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Modern compact design often does not permit the effective use of linear
vibration isolation in the case of the intense environmental disturbances. Demands
for limitation of the dynamic deflections lead to the use of heavy damped vibration
isolators, sometimes in combination with the bumpers installed with the maximal
free travel. The increase in isolator damping improves the low frequency resonant
response at the expense of an inferior isolation performance in the high-frequency
range. The installation of bumpers with enlarged travel reduces the probability of
the accidental impacts and effectively trims the excessive deflections in an
emergency. However, it turns the isolator into a vibro-impact structure, where the
appearance of intense impulsive accelerations and high-powered non-linear
resonance becomes the subject of concern. The idea of the present novel concept
is based on co-operative use of an undamped, low frequency vibration isolator in
combination with optimally damped bumpers installed with minimal free travel.
Such an isolator demonstrates the advantages of the linear undamped isolator
under low level ambient and operational high frequency excitation. However,
under severe ambient disturbances, for any excessive deflections, it becomes
strongly non-linear and takes on the quality of an optimal shock absorber. The
approach formulated has been applied successfully to a design of a gimballed
electro-optical device based on the linear split Sterling cryocooler for a focal array.
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1. INTRODUCTION

The limiting of vibratory energy transmission from a machine to its foundation
and vice versa may be achieved by the proper use of a flexural suspension. If the
natural frequencies of the resiliently suspended machine are located well below the
lowest frequency in the excitation spectrum, a significant attenuation of vibration
transmission may be achieved in a certain high-frequency range. In this case, it
is recommended to use a soft and undamped flexural suspension [1].

In fact, such a simple vibration isolator is feasible in a limited number of cases
of moderate environmental disturbances. As soon as an application involves
exposure to severe environmental disturbances such as shock or broadband

† Formerly Ricor Cyogenic & Vacuum Systems, En Harod Ihud 18960, Israel.
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random vibration, the spectrum of excitation already contains dangerous low
frequency components. The low frequency and undamped isolator under such
conditions exhibits excessive deflections that can over-stress the flexural suspension
and even damage the machine or its enclosure.

Due to the possible low frequency amplification, the flexible suspension must
be supplied in this case with considerable free oscillation space to avert impacts
against the machine enclosure [2]. Modern compact mechanical design, however,
does not permit such a possibility. The constraint of the space together with the
demands for the safety of the machine enclosure, resilient supports and a flexible
interface necessitates close control of vibration amplification at quasi-resonance
or at shock.

The most generic solution combines the increase of free travel of the vibration
isolator (as is permitted by design) and the choice of the loss factor of the
suspension with respect to the transmissibility ratio at the operational frequency.

It is considered that an optimal flexible suspension has a compromising loss
factor of 0·3, thus providing resonance amplification of about 2, and 73%
vibration isolation at a frequency which is four times that of the natural frequency.
Increased free travel minimizes the probability of undesirable strike-through of
vibration isolation and prevents the non-linear resonance appearance.

Such a design produces spacious, heavily damped vibration isolators, where a
high loss factor of the resilient elements negates the quality of vibration isolation
in a high-frequency range. Moreover, the increase in this loss factor cannot prevent
the appearance of excessive deflections at ambient random vibration or at shock.
In order to protect a machine and its enclosure from unavoidable excessive
motions, the pre-designed deflection limiters—bumpers—are usually an integral
component of a vibration isolation arrangement. If of sufficient stiffness, bumpers
can effectively trim machine deflections in an emergency.

However, the presence of bumpers turns the vibration isolation arrangement
into a potential strongly non-linear (vibro-impact) system with new, sometimes
unfavourable, dynamic qualities [3]. Main or even sub-harmonic vibro-impact
resonance in a frequency range located well above the system natural frequency
may arise after casual vibration disturbance or frequency pulling at machine
start-up. With the increase in free vibration space there exists the danger of the
appearance of intense impulsive accelerations due to the development of large
pre-impact velocities.

There is an attempt in this paper to revise the traditional approach to the design
of bumpered vibration isolation arrangement. The low frequency and undamped
vibration isolator with soft and heavily damped bumpers is considered as a tool
for simultaneous control of vibration export and excessive deflections.

The special installation of the bumpers permits only a minimum of the free
travel required for the impactless operation of the isolator when free of intense
ambient disturbances. Under a low-level ambient and typical high frequency
excitation, such a vibration isolator appears to be linear, undamped and highly
responsive with excellent vibration isolation ratio in a high-frequency range.

