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The mathematical model for fluid damping controlled instability of tubes in
crossflow presented in this paper is based on unsteady flow theory.
Motion-dependent fluid forces are measured in a water channel. From the
measured fluid forces, fluid stiffness and fluid damping coefficients are calculated
as a function of reduced flow velocity, oscillation amplitude, and Reynolds
number. Once these coefficients are known, the mathematical model can be
applied to predict structural instability due to fluid damping. The cases considered
are a single tube, twin tubes, tube row, triangular array, and square arrays. The
results show instability regions that are based on the fluid damping coefficients
and provide answers to a series of questions on fluidelastic instability of tube
arrays in crossflow.
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1. INTRODUCTION

Several theories have been used to study the vibration and stability of tubes in
crossflow: quasistatic, quasisteady, and unsteady flow theoreis [1–3]. In some
parameter ranges, both quasistatic and quasisteady flow theories have certain
advantages because they provide a simple way to obtain motion-dependent fluid
forces. However, only the unsteady flow theory can be applied in any range of
parameters. In this study, unsteady flow theory is used.

Can fluidelastic instability occur for a flexible tube in a rigid tube array subjected
to crossflow? It is a frequently asked question. In the original stability criterion
developed by Connors [4], at least two flexible tubes are needed to attain
fluidelastic instability. In the case considered by Connors, the instability was due
to fluid stiffness controlled instability and a minimum of two degrees of freedom
were needed. Tests by various experimentalists found that a single flexible tube in
a tube array shows instability in some cases, whereas, in other cases, it is stable
[5–7]. Chen [5, 8] developed a mathematical model based on the measured motion
dependent fluid forces of Tanaka and his colleagues [9–11] to characterize the
difference between the two mechanisms that provide the theoretical basis for the
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occurrence of different stability mechansims. In the past, because the amount of
available fluid force coefficient data was limited, the theory could not provide
quantitative answers about the stability of tubes in various situations.

Recently, extensive tests of motion dependent fluid forces have been performed
[12–16]. The unsteady fluid forces and unsteady flow theory will provide answers
to some frequently asked questions on fluidelastic instability. The purpose of this
paper is to study fluid damping controlled instability of tubes in differing
situations.

2. UNSTEADY FLOW THEORY

Consider a tube oscillating in crossflow as shown in Figure 1. The tube may
stand alone or be surrounded by other rigid tubes. The fluid is flowing at velocity
U. When the tube is stationary, it is subjected to drag and lift forces. The
displacement components of the tube in the x and y directions are u and v,
respectively. Once the tube starts to move, additional fluid forces, called motion
dependent fluid forces, are induced because of the tube motion. The motion
dependent fluid force components per unit length that act on the tube in the x and
y directions are f and g, respectively, and are given [1, 2] as

f=−rpR20a 12u
1t2 + s

12v
1t21+

rU2

v 0a'
1u
1t

+ s'
1v
1t1+ rU2(a0u+ s0v), (1)

and

g=−rpR20t 12u
1t2 + b

12v
1t21+

rU2

v 0t' 1u
1t

+ b'
1v
1t1+ rU2(t0u+ b0v), (2)

where r is fluid density; R is tube radius; t is time; v is circular frequency of the
tube oscillations; a, b, s, and t are added-mass coefficients; a', b', s', and t' are
fluid damping coefficients; and a0, b0, s0, and t0 are fluid stiffness coefficients.

Figure 1. Tube oscillating in crossflow.
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Various methods can be used to determine fluid force coefficients. In this study,
unsteady flow theory has been used. Fluid force coefficients can be determined by
measuring the fluid forces acting on the tube as a result of its oscillations. If the
tube is excited in the x direction, its displacement in the x direction is given by

u= d0 cos vt, (3)

where d0 is the oscillation amplitude. The motion dependent fluid force
components acting on the tube in the x and y directions are

f= 1
2rU2 el cos (vt+fl )d0 (4)

and

g= 1
2rU2 ed cos (vt+fd )d0, (5)

where el and ed are the fluid force amplitudes and fl and fd are the phase angles
by which the fluid forces acting on the tube lead the displacement of the tube.

