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In this paper an application of the Chebyshev’s criterion to the optimal design
of the damped dynamic vibration absorber is presented. The results are
summarized in ready-to-use computational graphs. The reliability of the proposed
method is demonstrated through a comparison of the numerical results obtained
by different authors.

7 1998 Academic Press

1. INTRODUCTION

Watts [1] in 1883 and Frahm [2] in 1909 reported on the first use of a dynamic
vibration absorber. The range of industrial applications of such device is wide and
includes the minimization of the rolling of ships, the damping of torsional
vibration of internal combustion engines and the smoothing of vibrations in a
barber cutter. The minimization of oscillations of tall buildings by means of
dynamic vibrations absorbers is considered in reference [3].

In particular, (see Figure 1) a secondary mass (the absorber) and a
spring–dashpot system can be effectively designed to reduce the vibrations of the
primary mass. The inertial force exherted on the secondary mass counteracts the
disturbing force on the primary mass. Thus the vibratory motion of such mass is
reduced. The main advantage of adopting a dynamic vibration absorber is the
significant reduction of a primary mass vibration amplitude. The drawbacks are:

the sensitivity to forcing frequency change;
the high stresses in the elastic element connecting the secondary to the primary

mass;
the introduction of two other resonant frequencies in the neighborhood of the

suppressed frequency.
The first mathematical theory on the passive dynamic vibration absorber is
described in a paper by Ormondroyd and Den Hartog [4].

Moreover, in the book authored by Den Hartog [5] a closed form optimal
solution for the system with viscous damping only between the primary and
secondary mass (i.e.; b1 =0) can be found. In the following treatment such a model
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will be referred to as the classic system. Because of its elegance and historical
importance, the design procedure proposed by Den Hartog is reported by the vast
majority of textbooks on mechanical vibrations.

The usual goals pursued in this type of design are the minimization of vibration
amplitudes of both primary and secondary masses and a reduction in sensitivity
to the variation of the forcing frequency. According to Den Hartog [5], the most
favorable response curve of the main mass has the same maximum amplitudes. This
makes the displacement of the main mass less sensitive to variations of the force
frequency.

Randall et al. [6] considered the more realistic situation of viscous damping
between the two masses. They have shown that the optimal parameters for the
damped linear system differ significantly from those obtained for the classic
system. Moreover, reference [6] reports computational graphs for the optimal
design of a linear damped vibration absorber. The graphs were obtained through
numerical minimization of the maximum value of the primary mass vibration
amplitude. However, when the procedure described by Randall et al. is adopted,
the frequency response curve of the main mass may not have two maxima with
the same amplitude. Other criteria of optimality have been introduced. For
example, Soom and M.-S. Lee [7] and Jordanov and Cheshankov [8] applied
non-linear programming techniques to obtain the optimal tuning and damping
parameters for dynamic absorbers with both linear and non-linear springs. The
flexibility of the solving tool allowed them to seek for objective functions other
than the maximum displacement of the primary mass.

The minimization of the maximum displacement of the primary mass is usually
set as an objective by those authors (e.g. [9–12] who prefer an algebraic approach
to the design problem taken into account. The optimality criterion originally
proposed by den Hartog, widely accepted in many industrial applications, will be
maintained in the present derivations. Thus, when there is viscous damping on
both masses, the design problem can be formulated as follows: Given a primary
mass m1, connected to the ground with a spring–dashpot element and subjected
to the force F1 sin vt, compute the values of secondary mass m2, stiffness k2 and

Figure 1. Damped vibration absorber system.
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viscous damping c2 such that the frequency response curve of the main mass has
two equal maximum amplitudes.

Considering the requirements for the shape of such a response curve, it seems
appropriate to solve the present design problem by making use of the mini-max
Chebyshev’s criterion. This will guarantee the uniqueness of the optimal solution
(a question overlooked by many authors) and also provides the scheme for the
analytical settings. The resulting system of non-linear equations will be solved
numerically. However, for the ready use of the method herein presented, design
charts are included at the end of this paper. These allow the user to bypass the
numerical solution of non-linear equations. A comparison of the present method
with those described in references [5–9] demonstrates the reliability of the proposed
approach.

The nomenclature adopted in this paper is based on that of Randall et al. [6]
and is listed in the Appendix.

