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This paper deals with a study of the free vibration characteristics of transverse
shear deformable cross-ply laminated circular cylindrical shells on the basis of the
Ritz method. The analysis is based on the energy functional of the Love-type
version of the unified shell theory presented in reference [28]. As a result, several
kinds of shear deformable Love-type shell theories are employed along with their
classical counterpart. The theoretical formulation is given in a general form but
the variational approach is finally applied in conjunction with a complete
functional basis made of the appropriate admissible orthogonal polynomials. The
method is currently capable of treating cross-ply laminated circular cylindrical
shells subjected to any set of variationally consistent edge boundary conditions.
In this paper, particular emphasis is given to the free vibrations of shells having
one or both of their edges free of external tractions. The efficiency of the proposed
method is exhibited by comparing corresponding results with certain experimental
data, as well as with the very few existing relevant analytical results obtained
elsewhere, on the basis of an alternative mathematical method (the state space
concept). Apart the specific value of the present dynamic investigation, the
analysis is further considered as a successful test towards its extension for the
study of corresponding problems in which the state space concept cannot be
applied directly.
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1. INTRODUCTION

The free vibrations of homogeneous orthotropic and cross-ply laminated complete
circular cylindrical shells have been studied, to a considerable extent, on the basis
of either classical or shear deformable shell theories. It is therefore well known that
the state space concept [1–6] can provide an analytical solution to such a
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vibration problem, for any set of boundary conditions imposed on the two shell
edges. This is an exact method of solution and, regardless of the shell theory
employed, it can further be applied for the free vibration study of complete
cylindrical shells having arbitrary angle-ply lay-ups [6]. Although, in certain cases,
its straightforward application may cause numerical instabilities, there are already
available certain modified versions of the method [4, 7, 8] that can avoid such an
ill-conditional behaviour.

The state space concept is essentially an exact analytical method for solving
systems of simultaneous ordinary differential equations with constant coefficients.
As far as the free vibration of cylindrical shells is concerned, it can therefore be
applied to problems dealing with (i) complete circular cylinders, and (ii) open
cylindrical panels having a rectangular plan-form and two opposite edges
simply supported (a plate is an open cylindrical shell with zero curvature). In
these cases, a suitable trigonometric choice of the displacement components
can eliminate the dependency of the governing partial differential equations of
motion from one of the two spatial co-ordinate parameters. Hence, it essentially
converts these equations into ordinary differential equations with constant
coefficients. When however vibrations of an open cylindrical panel (or a flat plate)
with more complicated edge boundaries are investigated, the state space concept
cannot be applied directly and therefore different analytical methods should be
sought.

The method of expanding the unknown solution in an infinite series of certain
basis functions (e.g., beam functions, polynomials) occurs then as a possible
alternative mathematical approach. Provided that the set of basis functions is
complete in the space of the functions that satisfy the edge boundary conditions
assumed, the main task that remains is then to determine the unknown constant
coefficients of such an infinite series. This may be achieved by using either a
variational approach (e.g., the Ritz method) or an equivalent error minimisation
technique (e.g., Galerkin’s or modified Galerkin’s method) [9]. Sometimes, such
an infinite series solution is considered and treated as an approximate one. This
however is mainly due to the fact that, in numerical applications, an infinite series
has to be truncated to a certain finite number of terms. If an appropriately large
number of terms is retained in that series, the exact solution to the problem can
practically be achieved to any desired degree of accuracy. It should be noted, on
the other hand, that an inappropriate basis may yield a very slowly converging
series solution or to cause severe numerical instabilities. Hence, the choice of a
‘‘well behaving’’ set of basis functions is of particular importance.

The search of ‘‘well behaving’’ sets of basis functions, which are suitable for the
dynamic analysis of homogeneous isotropic, orthotropic and composite laminated
structural elements, has been a subject of investigation by itself. Its advances over
the years have been recorded in several relevant publications and include the
performance of beam characteristic functions [10–15], degenerated beam functions
[13, 14], orthogonal characteristic polynomials [16–20] or even simple powers of
the co-ordinate parameters [21–23]. Most of the work done in this subject is based
on the application of the Ritz approach on the energy functional of classical plate
and shell theories that ignore the effects of transverse deformation. These later
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effects have been recognised as being of particular importance in the dynamic
analysis of composite structures. Refined transverse deformable theories however
have been employed only in a couple of relevant studies [18, 21], both of which
dealt with vibrations of rectangular plates.

Many different combinations of edge boundary conditions have already been
employed and studied in the references given above. There exists however a
particular interest in the dynamic investigation of structural elements having some
or all of their edges free of external tractions (see, for instance, references
[1–4, 10–18, 24–26]). This is merely due to the fact that free edge boundaries are
very common in engineering applications and relatively easy to achieve in a
laboratory [25, 26]. Moreover, in the early stages of the aforementioned infinite
series investigations, the accuracy of the predicted frequencies was significantly
diminishing for plates having one or more of their edges free of tractions
[10, 15, 27]. It should be noted however that more recent studies [16–18] have
shown an excellent performance of the method, if appropriate orthogonal
polynomials are chosen to form the basis of admissible functions.