By using equations 1–3, one can also write the fluid-force components as

f=(rpR2v2a+ rU2a0)d0 cos vt− rU2a'd0 sin vt, (6)

and

g=(rpR2v2t+ rU2t0)d0 cos vt− rU2t'd0 sin vt. (7)

Solving equations 4 and 6 and equations 5 and 7, one obtains

a0= 1
2el cos fl −(p3/Ur2)a, t0= 1

2ed cos fd −(p3/Ur2)t,

a'= 1
2el sin fl , t'= 1

2ed sin fd , (8)

where Ur is the reduced flow velocity (Ur= pU/vR). The added-mass coefficients
a and t can be calculated from the potential flow theory [1]; they can also be
measured from the excitation of the tube in stationary fluid. Other fluid force
coefficients, b', b0, s', and s0 can be obtained in a similar manner by exciting the
tube in the y direction.

3. MOTION DEPENDENT FLUID FORCE COEFFICIENTS

3.1.    

A water channel was used to measure motion dependent fluid forces. The test
setup and measurement technique were presented in an earlier paper [12]. Many
cases were considered in this study (Figure 2). Various tube arrays are described
by the tube pitch in the drag direction P, the lift direction T, and tube diameter
D (D=2·54 cm).

Case a—single tube: the tube was located in the middle of the water channel
(Figure 2(a)). Flow velocities of 0·064, 0·11 and 0·127 m/s were tested. The tube
was excited to various oscillation amplitudes in the lift direction.

Case b—two tubes normal to flow (Figure 2(b)): T/D=1·35. Flow velocities
of 0·05, 0·07, 0·113, 0·146 and 0·166 m/s were tested. The tube was excited in the
lift and drag directions.
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Figure 2. Tube arrays in crossflow studied in this investigation: (a) single tube; (b) two tubes
normal to flow; (c) two tubes in tandem; (d) tube in the wake of another tube; (e) tube row; (f)
triangular arrays (T/D=1·35); and (g, h, i) square arrays: P/D=T/D=1·35 (tube positions; (h)
1·42, (i) 1·46).
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Cases c.1–c.3—two tubes in tandem (Figure 2(c)): P/D=1·35 (case c.1), 2·70
(case c.2) and 4·05 (case c.3). For case c.1, the tube in the upstream position was
excited at flow velocities of 0·07, 0·11, and 0·15 m/s in the lift and drag directions.
For the tube in the downstream position in cases c.1, c.2 and c.3 the flow velocity
was set at 0·11 m/s and the excitation amplitude was set at various values.

Cases d.1–d.3—a tube in the wake of another rigid tube (Figure 2(d)): Three
cases were tested: case d.1, P/D=2·7, T/D=1·35; case d.2, P/D=4·05,
T/D=1·35; and case d.3, P/D=4·05, T/D=2·70. The flow velocity was set at
0·11 m/s and the excitation amplitude was set at various values.

Cases e.1 and e.2—tube row (Figure 2(e)): T/D=1·35 (case e.1) and 2·7 (case
e.2). In case e.1, flow velocities were 0·063, 0·092, 0·125, and 0·131 m/s. In case
e.2, the flow velocity was set at 0·11 m/s and the excitation amplitude was set at
various values.

Cases f.1–f.3—triangular array: T/D=1·35: the tube was located in the
upstream (case f.1), middle (case f.2), or downstream (case f.3) position in the tube
array (Figure 2(f)). Tests were performed at U=0·07, 0·11, and 0·16 m/s.

Cases g.1–g.4—square array with P/D=T/D=1·35: the tube was located in
the upstream (case g.1), middle (case g.2, case g.3), or downstream (case g.4)
position in the tube array, corresponding to tubes 1, 2, 3, and 4 shown in
Figure 2(g). Tests were performed at U=0·1 m/s and tests were repeated for each
case.
Case h—square array with P/D=T/D=1·42: the tube was located in the middle
of the tube array (Figure 2(h)). The flow velocities were set at 0·06, 0·11, and
0·16 m/s.

Case i.1–i.3—square array with P/D=T/D=1·46: the tube was located in the
upstream (case i.1), middle (case i.2), or downstream (case i.3) position in the tube
array (Figure 2(i)). Two flow velocities were tested for case i.1 (U=0·11 and
0·165 m/s) and case i.3 (U=0·125 and 0·18 m/s) and three flow velocities were
tested for case c.2 (U=0·06, 0·11, and 0·16 m/s).

The flexible tube in various cases was excited in the lift (x) or drag (y) direction,
with a displacement u(t)= d0 cos vt. The fluid forces acting on the tube f(t) and
g(t) were measured simultaneously with the displacement. From the time histories
of fluid forces, fluid damping coefficients a' and t' and fluid stiffness coefficients
a0 and t0 were calculated from equations 8; similar equations were used to
calculate b', s', b0 and s0 in the drag direction.