Any excess of the pre-designed free travel due to the intense ambient disturbance
results in a momentary generation of the impulsive restoring force of the bumper.
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Figure 1. Spectral presentation of self-induced force of linear compressor.

Stiffness and damping obtained during the collision cause the quick halt of the
isolator within a very short compression stroke and low rebound without
generation of ruinous accelerations.

In this context, it became clear that the bumper has to be designed as an optimal
shock absorber. Such parameters as free oscillation space, bumper stiffness and
damping will be treated further as possible keys to the global improvement of
quality of non-linear vibration protection systems.

2. DESCRIPTION OF A SPECIFIC APPLICATION

The typical case of a bumpered vibration protection arrangement as applied to
a design of a gimballed electro-optical device [4] will be discussed. The above
device was based on a split Sterling cryocooler (Ricor model K529H, consisting,
respectively, of compressor and expander units) for the cooling of an infrared focal
array.

The self-induced force†, produced by the operating compressor contains in its
spectra an intense pure-frequency component 14 N RMS . 60 Hz, as shown in
Figure 1. It appeared to be the dominant disturbing factor of the specific gimballed
electro-optical application. It was established experimentally that normal
operation of precise optics might be achieved if the force produced by the
compressor unit is less than 1 N RMS at the fundamental frequency. In order to
achieve such an attenuation factor, an undamped low-frequency vibration isolator
with natural frequency of 15 Hz and loss factor of 0·05 may be used (see, for
instance, the curves of absolute transmissibility in reference [5]).

In the new arrangement (see Figure 2(a)) the compressor unit 1 was suspended
from its base 2 by all-metal undamped planar soft resilient elements 3. Excessive
motion of the compressor unit, originated by possible acceleration of the

† The measurement of the self-induced force was carried out with a Kistler Type 9272 Quartz
four-component Dynamometer, Kistler Type 5010A Charge Conditioner and Scientific Atlanta Type
SD-390 Signal Analyzer.
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Figure 2. Vibration isolation arrangement (a) and transmissibility (b) for the linear compressor
unit.

foundation, was limited by the elastomeric bumpers 4 mounted over the same
foundation.

This arrangement provided a natural frequency of 15 Hz and loss factor of 0·05
(see the experimental transmissibility curve in Figure 2(b)). As a result, the
fundamental component of self-induced force was reduced by up to 0·95 N RMS
(see Figure 3(a)). The fundamental component of the dynamic deflection of the
compressor unit was measured as 0·23 mm RMS, or a 0·35 mm peak (see Figure
3(b)).

To allow compressor operation without impacts in the absence of environmental
disturbances, the clearance in between the compressor housing and the bumpers
was chosen to be greater than the sum of the possible static deflection and the peak
operational amplitude. Referring to the natural frequency of 15 Hz, one obtains
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the maximum static deflection of 01 mm. By adding the peak displacement of
00·35 mm (see Figure 3(b)) and small tolerance for safety, one has D=1·5 mm.

Modern viscoelastic materials, composed of energy absorbing thermoplastic
alloys, such as E-A-R Isodamp, are used widely for shock control. A typical
application is motion limiters—bumpers—which provide low-rebound and soft
trim of undesirable mechanical deflections without generation of dangerous
accelerations. The design of the optimal bumpers requires a simple and reliable
model of impact, allowing the exact estimation of the peak values of the impulsive
acceleration and deflection.

3. MODEL OF VISCOELASTIC IMPACT

In the present section, the simplified model of single impact of a free lumped
body over the ‘‘Kelvin-Voigt’’ bumper was considered. The analytical solution,

Figure 3. Spectral presentation of the transmitted force (a) and dynamic deflection (b) of the
flexurally suspended compressor unit.
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Figure 4. Model of viscoelastic impact.

describing the dynamics of impact, was obtained. The parameters of the optimal
shock absorber were estimated. This solution was used further to verify
experimentally the model of impact.

3.1.  

Figure 4 presents the model of axial collision of a free lumped body of mass
M with the viscoelastic ‘‘Kelvin-Voigt’’ bumper. The bumper was modelled
schematically as a parallel combination of linear spring K and dashpot B with
‘‘grounded’’ right-hand side terminals. Such a model accurately describes dynamic
strain and deformation that occur in a viscoelastic sample under impulsive loading.
The ‘‘Kelvin-Voigt’’ body prevents spontaneous response as the spring is
constrained by the dashpot and, therefore, the strain and deformation under the
load is controlled dynamically by the dashpot.