This paper deals with a study of the free vibration characteristics of transverse
shear deformable cross-ply laminated circular cylindrical shells on the basis of the
Ritz method. The choice of the method is dictated from the intention to extend
it, in due course, towards the study of corresponding problems in which the state
space concept cannot be applied directly (e.g., statics and dynamics of shear
deformable plates and open shells). In this respect, apart the specific value of the
dynamic investigation presented in this paper, the analysis may be further
considered as test study of the efficiency of the method in dealing with shear
deformable laminated structures. The analysis is based on the energy functional
of the Love-type version of the unified shell theory presented by Soldatos and
Timarci [28] (see also references [5, 6]). As a result several kinds of shear
deformable Love-type shell theories are employed along with their classical
counterpart. The theoretical formulation is given in a general form but the
variational approach is finally applied in conjunction with a complete functional
basis made of the appropriate admissible orthogonal polynomials [16].

The method is capable of treating cross-ply laminated circular cylindrical shells
subjected to any set of variationally consistent edge boundary conditions. In this
paper, however, particular emphasis is given to the free vibrations of shells having
one or both of their edges free of external tractions. In dealing with such example
applications, more emphasis is given to the study of cross-ply laminated circular
cylindrical shells, both edges of which are free of tractions. Under certain material
restrictions, an experimental study of this problem was also performed and
presented in a recent paper [26]. The problem, however, has not as yet been studied
on the basis of an analytical approach and, therefore, relevant numerical results
are not as yet available in the literature.

2. THEORETICAL FORMULATION

Consider a circular cylindrical panel, having a constant thickness h and an axial
length Lx (Figure 1) and denote with R and Ls the radius and circumferential length
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Figure 1. The nomenclature of a circular cylindrical panel.

of its middle-surface, respectively. For reasons that will become more evident later,
it is theoretically advantageous to imagine the complete circular cylindrical shell
considered as a particular case of this open panel for which f=2p. Moreover,
as the radius R approaches infinity (f=0), the geometrical configuration of a flat
plate is obtained as another particular case. The axial, circumferential and normal
to the middle-surface co-ordinate length parameters are denoted with x, s and z,
respectively, while U, V and W represent the corresponding displacement
components.

It is assumed further that the cylindrical panel considered is made of an
arbitrary number, L, of linearly elastic orthotropic layers, the material axes of
which coincide with the axes of the adopted curvilinear co-ordinate system. Hence,
upon assuming negligible transverse normal stress and strain throughout the shell
thickness, the stress-strain relationships in the kth layer (starting counting from
the inner layer) are given as follows (k=1, 2, . . . , L):
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where the appearing reduced stiffnesses are defined in reference [29].
The shell type approximations employed in this study are consistent with the

general Love-type shear deformable shell theory detailed in references [5, 6, 28].
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In this respect, only the main features and the basic equations of the theory are
outlined in this section.These start with the general displacement approximation:

U(x, s, z; t)= u(x, s; t)− zw,x +F1(z)u1(x, s; t),

V(x, s, z; t)= (1+ z/R)v(x, s; t)− zw,s +F2(z)v1(x, s; t),

W(x, s, z; t)=w(x, s; t), (2)

which then yields the following kinematic relations:

ox = u,x − zw,xx +F1(z)u1,x ,

os =(1+ z/R)v,s − zw,ss +F2(z)v1,s +w/R,

gsz =F'2v1,

gxz =F'1u1,

gxs = u,s + v,x + z(−2w,xs + v,x /R)+F1u1,s +F2v1,x , (3)

where a prime denotes differentiation with respect to z. Here, u, v, w, u1 and v1

are the five unknown displacement functions (degrees of freedom) of the theory,
while F1(z) and F2(z) represent the a posteriori specified shape functions which,
through their derivatives, determine the through-the-thickness distribution of the
transverse shear strains or stresses [5, 28].

