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The large deflection theory is employed to derive the equations of motion of
the Timoshenko beam due to the coupling effect of an external force with the
weight of the beam. Galerkin’s method is employed to obtain the dynamic
responses of the beam. A set of two discrete moving forces is taken as an example
to investigate the characteristics of these responses. Results show that the effect
of weight of the beam decreases the fundamental period of the structure. Further,
both the dynamic deflection and the dynamic moment of the beam predicated by
the theory including the effect of weight of the beam are less than those of the
beam predicated either by the small deflection theory or by the large deflection
theory without including the effect of weight of the beam.
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1. INTRODUCTION

Various types of beams are widely encountered in structures. The small deflection
theory for beams is normally employed to obtain the responses of a beam induced
by an external load. However, the responses of the beam predicated by the theory
may be unreasonable, particularly while the magnitude of the external load is
large. Such erroneous results can be corrected by employing the large deflection
theory instead of the small deflection theory to get the responses of the beam.

According to the small deflection theory, the modal frequencies of the beam are
independent of both the magnitude and the frequency of an external load. The
large deflection theory for beams indicates that the product of longitudinal
extension and transverse deflection of the beam stiffens the structure.
Consequently, the effects of initial imperfections [1–3], large amplitudes [4, 5] and
longitudinal extension [6] of the beam increase the fundamental frequency of the
structure. Similarly, both effects of the weight of the beam and the magnitude of
the external load may increase the fundamental frequency of the beam.

The responses of a beam due to the moving loads are a function of both time
and velocity. Neglecting the effect of the weight of the beam, the small deflection
theory implies that both the maximum deflection as well as the maximum moment
of the structure caused by a moving load are greater than those induced by the
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load in a static situation [7]. Using the large deflection theory and neglecting the
effect of the weight of the beam, Hino et al. [8, 9] have demonstrated that the
fundamental frequency of the beam increases as the magnitude of the load
traversing on the structure increases. Sometimes the weight of the beam is heavier
than the magnitude of the external load acting on the structure. Neglecting the
weight of the beam while studying the dynamics of the beam may yield erroneous
results for the structure. The large deflection theory and the weight of the beam
should be, therefore, considered simultaneously for obtaining precise results.

In the present study, the large deflection theory is adopted to study the
non-linear vibration of the Timoshenko beam caused by the coupling effect of a
moving force with the weight of the beam. The equations of static equilibrium of
the beam due to its own weight are derived via the theory to obtain the static
responses of the beam. The effects of thickness and length of the beam on the
differences in its responses, as obtained by the small deflection theory and the large
deflection theory, are investigated. Further, the static responses of the beam are
considered while deriving the equations of motion of the beam subjected to an
external load. The transverse deflection is known to be larger than the longitudinal
displacement for the beam. Further, the inertia of the transverse motion is more
important than the longitudinal inertia on dominating the transverse vibration of
the beam due to external loads. Therefore, the longitudinal inertia of the beam
is neglected in this study.

Due to the coupling effect of longitudinal force with the transverse deflection,
the equations of motion of the beam cannot be solved analytically. Therefore, the
set of mode shape functions obtained form the small deflection theory for the beam
is incorporated in Galerkin’s method to solve the non-linear problem. A set of two
discrete moving forces traversing on the beam is used to simulate a vehicle moving
on the beam. The dynamic responses obtained respectively from the small
deflection theory, the large deflection theory including the effect of weight of the
beam, and the large deflection theory without including the effect of weight of the
beam are discussed. Furthermore, the responses obtained for the Timoshenko
beam are compared with those for the Bernoulli–Euler beam.