Dynamic balance between the force of bumper reaction R=KX+BX� and the
force of the body inertia MX� governs the development of collision. By equating
the mentioned forces, one can obtain the differential equation of the impact—the
equation of the cooperative motion of the body and the free terminal of the
bumper,

MX� +BX� +KX=0, t$ [0, a], (1)

where a denotes the instant of the separation (rebound). The initial conditions for
equation (1) are as follows: X(0)=0, X� (0)=V. The condition of the body
separation at t= a is the change of the sign of the force of bumper reaction or
of the body acceleration:

R(a)=0 or X� (a)=0. (2)

The equation of impact (1) has a well-known solution,

X(t)=A exp(−ht) sin Vt, t$ [0, a], (3)

where the traditional notations are used:

h=B/2M, A=V/V, V2 =v2 − h2, v2 =K/M.
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In fact, the damped and undamped natural frequencies V and v, respectively, are
the apparent quantities that are related to the mass of the body.

The corresponding derivatives with respect to time obtained from equation (3)
are as follows:

X� =A exp(−ht)(V cos Vt− h sin Vt),

X� =−A exp(−ht)[(V2 − h2) sin Vt+2hV cos Vt],

X
...

=−A exp(−ht)[(3hV2 − h3) sin Vt+(3h2V−V3) cos Vt], t$ [0, a]. (4)

After solving equation (2) for the separation time a, one finds that

a=
1
V

atan
−2hV

V2 − h2 ,

or with the notation for the fraction of critical damping (loss factor) j= h/v,

a=−
1

vz1− j2
atan

2jz1− j2

1−2j2 . (5)

The peak value of acceleration may occur at the very beginning of the collision
(due to the immediate step-wise reaction force R(0)=VB) or at the time instant
when X

...
(t)=0.

The value of the initial acceleration may be calculated by using the statement
MX� 0 =R=VB from which it follows

X� 0 =VB/M=2Vjv. (6)

The maximum value of acceleration occurs in the time instant when X
...

(q)=0
(qQ a); therefore, upon considering the third-order derivative from equations (4),
the instant of the acceleration peak may be found as

q=−
1

vz1− j2
atan

(4j2 −1)z1− j2

j(3−4j2)
. (7)

By substituting the corresponding values of the time instant q from equation (7)
into the expression for the acceleration from equations (4) and after rearrangement
the following maximum value has been obtained:

X� max =Vvg(j). (8)

Here

g(j)=
1

j(3−4j2)
exp$− j

z1− j2
atan

(4j2 −1)z1− j2

j(3−4j2) %
× cos$atan

(4j2 −1)z1− j2

j(3−4j2) %.
Finally, combining equations (6) and (8) yields for the maximorum maximum

X

..

=VvG(j). (9)
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Figure 5. Values G (——————) and F (——) at viscoelastic impact as functions of loss factor of the
bumper.

Here

G(j)=6g(j)
2j

if
if

g(j)e 2j

g(j)Q 2j7. (10)

The value of j=0·5 is the exact solution for the equation g(j)=2j. That means,
that for the viscoelastic bumpers with jq 0·5 the peak of acceleration occurs at
the beginning of the collision.

The peak deflection occurs when X� (t)=0 (tQ a); therefore, with the help of
expression for the first-order derivative from equations (4), the instant of
maximum deflection may be found as

t=0atan
z1− j2

j 1>0vz1− j21. (11)

By substituting the corresponding values of the time instant t from equation (11)
into the expression for the deflection from equations (4) and after rearrangements
the following peak value was obtained,

X
 =(V/v)F(j) (12)

where

F(j)=
1

z1− j2
exp$− j

z1− j2
atan

z1− j2

j % sin$atan
z1− j2

j %. (13)

Figure 5 depicts functions (13) and (10) superimposed†.

† This result is somewhat similar to that obtained in reference [1] for the maximum deflection and
transmitted force for the SDOF vibration isolator under impulse excitation.
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Figure 6. Optimization criterion at viscoelastic impact as a function of bumper loss function.

3.2.   

As can be seen from equations (10) and (13), the peak value of deflection and
acceleration depend upon the pre-impact velocity V, the apparent natural
frequency v and the loss factor j of the bumper.

But the product of the mentioned peak values,

P=X

..