Fluid force coefficients are a function of flow velocity, excitation frequency and
excitation amplitude. In each case, when the flow velocity is set at a specific value,
the tube is excited at a frequency of 0.2–2·0 Hz with a series of amplitudes
d(0·6–3·5 mm), where d is the R.M.S. value of u(t), given in equation 3. Reynolds
number (Re) varied from 11500–4500, depending on the gap velocity U.

3.2. 

Figures 3–15 show the experimentally determined fluid force coefficients, all of
which were plotted as a function of reduced flow velocity Ur (=U/fD; U=gap
velocity, f=v/2p, D=tube diameter). Extensive data are presented in this paper.
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The purposes are to provide the needed information in mathematical models and
evaluations of analytical and numerical results, and to show the changes of
characteristics in various tube arrays. The following general characteristics of the
fluid force coefficients were observed:

(1) At high reduced flow velocity, the coefficients were almost independent of
reduced flow velocity and excitation amplitude. This characteristic is similar for
all tube arrays and other geometries [2]. Therefore, at high reduced flow velocity,
the fluid force coefficients are much easier to quantify. Once, the coefficients are
determined for a specific set of parameters, they can be applied to various values
of flow velocity, excitation frequency, and excitation amplitude.

(2) Drastic changes in the fluid force coefficients occurred in the region of low
reduced flow velocity (UrQ 10).

(3) In the critical region that corresponds to the lower reduced flow velocity,
the magnitude of the coefficients also depends on the excitation amplitude.

Figure 3. Fluid damping coefficient a' and fluid stiffness coefficient a0 for a single tube (case a)
for three Reynolds numbers: (a) Re=1610; –w–, d=4 mm; –r–, d=3·3 mm; –q–, d=2·6 mm;
–e–, d=1·9 mm; –×–, d=1·2 mm; (b) Re=2760; –w–, d=2·4 mm; –q–, d=2 mm; –e–,
d=1·6 mm; –×–, d=1·2 mm; (c) Re=3190, –w–, d=3·6 mm; –r–, d=3 mm; –q–,
d=2·4 mm; –e–, d=1·8 mm; –×–, d=1·2 mm.
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Figure 4. (a) Fluid damping coefficient a' and (b) fluid-stiffness coefficient a0 for a single tube
(case a) for Re=2760: –w–, d=2·4 mm; –q–, d=2 mm; –e–, d=1·6 mm; –×–, d=1·2 mm.

The following additional characteristics were noted for each of the cases that
were studied.

3.2.1. Single tube

From Figures 3 and 4 and from additional data not included here, a' is positive
for Ur from 15–11, and its value decreases with excitation amplitude. The range
depends on Re and oscillation amplitude.

Figure 5. (a) Fluid damping coefficient a', (b) fluid stiffness coefficient a0, (c) fluid damping
coefficient b' and (d) fluid stiffness coefficient b0 for two tubes normal to flow (case b). (a, b) –w–,
Re=1250; –q–, Re=1760; –e–, Re=2830; –r–, Re=3660; –×–, Re=4160. (c, d) –w–,
Re=1760; –q–, Re=2840; –r–, Re=3870.
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Figure 6. (a) Fluid damping coefficient a', (b) fluid stiffness coefficient a0, (c) fluid damping
coefficient b' and (d) fluid stiffness coefficient b0 for tube in upstream position of two tubes in tandem
(case c): –w–, Re=1760; –q–, Re=2760; –r–, Re=3760.

At lower Re, a' becomes positive at lower Ur. At higher Re, a' becomes positive
at higher Ur. However, its range varies from 14·8–5·4. As Ur is increased, a'
becomes negative again.

At lower oscillation amplitudes, a' becomes positive at lower Ur; however, at
higher oscillation amplitudes, it becomes positive at higher Ur. Moreover, the
range of a' also depends on Re. As Ur is increased, the effect of oscillation
amplitude is small.

The value of a0 is positive for smaller Ur and becomes negative as Ur is
increased. The crossing point where the sign of a0 changes varies from
Ur=5·4–6·0. At high reduced flow velocity, both a' and a0 are approximately
independent of Re, Ur and oscillation amplitude. The values of Ur that correspond
to the peak values of a' and a0 increase with excitation amplitude and Re, and
the peak values of a' and a0 are approximately the same for various values of Re.