The force and moment resultants of the theory are defined according to,

(Nx , Ns , Nxs )=g
h/2

−h/2
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s =g
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tszF'2 dz, (4)
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Here, the appearing rigidities are defined as follows:

Aij =g
h/2
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Q(k)
ij dz, Ajjll =g
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(6)

with indices taking their appropriate values.
The variationally consistent equations of motion as well as the corresponding

sets of edge boundary conditions are given, in terms of the afore mentioned
quantities, in reference [28]. Here, however, the Ritz method will be used. In this
respect, the five unknown displacement functions are expressed in the following
form:

u(x, s; t)= cos (vt) sin (nps/Ls ) s
M

m=1

AmXu
m (x),

v(x, s; t) = cos (vt) cos (nps/Ls ) s
M

m=1

BmXv
m (x),

w(x, s; t)= cos (vt) sin (nps/Ls ) s
M

m=1

CmXw
m (x),

u1(x, s; t)= cos (vt) sin (nps/Ls ) s
M

m=1

DmXu1
m (x),

v1(x, s; t)= cos (vt) cos (nps/Ls ) s
M

m=1

EmXv1
m (x), (7)
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where v is an unknown natural frequency of vibration. The s-dependent parts in
these representations enable the satisfaction of simple support boundary
conditions on the straight edges of an open panel (s=0, Ls ) or, provided that the
half-wave number n is an even integer, the satisfaction of all the periodicity
requirements that should hold around the circumference of a closed cylindrical
shell (f=2p).

Each of the summations appearing in equations (7) represents a series expansion
of the unknown x-dependent part of the corresponding displacement function.
The set of the appearing basis functions should be chosen to be complete in the
space of the functions that satisfy the geometric boundary conditions employed
at the curved shell edges (x=0, Lx ). Each member of the basis functions is
multiplied by an unknown constant coefficient, the whole set of which is to be
determined on the basis of a variational method (e.g., the Ritz method). Under
these considerations, such a variational method can, in principle, yield an exact
series-form representation of the solution sought, provided that M=a. In
practice, however, each of the series appearing in equations (7) should be
truncated to a finite number of terms, which may differ from one expression to
another. For simplicity, the same number of such terms, M, is assumed throughout
this paper for all five series expansions.

The Ritz method requires the determination of the unknown coefficients
appearing in equations (7) by minimizing the total Lagrangian of the system
over a certain time interval. This is equivalent with applying Hamilton’s
principle:

d g
t2

t1

(T−U
 ) dt=0, (8)

where the appearing kinetic and the strain energies are given according to,

T= 1
2 gVol

r(U� 2 +V� 2 +W� 2) dz ds dx,

U
 = 1
2 gVol

(sxox + ssos + tszgsz + txzgxz + txsgxs ) dz ds dx. (9)

Equation (8) is essentially equivalent with setting equal to zero all the 5M partial
derivatives of its integrand, with respect to the same number of the unknown
coefficients appearing in equation (7). It therefore yields the following generalized
algebraic eigenvalue problem:
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where the appearing M×M stiffness and inertia submatrices are given in
Appendix A.

As has already been mentioned, the basis functions employed in this paper are
orthogonal polynomials that satisfy all the geometric boundary conditions applied
at the curved shell edges [16, 17]. In more detail, given the first of these
polynomials, c1(x), the remaining ones are constructed according to the following
recursive formulas [16]:

c2(x)= (x−B2)c1(x),

ck (x)= (x−Bk )ck−1(x)−Ckck−2(x), for kq 2,

Bk =
g

Lx

0

xc2
k−1(x) dx

g
Lx

0

c2
k−1(x) dx

, Ck =
g

Lx

0

xck−1(x)ck−2(x) dx

g
Lx

0

c2
k−2(x) dx

. (11)

Upon further dividing each one of its members by the square root of the norm:

>ck (x)>=g
L

0

c2
k (x) dx, (12)

the orthogonal polynomial basis developed is converted into a corresponding
orthonormal one.

As will be seen in the next section with a particular example, such an
orthonormal basis behaves better than its orthogonal counterpart, in the sense that
it improves considerably the numerical stability of the final algebraic eigenvalue
problem (10). All numerical results presented in the next section are for open
cylindrical panels and closed cylindrical shells having both their curved edges free
of external tractions (FF shells) or one of these edges clamped and the other free
of tractions (CF shells). Since there are no geometric boundary conditions applied
on a free edge, all the orthonormal bases used for the numerical study of FF shells
and panels start with the zeroth degree polynomial and, therefore,

Xu
1 (x)=Xv

1(x)=Xw
1 (x)=Xu1

1 (x)=Xv1
1 (x)= (Lx )−1/2. (13)

For CF shells, however, all displacement components must be zero at x=0 while,
in addition, the first derivative of w must be zero at x=0. Hence, the orthonormal
bases used in this case are as follows:

Xu
1 (x)=Xv

1(x)=Xu1
1 (x)=Xv1

1 (x)= x(L3
x /3)−1/2,

Xw
1 (x) = x2(L5

x /5)−1/2. (14)

The elements of the stiffness and mass matrices appearing in equation (10) become
therefore products of polynomial functions and the denoted integrations can be
carried out numerically, up to any desired degree of accuracy.
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3. NUMERICAL EXAMPLES