2. EQUATIONS OF EQUILIBRIUM

A distributed force F(x, t) acting on a simply supported Timoshenko beam is
depicted in Figure 1. Both ends of the beam are immovable. The beam is
considered to be homogeneous and isotropic with Young’s modulus E, Poisson’s
ratio n, shear modulus G, mass density r, length L, thickness h and width b. The

Figure 1. A distributed force on a simply supported Timoshenko beam.
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co-ordinate of the neutral axial of the beam is denoted as x. The longitudinal
displacement, transverse deflection and bending slope of the beam due to its own
weight are denoted as uo (x), wo (x) and co (x), respectively. Further, the dynamic
deformations induced by the distributed force are denoted as u*(x, t), w*(x, t) and
c*(x, t), respectively. The displacement fields u and w of the beam due to the
combined action of its own weight and the distributed load can be obtained by
modifying the Mindlin plate theory [10] to be of the forms

u(x, z, t)= uo (x)+ u*(x, t)− zco (x)− zc*(x, t), (1a)

w(x, z, t)=wo (x)+w*(x, t). (1b)

The longitudinal strain, shearing strain and the corresponding longitudinal force
and shear force caused by the weight of the beam are denoted as eo , go , no and
qo , respectively. Further, the dynamic longitudinal strain, shearing strain and the
corresponding longitudinal force and shear force caused by the distributed force
are denoted as e*, g*, n* and q*, respectively.

By modifying the large deflection theory for the Mindlin plate [10], the total
strain fields of the beam are expressed as

e= eo + e*− z
dco

dx
− z

1c*
1x

, g= go + g*, (2a, b)

in which

eo =
duo

dx
+0·50dwo

dx1
2

, go =
dwo

dx
−co , (3a, b)

e*=
1u*
1x

+
1w*
1x

dwo

dx
+0·501w*

1x 1
2

, g*=
1w*
1x

−c*. (4a, b)

The total longitudinal force n, shear force q and bending moment m of the beam
are

n= no + n*, q= qo + q*, m=mo +m*, (5)

where

(no , n*)=EA(eo , e*), (qo , q*)= kGA(go , g*), (6a)

(mo , m*)=−EI0dco

dx
,
1c*
1x 1, (6b)

in which k is the shear coefficient, A(=bh) is the cross-sectional area and
I(=bh3/12) is the second moment of area about the y-axis of the beam.



.-.   .-. 120

The strain energy V and kinetic energy K of the beam are

V=
1
2 g

L

0 0 n2

EA
+

m2

EI
+

q2

kGA1 dx, (7a)

K=
1
2 g

L

0

r0A01u
1t1

2

+A01w
1t1

2

+ I01c

1t1
2

1 dx. (7b)

The work done on the beam by the combination of its own weight and the
distributed force is

P=g
L

0

(rgAw+Fw*) dx. (7c)

Substituting V, K and P into Hamilton’s principle and neglecting the longitudinal
inertia of the beam yields the equations of static equilibrium

dno

dx
=0, −

dmo

dx
+ qo =0, no

d2wo

dx2 +
dqo

dx
+ rgA=0, (8a–c)

and the equations of motion

1n*
1x

=0,
1m*
1x

− q*+ rI
12c*
1t2 =0, (9a, b)

− no
12w*
1x2 − n*0d2wo

dx2 +
12W*
1x2 1−

1q*
1x

+ rA
12w*
1t2 =F(x, t). (9c)

The boundary conditions at both simply supported and immovable ends of the
beam are

wo =w*=0, uo = u*=0, mo =m*=0. (10)

3. STATIC RESPONSES

The solution of equation (8a) that satisfies the boundary conditions at
immovable ends is

no =
EA
2 g

L

0 0dwo

dx1
2

dx. (11)

Eliminating co between equations (8b) and (8c) and simplifying the result yields

d4wo

dx4 − c2 d2wo

dx2 = f, (12)

where

a=
no

kGA
, c2 =

no

EI(a+1)
, f=

rgA
EI(a+1)

.



  121

The solution wo of equation (12) and the corresponding moment that satisfy the
boundary conditions at both simply supported ends are

wo =
f
c2 6a1$cosh (cx)+

x
L

−
x cosh (cL)

L
−1%

+ a2$sinh (cx)−
x sinh (cL)

L %−
x(x−L)

2 7, (13)

mo =−EIf$(a2 + aca1) sinh (cx)+ (a1 + aca2) cosh (cx)−
1
c2%, (14)

where

a1 =
1

1− a2c2 61
c2 − ac$1−cosh (cL)

sinh (cL) %7,
a2 =

1
1− a2c2 6−a

c
+

1−cosh (cL)
sinh (cL) 7.