3.2.2. Two tubes normal to flow

b' is negative throughout the whole range of Ur. a' is negative at lower Ur; its
range depends on Re. A comparison of Figure 5 with Figure 3 reveals that the
region for negative a' is at lower Ur for case b than for case a. As Re increases,
the region of negative a' in case b shifts to higher Ur and its range increases
slightly. However, the peak magnitude of a' decreases with Re. This is similar to
the case of a single tube, as shown in Figure 3.
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3.2.3. Two tubes in tandem

In case c.1, a' becomes positive as soon as Ur reaches a certain value, which
is equal to 6–7 for the tube in the upstream position, Figure 6. The precise crossing
point depends on Re and a' continues to be positive at high Ur (in this case, the

Figure 7. Fluid damping coefficients a' and b' and fluid stiffness coefficients a0 and b0 for tube
in downstream position of two tubes in tandem (case c): (a) a' and a0, case c.1; (b) a' and a0, case
c.2; (c) a' and a0, case c.3; (d) b' and b0, case c.1; (e) b' and b0, case c.2; (f) b' and b0, case c.3.
Excitation amplitudes: –w–, d/D=0·05; –q–, d/D=0·06; –r–, d/D=0·07; –×–, d/D=0·08; +,
d/D=0·09.
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Figure 8. Fluid damping coefficients a' and b' and fluid stiffness coefficients a0 and b0 for a tube
in the wake of another tube (case d): (a) a' and a0, case d.1; (b) a' and a0, case d.2; (c) a' and a0,
case d.3; (d) b' and b0, case d.1; (e) b' and b0, case d.2; (f) b' and b0, case d.3. (a, c–f): –w–,
d/D=0·05; –q–, d/D=0·06; –r–, d/D=0·07; –×–, d/D=0·08; +, d/D=0·09. (b): –w–,
d/D=0·075; –q–, d/D=0·085; –r, d/D=0·095.

test was performed for Ur up to 60). On the other hand, b' is negative for all
Ur.

When the tube is in a position that is downstream of another tube, the force
coefficients are as shown in Figure 7. a' is positive at lower Ur, whereas b' is
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negative only in a small range. As P/D increases, the magnitude of a' decrease and
the region of positive a' shifts to larger Ur.

3.2.4. A tube in the wake of another tube

The general characteristics of a', a0, b', and b0 shown in Figures 8(a)–8(f), are
similar for the tube in three different positions in the wake of the tubes in the
upstream position. b' and b0 are negative in the tested reduced flow velocity range.
However, a' is positive at the lower reduced flow velocity; its peak value depends
on location and can be much larger than the peak value of a single tube.

3.2.5. Tube row

The general trend of a' and a0 in cases e.1 (Figures 9 and 10) and e.2 (Figure 11)
is similar to the trends observed for a single tube. However, the region of positive

Figure 9. Fluid damping coefficient a' and fluid stiffness coefficient a0 for tube row with
T/D=1·35 (case e.1.): (a) Re=1580; –w–, d=2·3 mm; –r–, d=2·1 mm; –q–, d=1·9 mm; –e–,
d=1·7 mm; –×–, d=1·5 mm. (b) Re=2310: –w–, d=2·3 mm; –r–, d=2·05 mm; –q–,
d=1·8 mm; –e–, d=1·55 mm; – ×–, d=1·3 mm. (c) Re=3340: –w–, d=2·3 mm; –r–,
d=2·05 mm; –q–, d=1·8 mm; –e–, d=1·55 mm; –×–, d=1·3 mm.
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Figure 10. (a) Fluid damping coefficient a' and (b) fluid stiffness coefficient a0 for tube row with
T/D=1·35 (case e.1) for Re=3140: –w–, d=2·4 mm; –r–, d=2 mm; –e–, d=1·6 mm; –q–,
d=1·2 mm.

a' for case e.1 is at lower reduced flow velocity. This can be seen clearly from Figure
9. At lower Re, the effects of oscillation amplitude appear to be smaller
than those at a larger Re. In case e.2, the pitch-to-diameter ratio is much larger and
the general characteristics of a' and a0 are about the same as those of a single tube.

3.2.6. Triangular array

The damping coefficients a' and b' shown in Figure 12 show that, in cases f.1
and f.2, when the tube is in the upstream and middle position in the tube array,
they are negative at all reduced flow velocity. The only case in which a' becomes
positive is at low reduced flow velocity in case f.3, when the tube is in the
downstream position. The general trend of a', b' and b0 as a function of reduced
flow velocity is similar for the three cases.