As has already been mentioned, the emphasis in this section is on the vibration
characteristics of cross-ply laminated circular cylindrical shells having one or both
of their curved edges free of external tractions. For such shells, numerical results
that are based on alternative mathematical methods are very rare in the literature.
In order to check the reliability of the method presented in the preceding sections,
some comparisons were initially performed with corresponding numerical results
obtained by Khdeir et al. [3] on the basis of the state space concept. These are
for open cylindrical panels having both their straight edges simply supported and
their curved edges free of external tractions (SSFF panels). Each one of these
panels is assumed to be made of a certain number of specially orthotropic layers,
all of which have the following material properties:

E1/E2 =25, G12/E2 =G13/E2 =0·5, G23/E2 =0·2, n12 =0·25. (15)

Khdeir et al. [3] applied the state space concept on the equations of a parabolic
shear deformable shell theory that is obtained by choosing the following form of
the shape functions appearing in equations (2):

F1(z)=F2(z)= z(1−4z2/3h2). (16)

This choice of the shape functions yields a through the thickness parabolic
distribution of the transverse shear strains. After equations (1) and (3), it therefore
guarantees the satisfaction of the zero shear traction boundary conditions imposed
on the shell lateral surfaces, but it violates the continuity of interlaminar stresses
at the shell material interfaces. Hence, in order to keep the line followed in
reference [5], all results based on the choice (16) will be indicated with the notation
PARds (parabolic shear deformation—discontinuous stresses). For comparison
purposes, the shape functions (16) are initially used for the results shown in
Tables 1–3.

For both the orthogonal and the orthonormal FF polynomial functional bases
described in the preceding section, Table 1 shows the value of the fundamental
frequency parameter,

v̄=
vL2

x

h
zr/E2, (17)

obtained upon increasing the number of the polynomial terms involved in
expressions (7). These results make evident a fast convergence of the frequency
parameter, towards the corresponding value obtained in reference [3] on the basis
of the state space concept (v̄=5·7). For either of the two functional bases, three
terms in the series expansion (7) are adequate to provide the exact frequency with
an accuracy of four significant figures. Moreover, the two frequency columns
shown in Table 1 cannot reveal by themselves any differences or benefits in using
any one of the two polynomial bases instead of the other. The two extra columns
added for each basis, give however the condition number of the stiffness and the
inertia matrix, respectively, that is the ratio of the largest to the smallest singular
value of the matrix (see reference [30, p. 61]).
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T 1

Convergence of the fundamental frequency parameter, v̄, of an SSFF open [0°/90°]
circular cylindrical panel (R/Lx =5, Lx /Ls =1, Lx /h=10, n=1; PARds ). State

space concept value [3]: v̄=5·7

Orthogonal polynomials Orthonormal polynomials
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

M v̄ Cond(K) Cond(M) v̄ Cond(K) Cond(M)

1 5·744 7·80E+02 1·88E+03 5·744 7·80E+02 1·88E+03
2 5·742 8·90E+03 2·26E+04 5·742 9·53E+02 1·92E+03
3 5·741 1·10E+05 3·39E+05 5·741 4·64E+03 2·07E+03
4 5·741 1·43E+06 5·27E+06 5·741 1·31E+04 2·45E+03
5 5·741 1·83E+07 8·31E+07 5·741 2·94E+04 3·24E+03
6 5·741 2·35E+08 1·32E+09 5·741 5·79E+04 4·85E+03
7 5·741 3·06E+09 2·09E+10 5·741 1·06E+05 8·03E+03
8 5·741 4·08E+10 3·33E+11 5·741 2·01E+05 1·42E+04
9 5·741 5·58E+11 5·31E+12 5·741 4·30E+05 2·58E+04

10 5·741 7·79E+12 8·46E+13 5·741 8·82E+05 4·69E+04

The condition numbers have not the presumption of some general parameters
that assess the behaviour of an orthogonal basis. They however provide useful
information with regard to the eventual numerical treatment [30] of the stiffness
and the inertia matrices that represent the generalized eigenvalue problem (10). In
this respect, Table 1 makes clear that, if many terms are retained in the series
expansion (7), the orthonormal polynomial basis behaves better than the
orthogonal one, in the sense that it keeps the condition number of both matrices
within reasonably low bounds. On the other hand, the convergence of the results
presented in Table 1 is extremely fast and, therefore, the exact fundamental
frequency parameter is obtained by retaining only the first few terms in the series
expansions (7). There are cases however, particularly when higher vibration
frequencies are sought, in which many terms should be retained in the series
expansion (7). Since in such cases the condition number of the stiffness and the
inertia matrices should be kept as low as possible, only the orthonormal bases will
be used for the remaining results throughout this section. All the results presented
in this section were obtained by employing numerical codes that made use of the
standard mathematical functions of MATLAB V.4.2.