Further, the shear force obtained from equation (8b) is

qo =−EIcf[(a2 + aca1) cosh (cx)+ (a1 + aca2) sinh (cx)]. (15)

Substituting equation (13) into equation (11) yields the non-linear equation in
terms of no as the symbolic form

no =N(no , rgA, L) (16)

The solution no of equation (16) can be obtained by the Bisection method [11].

4. DYNAMIC RESPONSES

The dynamic longitudinal force obtained from equation (9a), satisfying the
condition of zero displacements at both the immovable ends, is

n*(t)=EA g
L

0 $dwo

dx
1w*
1x

+ 1
2 01w*

1x 1
2

% dx. (17)

Solutions of the set of non-linear partial differential equations (9b) and (9c) cannot
be obtained exactly. Therefore, Galerkin’s method is adopted here to find the
approximate solutions of equations (9b) and (9c). Any two distinct sets of mode
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shape functions of the Timoshenko beam, obtained from the small deformation
theory, have been shown to be orthogonal [7], i.e.,

g
L

0 $Ci0dMj

dx
−Qj1+Wi0−dQj

dx1% dx=0, i$ j, (18a)

g
L

0

r(AWiWj + ICiCj ) dx=0, i$ j, (18b)

where Wi , Ci , Qi and Mi are the ith mode shape functions of transverse deflection,
bending slope, shear force and bending moment of the beam, respectively. Further,
the following relation has also been obtained [7]

g
L

0 $Ci0dMi

dx
−Qi1+Wi0−dQi

dx1% dx=v2
i g

L

0

(AW2
i + IC2

i ) dx, (18c)

where vi is the ith modal frequency. Therefore, the dynamic responses of
transverse deflection, bending slope, shear force and bending moment of the beam
can be expressed in the following form for the Galerkin’s method

{w*, c*, q*, m*}(x, t)= s
i=1

Bi (t){Wi , Ci , Qi , Mi}(x). (19)

In equation (19), the ith modal amplitude Bi is required to be determined.
Substituting equation (19) into equations (9b) and (9c), respectively, yields

s
i=1 6Bi0−Qi +

dMi

dx 1+ rICi
d2Bi

dt2 7=0, (20a)

s
i=1 6−Bi0dQi

dx1+ rAWi
d2Bi

dt2 7=F(x, t)+ s
i=1

Bi (n*+ no )0d2Wi

dx2 1+ n*0d2Wo

dx2 1.
(20b)

Multiplying equation (20a) by Cj , equation (20b) by Wj and integrating their sum
from x=0 to x=L yields

d2Bj

dt2 +v2
j Bj =

Fj (t)
sj

+
no + n*

sj
s

i=1

Bi g
L

0

Wj
d2Wi

dx2 dx+
n*
sj g

L

0

Wj
d2Wo

dx2 dx,

j=1, 2, . . . , (21)

where the jth modal mass sj and its corresponding modal excitation Fj (t) are

sj =g
L

0

r(AW2
j + IC2

j ) dx, Fj (t)=g
L

0

F(x, t)Wj dx. (22a, b)
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Figure 2. A set of two discrete forces traversing on the beam at constant velocity v.

The value of n* in equation (21) is

n*(t)=EA$ s
k=1

Bk g
L

0

dwo

dx
dWk

dx
dx+

1
2

s
l=1

s
k=1

BkBl g
L

0

dWl

dx
dWk

dx
dx%. (23)

Substituting n* from equation (23) into equation (21) yields a set of non-linear
differential equations with coupling of modal amplitudes, which can be solved by
the Runge–Kutta method.