3.2.7. Square arrays

Figures 13–15 show that fluid force coefficients, a', a0, b' and b0, depend on
pitch-to-diameter ratio and tube location. b' is positive for the tube at any
location, regardless of pitch-to-diameter ratio. a0 and b0 are similar for the tube
at various locations and differing pitch-to-diameter ratio. a' depends on tube
location and pitch-to-diamter ratio. When the tube is in the upstream position,
a' is negative except at very small Ur; at large Ur, it is always positive. The crossing
point from negative to positive values depends on Re, pitch-to-diameter ratio, and
tube location. For a fixed Re, the crossing point of a' from negative to positive
is the smallest for the tube in the upstream position and largest for the tube in
the downstream position. This can be seen clearly from Figure 15(a).

4. FLUID DAMPING CONTROLLED INSTABILITY

Once motion dependent fluid forces are known, the response of the tube can
be predicted. As an example, consider a single tube supported by springs. The tube
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is subjected to a crossflow uniformly along its length. The equation of motion in
the lift direction is

m
d2u
dt2 +C

du
dt

+Ku+
rpD2

4
a

d2u
dt2 −

rU2

v
a'

du
dt

− rU2a0u= 1
2rU2DC'L cos (vst),

(9)

where K is the spring constant, C is the tube damping coefficient, m is the tube
mass per unit length, C'L is the fluctuating lift coefficient, and vs is the circular
frequency of vortex shedding.

The in-vacuum variables, i.e., natural frequency fv and modal damping ratio zv ,
can be calculated from the equation of motion or from an in-vacuum test
(practically in air). Let

u(z, t)=Dq(t), Ur=U/fD, g= rpD2/4m, (10)

where f is oscillation frequency and U is gap velocity. Substituting equations 10
in equation 9, one obtains

d2q/dt2 +2zv dq/dt+v2q=[1/2(1+ ga)](rU2C'L /m) cos (vst), (11)

where

v=vv (1+ gCM )−0·5,

z=[zv /(1+ ga)][(1+ gCM )0·5 − gUr2a'/2zvp
3], CM = a+Ur2a0/p3. (12)

Figure 11. Fluid damping coefficient a' and fluid stiffness coefficient a0 for tube row with
T/D=2·7 (case e.2) for Re=2760: –w–, d=2·8 mm; –r–, d=2·4 mm; –e–, d=2 mm; –q–,
d=1·6 mm; –×–, d=1·2 mm.
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Figure 12. Fluid damping coefficients a' and b' and fluid stiffness coefficients a0 and b0 for
triangular array (case f): –w–, Re=1760; –q–, Re=2760; –r–, Re=4010. (a, d) case f.1; (b, e)
case f.2, (c, f) case f.3.

Note that v and z are the circular frequency and modal damping ratio,
respectively, for the tube in crossflow. CM is called an added-mass coefficient for
the tube in flow; when Ur=0, it is equal to a. When Ur$ 0, CM depends on Ur
as well as on a0, which in turn, depends on Ur and oscillation amplitude.

For motion in the drag direction, equations (11) and (12) are applicable as long
as the fluid force coefficients a, a' and a0 are replaced by b, b' and b0 and the



   897

Figure 13. Fluid damping and fluid stiffness coefficients for square tube array with P/D=1·35
(case g): (a, e) –w–=case g.1, test 1; –r–=case g.1, test 2; (b, f) –e–=case g.2, test 1; +=case
g.2, test 2; (c, g) –q–=case g.3, test 1; –t–=case g.3, test 2; (d, h) –×–=case g.4, test 1,
– –=case g.4, test 2.
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Figure 14. (a) Fluid damping coefficient a', (b) fluid stiffness coefficient a0, (c) fluid damping
coefficient b', and (d) fluid stiffness coefficient b0 for square tube array with P/D=1·42 (case h):
–w–, Re=1540; –q–, Re=2810; –r–, Re=4010.

lift coefficient C'L and vortex shedding frequency vs are replaced by the drag
coefficient C'D and 2vs , respectively. The system response due to vortex shedding
and other excitation can be obtained by solving equation (11). Note that inasmuch
as the fluid force coefficients a' and a0 are a function of Ur, the natural frequency
v and modal damping ratio z are a function of the reduced flow velocity Ur. The
unsteady flow theory can form the basis for calculating a complete response that
is due to flow. The calculation will require an iteration technique.