Under these considerations, Tables 2 and 3 present further SSFF open panel
results that reveal several features of the behaviour of the present method. In more
detail, Table 2 shows the complete comparison of all fundamental frequency
parameters obtained in reference [3] on the basis of the state space concept, with
the corresponding ones obtained on the basis of the present approach, for different
numbers of polynomial terms. This comparison clarifies that, upon retaining only
the first three polynomial terms in the series expansion (7), the present method
always predicts the exact vibration frequency within accuracy of four significant
figures. Table 3 finally shows the influence of the polynomial number M on the
six first freqency parameters v̄ of the cylindrical panel that has already
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T 2

Convergence of the fundamental frequency parameter, v̄, of SSFF open circular
cylindrical panels (Lx /Ls =1, Lx /h=10, n=1; PARds )

[0°/90°/0°] [0°/90°]
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

M R/Lx =5 R/Lx =20 R/Lx =5 R/Lx =20

1 3·770 3·791 5·744 5·811
2 3·768 3·790 5·742 5·810
3 3·767 3·789 5·741 5·809
4 3·767 3·789 5·741 5·809
5 3·767 3·789 5·741 5·809

Reference [3] 3·783 3·789 5·7 5·8

been employed in Table 1. Moreover, Figure 2 shows a mapping, into the square
domain [0, 1]× [0, 1], of the transverse component, w, of the part of the
corresponding mode shapes that acts on the panel middle-surface (z=0).

Apart from the good practice of identifying vibration frequencies on the basis
of their mode shape, the results shown in Table 3 and in Figure 2 enable the
observation of some additional features of the convergence process. Upon
considering the nature of the orthonormal polynomials generated with the
recursive formulas (11) and (12), it becomes evident that a very accurate prediction
of a frequency and the corresponding mode shape is achieved when the degree of
the highest polynomial employed in expression (7) approaches or slightly exceeds
the associated mode number. Figure 2(b), for instance, reveals that the mode shape
of the second frequency can be built accurately by making use of, at most,
first-degree polynomials. Moreover, at that stage, the predicted second frequency
parameter has already approached as close as 1% to its final value obtained by

T 3

Convergence of the frequency parameter, v̄, of an SSFF open [0°/90°] circular
cylindrical panel for several values of the circumferential wave number, n (R/Lx =5,

Lx /Ls =1, Lx /h=10; PARds )

Circumferential half-wave number n
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

M 1 2 3 4 5 6

1 5·744 — — — — —
2 5·742 6·942 — — — —
3 5·741 6·941 18·242 21·828 — —
4 5·741 6·902 17·654 20·992 44·368 —
5 5·741 6·901 15·905 20·971 40·993 77·800
6 5·741 6·879 15·842 20·773 33·050 72·080
7 5·741 6·879 15·773 20·773 32·713 54·112
8 5·741 6·872 15·772 20·756 32·351 53·351
9 5·741 6·872 15·765 20·756 32·342 51·895

10 5·741 6·870 15·765 20·754 32·340 51·851
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Figure 2. Transverse component of the mode shapes corresponding to the frequencies tabulated
in Table 3.
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retaining ten polynomial terms. Similarly, the mode shape of the sixth mode is
built very accurately by employing the first eight or nine orthonormal polynomials.
This complicated mode shape [Figure 2(f)] would however never be determined
by superposing the first three orthonormal polynomials, which represent a
constant (translation), a straight line (rotation) and a parabola. This later
argument also makes evident the reason for the existence of the big gap between
the prediction of the sixth frequency obtained by retaining the first five (77·80) and
the first seven polynomial terms (54·112) in expression (7).

The influence of different types of shell theories, as well as the influence of the
h/R and Lx /R ratios, on the fundamental frequencies of certain FF complete
circular cylinders having a symmetric [0°/90°/0°] lay-up, are shown in Tables 4
(h/R=0·02) and 5 (h/R=0·2). The results tabulated in these tables, as well as
all numerical results shown in what follows, were found to be very accurate by
employing M=8 in the polynomial expansions (7). For comparison purposes, the
classical Love-type shell theory (CST), its uniform shear deformable analogue
(UNI), as well as two versions of its parabolic shear deformable analogue were
used for the results presented in Tables 4 and 5. In more detail, apart from the
afore mentioned PARds version of the shear deformable theory, its more advanced
version that accounts for the through-thickness continuity of the parabolically
distributed interlaminar stresses [5] was also employed. All results based on this
advanced version of the theory are indicated with the notation PARcs (parabolic
shear deformation—continuous stresses). In this version, the global shape
functions F1(z) and F2(z) can be derived by applying the general iterative approach
described in reference [5], after assuming three sets of local shape functions of the
form (16) (one set of shape functions for each layer). In order to avoid any possible
drawbacks of a slight approximation involved in the iterative approach proposed
in reference [5], an alternative exact approach was also employed in this paper.
This is briefly outlined in Appendix B for cylinders having a symmetric lay-up and,
in its present form, holds only for the case that all sets of local shape functions
involved have the form (16). It should be emphasized, however, that using either
the previous iterative approach [5] or its present improvement, the advanced
version of the shear deformable shell theory produced essentially identical results.
Hence, only one set of such frequencies is always shown, under the notation PARcs.