2. THEORETICAL BASES: CHEBYSHEV’S THEOREM

The optimization tools used in this paper rest upon the following mathematical
properties from the theory of best approximation of functions [13]. Let f(x) be a
continuous function in [a, b] and p(x) an approximant polynomial belonging to
the class Pn of polynomials with degree less or equal to n. According to Chebyshev,
the best uniform approximation is attained when the condition

min
p(x)$Pn

max
aE xE b

=f(x)− p(x)= (1)

is satisfied. The solution to the minimization problem stated by (1) is unique and
can be found considering the following theorem:

Let f(x) be a continuous function in [a, b] and p(x) the best uniform
approximant of degree n. Moreover, let

En = max
aE xE b

=f(x)− p(x)= and e(x)= f(x)− p(x).

There are at least (n+2) points aE x1 Q x2· · ·Q xn+2 E b where e(x) assumes the
values 2En and with alternating signs:

e(xi )=2En , i=1, 2, . . . , n+2;

e(xi )=−e(xi+1), i=1, 2, . . . , n+1. (2a, b)

Hence the best uniform approximant is completely characterized by the property
of equioscillation at (n+2) points. This property is the basis of numerical schemes
for computing the approximant.



. ̀760

3. DEDUCTION OF DESIGN EQUATIONS

For the two d.o.f. dynamic model shown in Figure 1, the normalized maximum
vibration amplitude of the primary mass m1 and of the maximum relative
displacement between secondary and primary masses are, respectively,

a=X1/(F/k1)=z(1− b2/T2)2 +4(z2b/T)2/Z, gr = b2/T2Z, (3, 4)

where

Z2 = [b4/T2 − b2/T2 − b2(1+ m)−4(z1z2b
2/T)+1]2

+4[z1b
3/T2 + z2b

3/T(1+ m)− z2b/T− z1b]2. (5)

As can be observed, the amplitude a depends on the five parameters b, z1, z2,
m and T. Following the same reasoning of Randall et al. [6], it has been assumed
that z1 and m are independent parameters varying, respectively, in the range
0E z1 E 0·4 and 0·1E mE 0·4. Thus, the remaining parameters to be optimized
are z2 and T.

3.1.   

Since z1 =0 a closed form analytical solution is possible. In reference [5] is
proposed the following optimal choice of parameters:

z2opt =z3m/8(1+ m), Topt =1/(1+ m). (6, 7)

3.2.    

Ones goal is to determine the values of z2 and T such that the curve a versus
b has two equal peak values with minimum distance from a straight line. Hence,
to make use of the results of the Chebyshev’s equioscillation theorem, ones goal
will be the optimal approximation of the curve a(b) with a straight line a=L (i.e.,
n=1), where L is initially unknown.

Making use of the conditions required by the above mentioned theorem, the
following system of non-linear algebraic equations can be written:

da/db=b= b1 =0, da/db=b= b2 =0, da/db=b= b3 =0, (8a–c)

−a(b1)+L+D=0, −a(b2)+L−D=0, −a(b3)+L+D=0,

(8d–f)

where D is the maximum deviation of the response curve from the value a=L and
b1, b2 and b3 are the frequency ratios where such a curve attains a maximum or
a minimum. Therefore, system (8) is composed of six equations with seven
unknown variables (i.e., z2, T, L, D, b1, b2 and b3).

In the present case the numerical values of the optimal parameters can be
computed solving the system of non-linear equations for different prescribed
values of z2. The chosen solution set is the one with the minimum value of amax .
It is worth observing that, the optimal solution, when it exists, is unique. The
graphs presented in Figures 2, 3 and 4 summarize the numerical results obtained
from the solution of system of equations (8). After specifying the values of m and
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Figure 2. Optimal values of T for prescribed values of z1 and m.

Figure 3. Optimal values of z2 for prescribed values of z1 and m.

Figure 4. Optimal values of a for prescribed values of z1 and m.
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Figure 5. Maximum values of gr for prescribed values of z1 and m and optimal choice of parameters
T and z2.

z1, the optimal parameters set z2 and T can be easily deduced. The diagram shown
in Figure 4 gives the normalized maximum vibration amplitude of the mass m1.
From the graph of Figure 5, the maximum vibration amplitude of the mass m2

with respect to m1 can be obtained. The knowledge of this value is important. It
allows an estimate of the stress on the spring connecting the two masses. A copy
of the FORTRAN program developed for the purpose of optimal design is
available by contacting the author.