When modal damping becomes negative, the tube becomes dynamically
unstable and high amplitude oscillations develop. As the oscillation amplitude
increases, other non-linear effects may become important and the system may be
stabilized. The critical flow velocity of dynamic instability can be calculated from

z=0. (13)

From equations (12) and (13), the critical reduced flow velocity at which the modal
damping ratio is zero can be calculated from

Ur=4z2p(d/a')0·5[(d/p2)(a0/a')2z((d/p3)(ga0/a'))2 + (1+ ga)/4]0·5, (14)

where d is a mass-damping parameter (d=2pzvm/rD2). This is the critical flow
velocity for fluidelastic instability in the lift direction. Similarly, the critical flow
velocity for motion in the drag direction is

Ur=4z2p(d/b')0·5[(d/p2)(b0/b')−z((d/p3)gb0/b')2 + (1+ gb)/4]0·5. (15)

The critical flow velocity for fluid damping controlled instability can be calculated
from equations (14) and (15). Because a', b, a0 and b0 depend on Ur, the
calculation requires an iteration process.
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5. DISCUSSIONS AND NUMERICAL EXAMPLES

The modal damping ratio given in equation (12) shows that it consists of two
parts, tube damping and fluid damping. Tube damping is always positive whereas
fluid damping may be positive or negative. To make the total damping ratio
negative, a' or b' must be positive. Table 1, based on the fluid force coefficients,

Figure 15. Fluid damping coefficients a' and b' and fluid stiffness coefficients a0 and b0 for square
array with P/D=1·46 (case i): (a, d) case i.1, –w–, Re=4140; –q–, Re=2780; (b, e) case i.2, –w–,
Re=4010, –q–, Re=2810; –r–, Re=1540; (c, f) case i.3, –w–, Re=4490; –q–, Re=3130.
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T 1

Regions with positive a' and b' in which fluidelastic instability may occur

Pitch-to-diameter
Cases ratio (P/D) Lift direction Drag direction

a (single tube) – 5QUrQ 11 Not measured
b (two tubes normal to flow) 1·35 (T/D) 2QUrQ 6 None
c.1 (two tubes in tandem) 1·35 7 QUr None

upstream tube
c.1 (two tubes in tandem) 1·35 3·5 QUrQ 8 2·2QUrQ 3·6

downstream tube
c.2 (two tubes in tandem) 2·70 3·6 QUrQ 7·4 None

downstream tube
c.3 (two tubes in tandem) 4·05 5·3 QUrQ 20 None

downstream tube
d.1 (a tube in the wake of another tube) 2·7 4·2 QUrQ 10 None

1·35 (T/D)
d.2 (a tube in the wake of another tube) 4·05 5·2 QUrQ 9·5 None

1·35 (T/D)
d.3 (a tube in the wake of another tube) 4·05 4·7 QUrQ 9·3 None

2·7 (T/D)
e.1 (tube row) 1·35 (T/D) 1·1QUrQ 4·0 None
e.2 (tube row) 2·70 (T/D) 5QUrQ 9·5 None
f.1 (triangular array) 1·35 Urq 25 None

upstream tube
f.2 (triangular array) 1·35 None None

middle tube array
f.3 (triangular array) 1·35 1·5 QUrQ 5·5 Urq 30 (Re=1760)

downstream tube Urq 50 (Re=2760)
Urq 62 (Re=4010)

g.1 (square array) 1·35 1·5 QUr None
upstream tube

g.2 (square array) 1·35 2·0 QUr None
second row of tubes

g.3 (square array) 1·35 2·0 QUr None
second row from downstream tube

g.4 (square array) 1·35 2 QUrQ 6 None
downstream tube

h (square array) 1·42 1·5QUr None
middle of tube array

i.1 (square array) 1·46 1·7 QUr None
upstream tube

i.2 (square array) 1·46 2·1 QUr None
middle of tube array

i.3 (square array) 1·46 3·1 QUrQ 7 None
downstream tube

is a summary of the potential instability regions. From Table 1, several conclusions
are noted:

(1) The motion in the drag direction is much more stable than that in the lift
direction; practically, it will not become unstable by fluid damping controlled
instability in the drag direction for various tube arrays.

(2) For a triangular array, fluid damping controlled instability is not possible
for the tube in the upstream position and the tube in the middle of tube array
because the fluid damping coefficients a' and b' are negative.

(3) For the tube in the upstream position of two tubes in tandem and the tube
in the upstream position or in the middle of a square tube array, once the reduced
flow velocity reaches a certain value, the damping coefficient a' becomes positive.
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Figure 16. Fluid damping coefficient a' at different positions for square array with P/D=1·46:
–r–, case i.1, Re=2780; –w–, case i.2, Re=2810; –q–, case i.3, Re=3130.