T 4

Fundamental frequency parameters, v̄, of an FF open [0°/90°/0°] circular cylindrical
shell (h/R=0·02, n=4, E1 =40E2, G12 =G13 =0·6E2, G23 =0·5E2, n12 =0·25)

Lx /R
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Theory 0·20 0·25 0·5 0·75 1·00 1·25 1·50 1·75 2·00

CST 0·04846 0·07572 0·3029 0·6816 1·212 1·893 2·727 3·711 4·848
UNI 0·04845 0·07570 0·3028 0·6814 1·212 1·893 2·726 3·710 4·846
PARds 0·04844 0·07569 0·3028 0·6813 1·211 1·893 2·726 3·710 4·845
PARcs 0·04844 0·07569 0·3028 0·6813 1·211 1·893 2·726 3·710 4·846
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T 5

Fundamental frequency parameter, v̄, of an FF closed [0°/90°/0°] circular cylindrical
shell (h/R=0·02, n=4, E1 =40E2, G12 =G13 =0·6E2, G23 =0·5E2, n12 =0·25)

Lx /R
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Theory 0·20 0·25 0·5 0·75 1·00 1·25 1·50 1·75 2·00

CST 0·04828 0·07544 0·3018 0·6790 1·207 1·886 2·716 3·697 4·830
UNI 0·04689 0·07326 0·2931 0·6594 1·172 1·832 2·638 3·590 4·689
PARds 0·04628 0·07230 0·2892 0·6508 1·157 1·808 2·603 3·543 4·628
PARcs 0·04645 0·07257 0·2903 0·6531 1·161 1·814 2·613 3·556 4·645

Both Tables 4 and 5 clarify that the parabolic shear deformable theories always
give lower frequencies than their corresponding CST and UNI counterparts. For
very thin shells (Table 4), this does not give a particular advantage to any of the
theories compared. As was expected, all three theories yield practically identical
fundamental frequencies and, therefore, even the CST is reliable. For thicker shells
however (Table 5), the CST should be abandoned completely and its parabolic
shear deformable analogue should be preferred. The fact that the PARds model
underestimates in some cases while in other cases overestimates the frequency
parameters obtained by the more accurate PARcs model has also been reported
in references [5, 6, 31, 32] and, therefore, it does not come as a surprise. It should
be reasonable to expect, in this respect, that further progress of the corresponding
solutions that are based on three-dimensional theory of elasticity (see, for instance,
references [33–37]) will confirm the superiority of the PARcs model.

The results presented in Tables 4 and 5 show further that, regardless of the shell
theory employed, the length of such stiff cylinders has a very little effect on their
circular fundamental frequency parameter, v (rad/s). This can easily be verified
upon dividing all the v̄s tabulated in these tables by their corresponding L2

x values
and, then, by comparing all these outputs obtained for the same shell theory. It
means that, for so stiff FF cylinders (E1/E2 =40), the fundamental circular
frequencies are principally influenced by bending effects and only very slightly by
corresponding in-plane shear deformations. Hence, the dynamic behaviour of such
cylinders becomes essentially equivalent to the corresponding behaviour of a series
of rings, which are joined together but vibrate independently.

The validity of this latter argument is further justified from the results shown
in Figure 3. There, for three different stiffness ratios (E1/E2 =2, 5 and 40) and for
both CST and the PARcs models, the variation of the relative difference,

v̂=
vIx/R −vLx/R=0·25

vLx/R
×100, (18)

has been drawn as a function of the ratio Lx /R (h/R=0·2). For highly reinforced
cylinders (E1/E2 =40), both curves, and especially the one associated to the CST
results, essentially coincide with the horizontal abscissa of the figure. Upon
decreasing however the value of the stiffness ratio, the influence of the in-plane
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Figure 3. Relative difference [v̂=((vLx/R −vLx/R=0·25)/vLx/R )×100] as a function of Lx /R
(E1/E2 =2, 5, 40). r, CST (40); w, PARcs (40); e, CST (5); q, PARcs (5); ×, CST (2); +, PARcs

(2).

shear deformation effects increases, thus causing the gradual lift of both
curves.

