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An important class of second-order, ordinary differential equations that play an
important role in the modelling of dynamical systems in the natural and
engineering sciences is the Liénard equation [1–4]. This equation takes the form

ẍ+ of(x,m)ẋ+ g(x,m)=0, (1)

where, in general, f(x,m) and g(x,m) are, respectively, even and odd degree
polynomials; o is a small, positive parameter; and m is a set of n-parameters which
characterize the dynamical system. For the purposes of this paper, we select
g(x)= x. In summary,

0Q o�1, m$Rn, g(x)= x. (2)

The Liénard systems have the property that isolated periodic orbits may exist
in their 2-dim phase space. These special orbits are called limit cycles [1–4] and
play an essential role in both the understanding and analysis of the corresponding
dynamical systems. For a given set of parameter values, two important questions
to answer are: (i) How many limit cycles does the Liénard system, equations (1)
and (2), possess? (ii) Where are these limit cycles located in the 2-dim phase plane,
i.e., their radii? A large number of investigators have considered these questions.
In particular, Burnette and Mickens [5] studied the number of limit cycles for the
generalized Rayleigh–Liénard oscillator

ẍ+ x= o[bx3 + (c1 + c2x2 + c3ẋ2 + c4x4)ẋ], (3)

where (b, c1, c2, c3, c4) are constants. More recently, Giacomini and Neukirch [6]
investigated the properties of Liénard systems by constructing a sequence of
polynomials whose roots provide information on both the number and location
of the limit cycles. It was then shown by Sanjuán [7] that the use of Melnikov
theory [8, 9] gave the same results. The purpose of this paper is to show that the
Melnikov function for the Liénard system of equations (1) and (2) is given exactly
by the well known perturbation procedure called the method of slowly varying
amplitude and phase [1, 10], except for an unessential known factor.

The main concepts underlying Melnikov theory are presented in Sanjuán [7].
For a more detailed discussion see Guckenheimer and Holmes [8], and Perko [9].
Equations (1) and (2) may be rewritten to the 2-dim system form

ẋ= y, ẏ=−x− of(x, m)y. (4)
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For o=0, equations (4) have the following one-parameter family of periodic
solutions having period Ta =2p:

xa (t)= a cos t, ya(t)=−a sin t. (5)

The corresponding Melnikov function is

M(a, m)=−a2 g
2p

0

f(a cos t, m) sin2 t dt. (6)

The paper by Sanjuán states the conditions under which a knowledge of M(a, m)
allows the determination of the number and location of the limit cycles for
equation (4).

The method of slowly varying amplitude and phase is an averaging method
[1, 10] which was justified in a mathematically rigorous manner by Bogoliubov and
Mitropolsky [11]. Details of the method’s derivation, as well as numerous
applications, appear in Mickens [12]. The basic idea is to assume that the solutions
to equations (1) and (2) and their derivatives take the form

x(t)=A(t) cos [t+f(t)], ẋ(t)=−A(t) sin [t+f(t)], (7)

where the (o, m) dependencies of the amplitude A(t) and phase f(t) have been
suppressed. The first approximation to A(t) and f(t) are given by solutions to the
following first-order differential equations [10, 12]:

dA�
dt

=0 o

2p1 g
2p

0

f(A� cos c, m)(−A� sin c) sin c dc

0 oG(A�, m),

df�
dt

=0 o

2pA�1 g
2p

0

f(A� cos c, m)(−A� sin c) cos c dc

0 oH(A�, m). (8)

Note that the right sides of equations (8) depend on the parameters (o, m) and the
averaged amplitude A�(t), but not the averaged phase function f�(t). The number
of limit cycles and their location (radii) are obtained from the real solutions of
the equation [12, 13]

G(A�, m)=0. (9)

In the first of equations (8), make the substitutions A�:a and c:t. Comparing
the resulting expression with the Melnikov function of equation (6) gives the
relation

M(a, m)=2paG(a, m). (10)

This gives a relation linking the Melnikov function, M(a, m), to the amplitude
function, G(a, m), appearing in the method of slowly varying amplitude and phase
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(MSVAP). Consequently, all results obtained for Liénard systems using Melnikov
theory also hold for MSVAP. In fact, it was our original derivation [14] of the
results of Giacomini and Neukirch [6] and the subsequent appearance of the paper
by Sanjuán [7] that led us to investigate the connection between the Melnikov
function and G(a, m).

A major advantage of MSVAP over the use of Melnikov theory, as presented
by Sanjuán, is that the stability of the various limit cycles may be easily determined
[12, 13, 15]. Let ai be a real root of

G(a, m)=0. (11)

(Note that +=ai = and −=ai = correspond to the same limit cycle; they differ only in
the value of their phases.) The limit cycle having radius, a= ai , is stable if

dG(ai , m)
dai

Q 0. (12)

The opposite sign implies that the limit cycle is unstable.
A Liénard system having no limit of linear oscillations when o=0 is the

equation

ẍ+ x3 = of(x)ẋ, (13)

where f(x) is a polynomial of even degree. The 2-dim phase space equations are

ẋ= y, ẏ=−x3 + of(x)y. (14)

A number of papers have appeared recently on this equation; see Mickens [15] for
a listing of these references. We are currently investigating the application of
Melnikov theory to this class of Liénard equations.

In summary, Giacomini and Neukirch [6] introduced a sequence of polynomial
functions whose roots allow the determination of both the number and location
of the limit cycles for Liénard systems. Soon after, Sanjuán [7] showed that the
same information is provided by a certain polynomial which Melnikov theory
associates with a given Liénard system. This paper demonstrated that the method
of slowly varying amplitude and phase not only reproduces the results from
Melnikov theory, but also allows the stability of the limit cycles to be calculated.
Finally, it should be indicated that the method studied by Giacomini and Neukirch
[6] is a non-perturbative procedure which works for arbitrary values of the
parameter o in equation (1). Consequently, their method is not equivalent to either
the Melnikov method or the method of slowly varying amplitude and phase except
for small values of o.
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