The effects of tube position, tube pitch, and the tube in the downstream position
on fluid-damping coefficient a0 are considered in detail.

5.1.  

Fluid force coefficient a' in a square array (P/D=1·46) depends on the position
of the tube. For example, Figure 16 shows a' for a tube in an upstream, a middle,
and a downstream position in a tube array. When Ur reaches a certain value, a'
becomes positive. The point at which a' changes its sign depends on tube location.
At high Ur, the value of a' for the middle tube is positive for all large Ur whereas
for the upstream and downstream tubes, the values of a' become very small and
then negative again. Based on a', it can be seen that, in a square array, first the
upstream tube will become unstable, then the middle tube, and finally the
downstream tube. This was noticed in an earlier experiment with a square array
[17, 18]. For the middle tube, the instability is sustained for all Ur. The effect of

Figure 17. Fluid damping coefficient a' for square array: (a) –w–, case g.1, Re=2510; –q–, case
i.1, Re=2870; (b) –e–, case g.2, Re=2510; –r–, case g.3, Re=2510; –w–, case h, Re=2810;
–q–, case i.2, Re=2810; (c) –q–, case g.4, Re=2510; –w–, case i.3, Re=2810.
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Figure 18. Fluid damping coefficient a' of tube in various arrays and positions for
pitch-to-diameter ratio fo 1·35 and various Re: –w–, single tube, Re=2760; –r–, two tubes normal
to flow, Re=2830; –q–, tube row, Re=2310; –e–, triangular array, downstream, Re=2760;
–×–, square array, downstream, Re=2510.

tube location for triangular arrays is different; the downstream tube can become
unstable.

5.2.  

Fluid force coefficients depend on pitch-to-diameter ratio. Figure 17 shows a'
for three values of P/D (1·35, 1·42, and 1·46) for a square array. For tubes in the
upstream and middle positions, the crossing point of a' is almost independent of
P/D, whereas for the tube in the downstream position, the crossing point is
approximately the same as that of a tube row [12]. The value of a' at high Ur for
the tube in the upstream and middle positions does depend on P/D. For the
downstream tube, the effect is much smaller. This is consistent with the previous
data on fluidelastic instability of square arrays [17].

5.3.  

Figure 18 shows a' for various tube arrays with P/D=1·35. In all cases, at lower
Ur corresponding to the vortex shedding region, a' is positive. The location and

Figure 19. Fluid damping controlled instability boundaries for downstream tube in
two-tubes-in-tandem array: –w–, case c.1, P/D=1·35; –q–, case c.2, P/D=2·7; –r–, case c.3,
P/D=4·05.
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Figure 20. Fluid damping controlled instability boundaries for tube in tube row array: –w–, case
e.1, Re=2310, T/D=1·35; –q–, case e.2, Re=3140, T/D=2·7.

the range depend on tube array. The single tube occurs at higher Ur while tube
arrays occurs at lower Ur. The peak value of a' is largest for a tube row, smaller
for a triangular tube array, and finally, for a square array and two tubes normal
to flow, it is smallest. It is also noted that the first crossing points of a' for all tube
arrays are very close to each other. Another characteristic is that the crossing point
of a' from negative to positive occurs at lower Ur for lower Re. For two tubes
in tandem, a tube row, and square arrays, the crossing point of a' from negative
to positive also occurs at lower Ur for lower Re.

For two tubes in tandem, a tube row, triangular array, and square arrays, the
stability boundaries for fluid damping controlled instability as a function of
mass-damping parameter, ds , are shown in Figures 19–23. Figure 19 shows that,
for two tubes in tandem, fluid damping controlled instability occurs at lower ds .
The lower boundaries vary with P/D but change slowly with ds . When P/D is
smaller, the critical flow velocity is also lower.

When the array is a tube row (Figure 20), the general behavior is similar to that
of two tubes in tandem. Fluid damping controlled instability occurs at lower ds .
The lowest critical flow velocity increases with tube T/D.

Figure 21. Fluid damping controlled instability boundaries for downstream tube in triangular
array, case f.3, P/D=1·35: –w–, Re=1760; –q–, Re=2760; –r–, Re=4010.
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Figure 22. Fluid damping controlled instability boundaries for square array, P/D=1·35: –w–,
case g.1, upstream tube; –q–, case g.2, second row tube; –r–, case g.3, third row tube; –e–, case
g.4, downstream tube.