A set of two discrete forces moving on the Timoshenko beam at a constant
velocity v is considered here as an example to investigate the dynamic responses
of the beam. These moving forces with the same magnitude P1 are depicted in
Figure 2. The form of this kind of moving forces is

F(x, t)=P1d(x− vt)+P1d(x− vt+ d), (24)

where d(EL) is the distance between two forces and d is the impulse function. The
history of the ith modal excitation is

1. 0E tE t1(=d/v), Fj (t)=P1Wj (vt); (25a)

2. t1 E tET(=L/v), Fj (t)=P1Wj (vt)+P1Wj (vt− d); (25b)

3. TE tET+ t1, Fj (t)=P1Wj (vt− d); (25c)

4. T+ t1 E t, Fj (t)=0. (25d)

5. EXAMPLES

The material properties n=0·2, E=30 Gpa, r=2400 kg/m3 and shear
coefficient k=0·85 of the beam are considered in the numerical computation.

5.1.  

The responses of a Timoshenko beam due to its own weight are normally
different from those of Bernoulli–Euler beam. The shearing effect is negligible for
the ratio of thickness to length being small. Therefore, the results for these two
beams will be consistent when the ratio of thickness to length is small. The large
deflection theory indicates that the coupling of longitudinal force with transverse
deflection stiffens the beam. Consequently, both the deflection as well as the
moment of a beam as given by the large deflection theory are less than those by
the small deflection theory.
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The effects of length on wo and mo at the mid-span of the beam
(h=0·5 m, b=0·5 m) are depicted in Figures 3(a) and (b), respectively. According
to the small deflection theory for beams, the deflection of the beam is proportional
to the fourth order of its own length, while the moment of the beam is proportional
to the second order of its length. In the large deflection theory for beams, a large
deflection of the beam produces a strong coupling of the longitudinal force with
deflection of the beam. Consequently, both the deflection deviation as well as the
moment deviation between the small deflection theory and the large deflection
theory increase as the length of the beam increases.

The effects of thickness on wo and mo at the mid-point of the beam
(L=20 m, b=0·5 m) are displayed in Figures 4(a) and (b), respectively. The total
mass of the beam is linearly proportional to its own thickness, while the bending
rigidity of the beam is proportional to the third order of its thickness. According
to the small deflection theory for beams, the deflection is inversely proportional
to the second order of thickness and the moment is linearly proportional to the
thickness. Therefore, a thin beam has a large deflection, which implies that the thin
beam has a strong coupling of the longitudinal force with transverse deflection for
the large deflection theory. Consequently, both the deflection deviation and the
moment deviation between the small deflection theory and the large deflection
theory increase as the thickness decreases.

Figure 3. Effect of length of the beam on (a) wo and (b) mo at the mid-point of the beam
(h=0·5 m, b=0·5 m). ——, small deflection theory; - - - - , large deflection theory.
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Figure 4. Effect of thickness of the beam on (a) wo and (b) mo at the mid-point of the beam
(h=0·5 m, b=0·5 m). ——, small deflection theory; - - - - , large deflection theory.

5.2.  

Based on the small deflection theory, the dynamic responses of the beam
obtained by the method of modal analysis converge rapidly. Therefore, it is
sufficient to employ the first ten modal frequencies and their corresponding sets
of mode shape functions in the numerical computations. The velocity range
considered here is from 0 to 200 km/h. The following nomenclature and
parameters are defined to illustrate the numerical results: small deflection theory,

Figure 5. Comparison of three deflection theories on the history of deflection at the mid-point
of the Timoshenko beam (L=20 m, b=0·5 m, h=0·5 m) due to a moving concentrated force
(2P1 =3000 kg). ——, SDT; , LDTN; – . – . – , LDTW.
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T 1

Both effects of the value of h and the deflection theory on
the fundamental period of the Timoshenko beam
(L=20 m, b=0·5 m) due to a moving concentrated force

(2P1 =3000 kg, v=50 km/h)

Theories h=0·34 m h=0·5 m

SDT 0·756 s 0·518 s
LDTN 0·751 s 0·515 s
LDTW 0·504 s 0·373 s

T 2

Both effects of the velocity of the moving concentrated
force (2P1 =3000 kg) and the deflection theory on the
fundamental period of the Timoshenko beam

(L=20 m, b=0·5 m, h=0·34 m)