Dealing finally with certain homogeneous orthotropic FF cylinders, Table 6
compares the lowest frequencies obtained experimentally [26] with corresponding
frequencies obtained when the present approach is applied on the PARcs model.
To the authors’ best knowledge, the experimental results presented in reference [26]
are the only experimental dynamic results available in the literature of FF
composite cylinders. The geometrical and the material characteristics of the
orthotropic cylindrical specimen considered are given in the heading of Table 6.
It should be noted that these material characteristics were evaluated by a trial and
error process [26], which was based on a finite element code and a plate
manufactured from the same material with the cylindrical specimen. Moreover,
despite certain difficulties that were experienced during the manufacturing process,
a reasonably good agreement between corresponding frequencies obtained
experimentally and analytically has been observed and shown in Table 6. The fact
that two values of M (8 and 10) have been used for the analytical results tabulated
in Table 6 shows also the degree of convergence achieved. For each one of the
analytically obtained lowest frequencies, Table 6 finally shows a mapping, into
the square domain [0, 1]× [0, 1], of the transverse component, w, of the
corresponding mode shape that acts on the middle-surface (z=0). This makes
easier the distinction of the nodal rings, which are marked with bold lines.

The simplicity of the approach and equations presented in the preceding section
enables one to get accurate numerical results for different boundary conditions
by just changing the orthonormal polynomial basis. This is shown in Table 7
where, in a last numerical example, the fundamental frequency parameters of a
complete cantilevered cylindrical shell are presented and compared with
corresponding results obtained on the basis of the state space concept [5]. The CF
cylindrical shell considered is a [0°/90°/0°] cross-ply laminated one having
essentially the same geometrical and material characteristics as the FF shell
employed for the corresponding results tabulated in Table 5. Here, however, the
orthonormal polynomial basis (14) has been used, instead of the polynomial basis
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T 6

Corresponding experimental [26] and analytical fundamental frequencies v (Hz) for
a FF homogeneous orthotropic cylindrical specimen (Data [26]: [0°] lay-up,
E1 =27·807 GPa, E2 =9·887 GPa, G12 =3·246 GPa, G13 =2·533 GPa,
G23 =2·426 GPa, n12 =0·273, r=1681·3 kg/m3, Lx =350·5 mm, R=59·18 mm,
h=6·4 mm)

(13). These results show again the very fast convergence of the Ritz method
towards the exact fundamental frequencies of vibration. It should perhaps be
noted that, in most cases, the present method converged to slightly lower
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T 7

Fundamental frequency parameters v̄, of a CF closed [0°/90°/0°] circular cylindrical
shell (h/R=0·2, E1 =40E2, G12 =G13 =0·6E2, G23 =0·5E2, n12 =0·25; n=4 unless

given as a superscript)

Present analysis
ZXXXXXXXXXXCXXXXXXXXXXV

Theory Lx /R Ref. [5] M=2 4 6 8 10

CST 1 6·68(2) 6·910(2) 6·663(2) 6·662(2) 6·662(2) 6·662(2)

2 10·90(2) 12·263(2) 10·902(2) 10·897(2) 10·897(2) 10·897(2)

PARds 1 4·98 5·420 4·965 4·934 4·932 4·932
2 9·26 10·475 9·238 9·166 9·151 9·149

PARcs 1 5·0 5·433 4·983 4·958 4·956 4·956
2 9·28 10·484 9·250 9·182 9·169 9·168

frequencies than those obtained on the basis of the state space concept [5]. This
however cannot be considered as a drawback of the present method, which has
generally shown a very reliable behaviour. It should therefore be attributed to a
rather unstable behaviour shown occasionally by the corresponding frequency
determinant, during the straightforward application of the state space concept
employed in reference [5], and the inevitable round off errors involved.

4. CONCLUSIONS

This paper dealt with a study of the free vibration characteristics of transverse
shear deformable cross-ply laminated circular cylindrical shells on the basis of the
Ritz method. The analysis was based on the energy functional of the Love-type
version of the unified shell theory presented in reference [28]. As a result several
kinds of shear deformable Love-type shell theories were employed along with their
classical counterpart. The theoretical formulation was given in a general form but
the variational approach was finally applied in conjunction with a complete
functional basis made of the appropriate admissible orthogonal polynomials. The
method is capable of treating cross-ply laminated circular cylindrical shells
subjected to any set of variationally consistent edge boundary conditions but, in
this paper, particular emphasis was given to the free vibrations of shells having
one or both of their edges free of external tractions.

The features and the efficiency of the proposed method was exhibited by
comparing corresponding results with certain experimental data, as well as with
the very few existing relevant analytical results obtained, elsewhere, on the basis
of the state space concept. These comparisons showed a fast convergence of the
method towards the exact frequency values, regardless of the shell theory
employed. It was also concluded that orthonormal rather than simply orthogonal
polynomial bases should be preferred, particularly when higher vibration
frequencies and mode shapes are sought. Apart from the specific value of the
present dynamic investigation, the analysis is further considered as a successful test
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for its extension towards the study of corresponding problems in which the state
space concept cannot be applied directly.
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APPENDIX A

The elements of the M×M stiffness submatrices appearing in equation (12) are
given as follows (i, j=1, 2, . . . , M):