In the case of a triangular array (Figure 21), fluid damping controlled instability
occurs when ds is less than 12. The instability region depends on Re. As Re
increases, the region moves upward; this means that the critical flow velocity is
greater. In this case, the size of the instability region is almost independent of Re.

For square arrays (Figures 22 and 23), fluid damping controlled instability can
occur at various values of ds , depending on the location of the tube. Except for
the downstream tube, which is similar to a downstream tube in a triangular array,
fluid damping controlled instability can occur in the whole range of ds . For a tube
in the second and third rows, there is a sudden increase of the critical flow velocity
at a specific ds , 10·75 and 0·18 for tubes in the second and third rows, respectively.

6. CLOSING REMARKS

In summary, a large data base for fluid force coefficients is presented in this
paper. These data provide the needed information to predict tube response and
evaluation of tube response in different tube arrays, different locations, and
different flow conditions. No such comprehensive data base is available in the
literature.

Figure 23. Fluid damping controlled instability boundaries for square array, downstream tube:
–w–, case g.4, P/D=1·35; –q–, case i.3, P/D=1·46.
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This paper describes a direct measurement technique for fluid damping and fluid
stiffness that adequately characterizes the fluid effects of fluid damping controlled
instability for various tube arrays. The critical components of fluid forces are
described by a' and b'. Once these two fluid force coefficients are measured, they
can be used in practical applications. Similar data have been used successfully to
predict lock-in resonance of a single tube in crossflow [13].

A change in response frequency is determined by fluid stiffness and mass ratio,
whereas stability depends on fluid damping. In some regions of reduced flow
velocity, fluid damping may be negative when a' and b' are positive; this means
that the energy of the fluid is being pumped into the structural system. Fluid
damping controlled instability of a single flexible tube in a tube array can be
determined immediately from the sign of a' and b'.

a' and b' depend on many system parameters: Re, tube pitch, tube pattern,
reduced flow velocity, and oscillation amplitude (from 2%–14% of tube diameter).
Some general conclusions can be reached from the fluid-force coefficients a' and
b' presented in this paper.

Fluid damping controlled instability is most likely to be associated with
the motion in the lift direction because in many cases, a' is positive while b' is
negative.

When the reduced flow velocity is small, say UrQ 10, a' and b' depend on Re.
At large Ur, Re has little effect on a' and b'. In the region of Ur where a' is
positive, the point at which a' changes from negative to positive or positive to
negative shifts to larger Ur as Re increases.

a' and b' may depend on the pitch-to-diameter ratio. For square arrays, the
effect of P/D is very small. This means that, for square tube arrays with differing
P/D, the critical flow velocities for damping controlled instability are
approximately the same and a single stability criterion can be used for various P/D
values. On the other hand, for tube rows and triangular arrays, different criteria
must be used for different P/D.

In square tube arrays, the most unstable position is that of the tube in the
upstream position in the array and the most stable position is that of the
downstream tube in the array. On the other hand in the triangular tube array, the
upstream tube and the tube in the middle of tube array are stable.

The stability of the downstream tube in various tube arrays is very similar to
that of a single tube. This is attributed to the vortex shedding associated with the
downstream tube. In all cases, there is a limited range of Ur in which the tube is
subjected to fluid-damping controlled instability.

For fluid damping controlled instability, the interaction effect associated with
the motion of the surrounding tubes is less significant. This means that the critical
flow velocity of a single flexible tube does not differ very much from that of a group
of flexible tubes. On the other hand, the interaction of multiple-tube motions is
a necessary condition for fluid stiffness controlled instability.

On the basis of unsteady flow theory, fluidelastic instability can be defined
specifically. Because of fluid damping, when the resultant modal damping ratio
becomes zero, the tube is subjected to fluidelastic instability regardless of the
source of fluid damping. On the other hand, when the modal damping ratio is q0
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and the tube oscillation amplitudes are large because of other excitation sources
(such as vortex shedding), one has forced excitation. For example, lock-in
resonance due to vortex sheding may be in the fluidelastic instability region or
forced excitation, depending on Ur and other parameters.

In summary, based on the present results, one concludes that unsteady flow
theory is a simple model that can be used to predict tube response. In addition,
the theory points out the role of fluidelastic instability associated with other
excitation mechanisms. For example, vortex-induced vibration is a coupled forced
vibration and also fluidelastic instability when the vortex shedding frequency is
close to the natural frequency of a cylinder. Unsteady flow theory can be used to
examine detailed characteristics in the instability regions as well as forced
responses due to other excitation sources.
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