Theories v=50 km/h v=100 km/h

SDT 0·756 s 0·756 s
LDTN 0·751 s 0·721 s
LDTW 0·504 s 0·345 s

T 3

Both effects of the magnitude of the moving concentrated
force (v=50 km/h) and the deflection theory on the
fundamental period of the Timoshenko beam

(L=20 m, b=0·5 m, h=0·34 m)

Theories 2P1 =1500 kg 2P1 =3000 kg

SDT 0·756 s 0·756 s
LDTN 0·753 s 0·751 s
LDTW 0·511 s 0·504 s

SDT; large deflection theory without including the effect of weight of the beam,
LDTN; large deflection theory including the effect of weight of the beam, LDTW;
maximum dynamic deflection of the beam during motion of the force, w*max ;
maximum dynamic moment of the beam during motion of the force, m*max .

The reaction moment of the beam at both the simply supported ends is zero,
while both the maximum deflection as well as the maximum moment of the beam
always occur near the mid-span of the structure.

A comparison of the results obtained by three deflection theories for the history
of w* at the mid-span of the Timoshenko beam due to a moving concentrated
force (v=50 km/h, 2P1 =3000 kg, d=0 m) is presented in Figure 5. The coupling
effect of no with w* and that of wo with n* stiffen the beam. Because of this, LDTW
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yields minimum w* among these deflection theories. The period of w* of the beam
during free vibration after the force has left the beam is called the fundamental
period of the beam. In Table 1 it is indicated that a thick beam
(L=20 m, b=0·5 m) has a small value of the fundamental period due to the
moving force (2P1 =3000 kg, v=50 km/h, d=0 m). In Table 1 it is also shown
that LDTW yields a minimum value for the fundamental period among these
deflection theories. The effects of two different velocities of the moving
concentrated load (2P1 =3000 kg, d=0 m) and three deflection theories for the
beam on the fundamental period of the beam (L=20 m, b=0·5 m, h=0·34 m)
are listed in Table 2. The results in Table 2 show that the fundamental period
obtained by SDT is independent of the velocity of the moving force, and also that
LDTW yields a minimum value for the fundamental period among these deflection
theories. A rapidly moving force excites a larger number of modes of the beam
than a slow moving force does. The coupling between high frequency modes and
low frequency modes causes the magnitude of the fundamental period of the beam
to be small for a rapidly moving force. A moving force with a larger magnitude
will cause a stronger coupling of low frequency modes with high frequency modes
of the beam. Consequently, as can be seen from Table 3, the beam
(L=20 m, b=0·5 m, h=0·34 m) exhibits a smaller value of the fundamental
period due to a larger moving force (v=50 km/h, d=0 m).

Figure 6. Comparison of three d values of the force (2P1 =3000 kg) on (a) w*max–v and (b) m*max–v
distributions of the Timoshenko beam (L=20 m, b=0·5 m, h=0·34 m) based on LDTW. ——,
d=0 m; - - - - , d=2·5 m; – . – . – , d=4·0 m.
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Figure 7. Comparison of three deflection theories on (a) w*max–v and (b) m*max–v distributions of
the Timoshenko beam (L=20 m, b=0·5 m, h=0·34 m) due to a moving concentrated force
(2P1 =3000 kg). ——, SDT; – . – . –, LDTN; - - - - , LDTW.

The effects of three values of d of the moving force (v=50 km/h, 2P1 =3000 kg)
on w*max–v and m*max–v distributions of the Timoshenko beam
(L=20 m, b=0·5 m, h=0·5 m) based on LDTW are presented in Figures 6(a)
and (b), respectively. Both these figures show that the moving concentrated force
induces maximum dynamic deflection and dynamic moment among these forces.
Therefore, the dynamic responses induced by the moving concentrated force will
only be discussed in the following.

Figure 8. Comparison of two h values on the w*max–v distribution of the Timoshenko beam
(L=20 m, b=0·5 m) due to a moving concentrated force (2P1 =3000 kg). ——, LDTW
(h=0·34 m); - - - - - , LDTW (h=0·5 m); , LDTN (h=0·34 m); – . – . –, LDTN (h=0·5 m).
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Figure 9. Comparison of two L values on the w*max–v distribution of the Timoshenko beam
(b=0·5 m, h=0·34 m) due to a moving concentrated force (2P1 =3000 kg). , LDTN
(L=20 m); –-–-–, LDTN (L=10 m); ——, LDTW (L=20 m); – . – . –, LDTW (L=10 m).