4. NUMERICAL RESULTS

This numerical example is taken from reference [6]. Consider a linear damped
system with the following characteristics m1 =100 kg, z1 =0·10, v1 =100 rad/s.
The design constraints are such that m=0·10. The optimal solution for the classic
system (i.e., z1 =0) is Topt =0·909 and z2opt =0·185 and follows from formulas (6)
and (7), respectively. A comparison of the results obtained with the proposed
method and those from other authors is reported in Table 1. Figures 6, 7 show,

T 1

Comparison of results given by different methods

Parameters z1 m Topt z2opt amax gmax

Den Hartog 0·00 0·10 0·909 0·185 4·59 11·14
Randall† 0·10 0·10 0·861 0·204 2·63 6·48
Soom‡ 0·10 0·10 0·86 0·26 2·72 5·64
Jordanov§ 0·123 0·10 0·868 0·084 2·79 9·13
Thompson6 0·10 0·10 0·862 0·192 2·62 6·55
This investigation 0·10 0·10 0·861 0·202 2·62 6·49

† See Table 1 of reference [6].
‡ See graphs reported in Figures 2, 4 and 5 of reference [7].
§ See graph reported in Figure 9 of reference [8].
6Numerically computed. See also graphs 5, 6 and 7 of reference [9].
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Figure 6. Vibration amplitude a and g versus b for the method of Den Hartog. Key: ——, a;
· · · · , g.

Figure 7. Vibration amplitude a and g versus b for this investigation. Key: ——, a; · · · · , g.

respectively, the vibration amplitudes of the primary and secondary masses for two
different solutions. In particular, Figure 6 refers to the classic system with the
optimal parameters computed according to Den Hartog’s approach. Figure 7
refers to a linearly damped vibration absorber with the computed optimal
parameters.

5. CONCLUSIONS

The design method presented allows the optimal choice of parameters of the
damped dynamic vibration absorber. Observing Figure 4 one concludes that the
case z1 =0 gives an upper bound for the primary mass vibration amplitude.
Moreover, by considering the mathematical bases of the method herein discussed
and the optimality criterion chosen, one can state that, for a given set of
parameters z1 and m, the optimal solution is unique.
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For the case z1 =0 there is a negligible difference between the results given by
this method and those obtained with formulas (6) and (7). Such a difference can
be explained considering that the points P and Q (see Figure 3.13 on p. 100 of
reference [5]), through which all amplitudes curves pass, are not the peak points.
Regarding this matter Den Hartog [5] stated ‘‘. . . practically no error is made by
taking the amplitude of either point as the maximum amplitude of the curve’’.

It was found that the value of z2 has more influence on the relative displacement
g than on displacement a of the primary mass. The comparison with others
methods show good correlation between the results obtained by different authors.
Such results are almost coincident for those authors who preferred the algebraic
approach to the use of non-linear programming codes. The graphs presented in
this paper show the influence of the design parameters on the performances of the
damped dynamic vibration absorber. In particular, the normalized relative
displacement of the secondary mass, not reported in the cited references, is useful
during the design phase.
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APPENDIX: NOMENCLATURE

For the purpose of direct comparison, most of the nomenclature introduced by
Randall et al. [6] is adopted.

b damping coefficient
F1 amplitude of forcing function
k spring constant
m mass
v frequency of forcing function
vi natural frequency of uncoupled system [zki /mi (i=1, 2)]
X frequency response amplitude
Xr frequency response amplitude of relative displacement of mass m2 w.r.t. m1

T v2/v1

b v/v1

zi damping ratio [bi /2zkimi (i=1, 2)]
m mass ratio (m2/m1)
a primary mass displacement amplification X1/(F1/k1)
gr relative displacement amplification Xr /(F1/k1)
amax peak value of a
aopt optimum amplitude a for a fixed set of z1 and m
gr− opt optimum amplitude gr for a fixed set of z1 and m
z2opt and Topt optimum set of design parameters for fixed values of m and z1

Subscripts 1 and 2 refer to the primary and absorber system, respectively.


