apparent in the
large scatter of data present in Figures 3 and 4.

It can be seen from Figures 3(a–d) and 4(a, b) that the present end correction
and resistance data differ significantly in detail from the empirical formulae of
Cummings [14]. For plates 1, 2 and 3 the resistance measured here is greater than
that predicted by Cummings while the end correction decreases with u*/ft much
less rapidly than is forecast by Cummings’ formula. These discrepancies are greater
than those noted by Cummings [14] between his data and those of Kooi and Sarin
[13]. The reasons for these differences are not clear, but may be associated with
the fact that the orifice length in the Cummings’ experiments was at least twice
that in the present investigation; there may also have been significant differences
between the flow structures in the two sets of experiments. It does seem clear that
neither Kooi and Sarin [13], Cummings [14] nor the authors have obtained
universally applicable formulae for resistance and end correction. The three sets
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of data should, perhaps, each be regarded as self-contained and applicable in
different situations. For example, the Kooi and Sarin data would be applicable
to jet engine inlet silencers, whereas the present data should be used in flow duct
silencers embodying perforates similar to those investigated here.

Since the main objective of the present study was to examine the effects of a
porous medium on the perforate impedance, it was not considered appropriate to
investigate the question of the aforementioned discrepancies further. However,
future efforts to combine the separate sets of data in single correlations—perhaps
involving additional parameters—might prove fruitful.

It is worth noting that orifice interaction effects were negligible in the tests
reported here. Fully perforated plates, those with 50% of the holes blocked and
single orifices were tested but all the experimental data collapsed onto a single
curve. It can therefore be concluded that measuring multi-holed perforates has not
caused the differences in predictions between the present study and that of
Cummings [14], and therefore single orifice data appear to be valid for predicting
the impedance of multi-hole perforates providing one accounts for the area
porosity of the perforate.

The experimental results obtained for the louvres without the presence of a
porous material show qualitatively but not quantitatively the same behaviour as
the flat plates. The most obvious difference is that the resistance curves for the
louvres have a distinctly non-linear shape. A quadratic curve was found to fit the
resistance data well for each louvre. The mass end correction of the louvres does
not show such a pronounced decrease, for increasing values of u*/ft, as that of
the plates. Of course, as stated in section 3.1, d/d0 does not equal 1 when u*/ft=0
because of the way in which the equivalent diameter of a louvred hole is defined.
The reasons for the differing behaviour of both the resistance and the reactance
in the cases of plates and louvres are not entirely clear. Two factors are the
differing orifice geometry and the fact that, in the case of louvres, the orifice is
orientated normal to the grazing flow. These are no doubt partly responsible for
the differing behaviour of louvres and plates, although a detailed knowledge of
the acoustic flow pattern through the louvre orifice would be necessary in order
to pinpoint any physical mechanisms that would explain the differences. Louvres
and plates show a similar degree of scatter in the experimental data, although the
resistance data from louvres exhibit less scattering at lower values of u*/fd. It was
found to be impossible to express the measured data from louvres as a function
of t/d, which is perhaps not surprising given the difference in geometrical shape
between the louvres. Consequently the impedance must be measured
experimentally for each louvre geometry.

Placing a porous material behind a flat perforate can be seen to cause a large
increase in the impedance, which is dependent on the properties of the porous
material. As one would expect, materials with a high flow resistivity—such as E
glass—cause the largest increase in impedance. The resistance data exhibit a degree
of scatter similar to that observed in the absence of a porous medium, but a high
degree of scatter is observed in the mass end correction data and, moreover, data
below 450 Hz were virtually unobtainable. It may also be seen from the plots on
which the frequency is the abscissa that measurements were unobtainable around
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400 and 800 Hz; this problem was probably caused by the presence of a pressure
node in the test duct.

When measurements were carried out with the flat plates backed by
porous materials it was apparent that the results were strongly dependent upon
the density of the material immediately adjacent to the holes. This indicates that
the porous material has only a very localized effect upon the orifice impedance.
The results shown in Figures 6–8 were obtained by using a regular, flat layer of
absorbing material covering the near field of each orifice. Indeed it can be seen
in the resistance data presented here that, especially at low friction velocities,
different trends in the data occur. The reason for this is that slight
inhomogeneity of the material was inevitable, since the porous media were
supplied in bulk form and were packed into the cavity by hand. This localized
effect was particularly obvious when measurements were carried out on louvres
backed by a porous material. The orientation of each louvre orifice prevents the
porous medium lying flush with the end plane of the orifice. Because of this, it
was found that the porous material had no measurable effect upon the acoustic
impedance of the louvres. The localized effect of the absorbent has important
consequences when the data measured here are used to predict the attenuation of
mass-produced silencers. In commercial silencers the porous material is often
randomly packed around the perforate tube, and therefore it can be expected
that only a percentage of the material will lie in the near field of the
perforations, even in the case of plain circular holes. This will inevitably lead to
the formulae presented here over-predicting the impedance obtained in practice.
Quantification of the variation in absorbent packing density would be necessary
in order that a representative average orifice impedance could be found (see
reference [25] for further discussion).

The semi-empirical predictions for the resistance of the flat perforates backed
by porous material shown in Figures 6–8 (solid lines) are in good agreement with
measured data. This is especially true at higher friction velocities where the
resistance is higher and can therefore be measured more accurately. As before,
there is considerable scatter in the measured end correction data. Figures 6–8
indicate that, in most cases, the end correction has been over-predicted. This may
be partly because of limited measurement accuracy and partly because of some
additional mechanism that reduces the effect of the absorbent on the mass end
correction. A significant feature of the predictions is that at low frequencies an
increase in the mass end correction is forecast, in contrast to the falling negative
values measured in the absence of an absorbent. The lack of experimental data
at low frequencies does not, however, allow any conclusions to be drawn
concerning the validity of these predictions at low frequencies. The semi-empirical
prediction scheme does, however, yield good agreement with experimental data for
the resistance and appears to be at least adequate for the mass end correction. It
is a useful method for estimating the additional effect of the porous material on
the behaviour of a ‘‘flat’’ (i.e. non-louvred) perforate, and has the
considerable advantage of only requiring data obtained from perforates without
a porous backing. These can be expressed as a function of friction velocity and,
especially for flat perforates, have been well documented both here and by other
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authors [13, 14]. In addition, any porous material can be included, provided its
propagation constant and characteristic impedance are known.

The principal effect of a porous medium on the impedance of a flat perforate
is to introduce an additional complex component, as compared to plates without
absorbent backing. The magnitude of this increase in impedance is such that, even
for plates with a large percentage open area, the inclusion of perforates in the
modelling of dissipative silencers is necessitated. This is of lesser importance when
louvres are present since the porous material has no measurable effect upon their
acoustic impedance, but they should still be included in design formulations for
both dissipative and reactive silencers.
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