The effects of three different deflection theories on the w*max–v distribution
and the m*max–v distribution of the Timoshenko beam (L=20 m, b=0·5 m,
h=0·34 m) due to a moving concentrated force (2P1 =3000 kg) are plotted in
Figures 7(a) and (b), respectively. Both of these figures reveal that the SDT
overestimates the maximum deflection as well as maximum moment of the beam.

Figure 10. Comparison of two beam models on (a) w*max–v and (b) m*max–v distributions of the
beam (L=20 m, h=0·5 m, b=0·5 m) due to a moving concentrated force (2P1 =3000 kg). ,
LDTN (Timoshenko); –-–-–, LDTN (Bernoulli–Euler); ——, LDTW (Timoshenko); – . – . –,
LDTW (Bernoulli–Euler).
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Further, these results also show that the coupling of static longitudinal force with
dynamic transverse deflection and that of static deflection with dynamic
longitudinal force cause minimum deflection and moment of the beam. Therefore,
both static deflection and static longitudinal force of the beam due to its own
weight are two very important factors dominating the vibration of the beam.

The effects of two different magnitudes of thickness and two different deflection
theories (LDTN, LDTW) on the w*max–v distribution of the Timoshenko beam
(L=20 m, b=0·5 m) due to a moving concentrated force (2P1 =3000 kg) are
displayed in Figure 8. A thicker beam exhibits a larger bending rigidity and a
smaller deflection. In Figure 8 it is shown that the difference between the
magnitude of w*max as obtained by LDTN and LDTW decreases as the thickness
increases. This indicates the LDTN can be adopted to approximately obtain w*max

of a thick beam due to the moving concentrated force without including the effect
of weight of the beam.

The effects of two different magnitudes of length and two different theories
(LDTN, LDTW) on the w*max–v distribution of the Timoshenko beam
(h=0·34 m, b=0·5 m) due to a moving concentrated force (2P1 =3000 kg) are
presented in Figure 9 to show that a longer beam has large w*max , while the shorter
beam has small wo as well as no . Therefore, the effects of coupling of no with w*
and wo with n* are small for a shorter beam. Consequently, the difference between
the magnitude of w*max as obtained by LDTN and LDTW decreases as the length
of the beam decreases.

The effects of two different beam models and two different theories (LDTN,
LDTW) on w*max–v and m*max–v distributions of the beam (h=0·5 m, L=20 m,
b=0·5 m) due to a moving concentrated force (2P1 =3000 kg) are displayed in
Figures 10(a) and (b), respectively. The Bernoulli–Euler beam is stiffer than the
Timoshenko beam. Therefore, in Figure 10(a) it is indicated that w*max of
the Timoshenko beam is greater than that of the Bernoulli–Euler beam. The
effects of shear deformation and rotatory inertia cause the Timoshenko beam
to exhibit greater m*max than that of the Bernoulli–Euler beam, as indicated in
Figure 10(b).

6. CONCLUSIONS

For a beam with a small ratio of thickness to length, the deflections as well as
moment of the Timoshenko beam caused by its own weight are the same as those
of the Bernoulli–Euler beam. The coupling of longitudinal force with transverse
deflection stiffens the beam. The effect of this coupling decreases the fundamental
period of the Timoshenko beam. A force with a large magnitude traversing on the
structure at a high velocity will cause the Timoshenko beam to exhibit a small
fundamental period. A long and thin beam exhibits strong coupling of longitudinal
force with transverse deflection. The difference in the magnitudes of dynamic
deflection and dynamic moment of the Timoshenko beam, as obtained by the large



  131

deflection theory including the effect of weight of the beam and without considering
this effect is small for a short and thick beam. The Timoshenko beam exhibits both
larger deflection and larger moment than the Bernoulli–Euler beam.
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