(k11)ij =A11(Xu
i )'(Xu

j )'+A660np

Ls1
2

(Xu
i )2dij ,

(k12)ij =−0A12 +
B12
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i (Xv
j )',
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j )0−2B660np

Ls1
2

Xu
i (Xw
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(k14)ij =B111(Xu
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j ,

(k15)ij =−B1220np

Ls1(Xu
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Ls1Xu
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D22
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R
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Xv
i Xv1
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R
+B6621(Xv

i )'(Xv1
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where a prime denotes ordinary differentiation with respect to x. Similarly, the
elements of the M×M inertia submatrices appearing in equation (12) are given
as follows (i, j=1, 2, . . . , M):

(m11)ij = r0(Xu
i )2dij ,
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+
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where dij , is the Kroneker’s symbol and,

rm =g
h/2

−h/2

rzm dz, r(lp)
m =g

h/2

−h/2

r(Fl )pzm dz, (m=0, 1; l, p=1, 2). (A3)
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Figure 4. The nomenclature of a symmetric lay-up.

APPENDIX B

Consider the cross-ply laminated cylindrical panel shown in Figure 4, which is
composed of an odd number of coaxial layers (say 2N+1) arranged in the form
of a symmetric lay-up. Denote with a superscript 0 all quantities referring to the
middle layer and denote with zk and Rk the co-ordinate of the material interface
between the (k−1)th and the kth layer (k=0, 21, 22, . . . , 2N) and the
middle-surface radius of the kth layer, respectively. According to the analysis
presented in reference [5], the following choice of global shape functions:

F1(z)=Ak8
(k)
1 (z)+Bk ,

F2(z)=Ck8
(k)
2 (z)+ (1+ z/Rk )Ek , (A4)

can accomodate very accurately all interlaminar continuity and lateral surfaces
boundary conditions, for any combination of local shape functions 8(k)

1 and 8(k)
2 .

The exact form of the coefficients appearing in equations (A4) are as follows [5]
(k=0, 21, 22, . . . , 2N):

Ak =
Q(k3 1)

55

Q(k)
55

8'(k3 1)
1 (zk )
8'(k)

1 (zk )
Ak3 1, A0 =1,

Bk =Bk3 1 + [8(k3 1)
1 (zk )Ak3 1 −8(k)

1 (zk )Ak ], B0 =0,

Ck =
Q(k3 1)

44

Q(k)
44

8'(k3 1)
2 (zk )
8'(k)

2 (zk )
Ck3 1, C0 =1,

Dk =
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1+ zk /Rk
Dk3 1, D0 =1,

Ek =(Dk /Dk3 1)Ek3 1 + (1+ zk /Rk )−1[8(k3 1)
2 (zk )Ck3 1 −8(k)

2 (zk )Ck ], E0 =0.

(A5a–e)

The derivation of equations (A4) was however based on a slight approximation.
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In order to eliminate this approximation in the advanced version of the
parabolic shear deformable shell theory, the local shape functions employed here
are defined as follows (k=0, 21, 22, . . . , 2N):

8(k)
1 (z)= z(1−4z2/3h2),

8(k)
2 (z)= z(1−Ek /CkRk )−4z3/3h2. (A6)

As can easily be verified, this choice of local shape functions satisfies exactly the
zero shear traction boundary conditions imposed on the lateral shell surfaces,
regardless of the value of the appearing constants Ck , and Ek . The remaining
difficulty however is that these two constants, Ck and Ek , are now interrelated by
means of equations (A5c) and (A5e). Upon inserting the second of equations (A6)
into equations (A5c) and (A5e), one indeed obtains,

Ck =
Q(k3 1)

44

Q(k)
44

Ck3 1 +0Ek

Rk
−

Q(k3 1)
44

Q(k)
44

Ek3 1

Rk3 11 1
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, (A7)

and

Ek =0 Dk

Dk3 1
−

zk /Rk3 1

1+ zk /Rk1(1+ zk /Rk )Ek3 1 + (Ck3 1 −Ck )8(zk ), (A8)

respectively. The decoupling of Ck , and Ek is finally achieved by inserting (A7) into
(A8). This yields,
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$ Dk

Dk3 1
−
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1+ zk /Rk
+

8(zk )
8'(zk )

Qk3 1
44

Qk
44

1
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Qk3 1
44

Qk
44 18(zk )
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8(zk )
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1
Rk

,

(A9)

where,

8(zk )= zk (1−4z2
k /3h2), 8'(zk )=1−4z2

k/h2. (A10)

Hence, the global shape functions employed in the present advanced version of
the parabolic shear deformable shell theory were still obtained on the basis of
equations (A4) and (A5), in which however the definitions of the coefficients Ck

and Ek given by equations (A5) were replaced in accordance with equations (A7)
and (A9).These replacements guarantee for the through-thickness, continuous,
parabolic distributions of the transverse shear stresses as well as for their exact
nullification on the lateral shell surfaces.