X
 =V2C(j), (14)

where C(j)=G(j)F(j), does not contain the factor v. Figure 6 depicts the
function C(j) approaching the minimum at j=0·4. Considering the factor P as
a vibration isolator quality [1], we conclude that the optimal loss factor equals 0·4
independent of the bumper stiffness and pre-impact velocity. For the optimal
bumper, Copt =C(0·4)=0·52, as shown in Figure 6 and P=0·52V2. In
comparison with the undamped bumper, the improvement will be about a 50%
decrease of the chosen criterion.

3.3.     

Figure 7 represents the experimental rig. The plastic pad (E-A-R Isodamp
C-1000 plastic, 6·4 mm thickness) was mounted in a vice fixture with the plain
surface facing the pendulum. The weighted, bifilary suspended steel rod (/�
10 mm) with a radiused tip was fixed at a point directly above the sample vice.
It was swung up and then held stationary. This height defined the approaching
speed of the pendulum at impact. When released, the pendulum swings through
the path where the sample was fixed.

The typical example of the development of obtained time history of acceleration
is depicted in Figure 8†.

† The process of collision was registered by a Bruel & Kjaer miniature Accelerometer Type 4393
(mounted over the plane edge of the rod) along with a Kistler Charge Conditioner Type 5010A (not
shown) and Scientific Atlanta Model SD-390 Signal Analyzer (not shown).
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Figure 7. Experimental rig for study of viscoelastic impact.

The following characteristic moments of impact, such as time to peak
acceleration and duration of the impact, were measured as q=1·54 ms and
a=3·83 ms. Expressions (5) and (7) were then considered as a set of
transcendental equations in the unknowns v and j and knowns a and q. Dividing
equation (5) by equation (7) one can eliminate the parameter v:

a

q
=0atan

2jz1− j2

1−2j2 1>0atan
(4j2 −1)z1− j2

j(3−4j2) 1 . (15)

By first solving equation (15) for j and second equation (5) for v it was estimated
that j=0·14, v=755 rad/s. The expression for acceleration from equation (4)
was evaluated further with the identified parameters v and j. The time history of
acceleration development was generated numerically. The initially unknown

Figure 8. Sample of the time history of acceleration at viscoelastic impact.



8

100

10

20

30

40

50

60

70

80

90

0
10 2 3 4 5 6 7

Time (ms)

A
cc

el
er

a
ti

o
n

 (
g

)

���
���
���
���

���
���
���

���
���
���

Foundation

B

M

K1B1

K

Q(t)
X(t), X(t)

   279

Figure 9. Experimental (——) and analytical ( ) time histories of acceleration at viscoelastic
impact.

approaching velocity V was estimated by means of a least squares method. For
this certain case, V=1·45 m/s was obtained. Figure 9 depicts superimposed and
practically coinciding time histories of acceleration at impact obtained in the
experiment and that obtained theoretically.

4. MODEL OF BUMPERED VIBRATION ISOLATOR

4.1.  

Figure 10 depicts schematically a machine of total mass M supported by a
resilient element represented as a parallel combination of spring K and of dashpot

Figure 10. Mechanical model of bumpered vibration isolator.
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B. Machine vibration is originated by a dynamic force Q(t). In the case of machine
kinematic excitation by an acceleration A(t) the dynamic force will be considered
as a translational force of inertia Q(t)=−A(t)M.

The deflection X(t) is limited symmetrically by the visco-elastic bumpers
modelled as a parallel combination of a spring K1 and of a dashpot B1 (see section
2 above). The bumpers were installed over the same foundation symmetrically with
respect to the position of static equilibrium of the vibration isolator. The value
of the sway space (clearance) is denoted by D: see Figure 10.

The differential equation of the motion of the entire system with respect to
collisions may be obtained in the form

MX� +BX� +KX+F(X, X� )=Q(t), (16)

where X� , X� are machine acceleration and velocity, respectively; F(X, X� ) is the
threshold-type force of impact [3],

F(X, X� )=

8K1(=X=−D)+B1X�
0
0

[
[
[

[XeDgF(X, X� )q 0GXE−DgF(X, X� )Q 0]
[XeDgF(X, X� )Q 0GXE−DgF(X, X� )q 0]

=X=ED 9. (17)

Dividing both parts of equation (16) by M yields

X� +2jVX� +V2X+ f(X, X� )=Q(t)/M, (18)

where the following notations are used:

v2 =
K
M

, v̄=
v

2p
, j=

B
2Mv

, v1 =
K1

M
, v̄1 =

v1

2p
, j1 =

B1

2Mv1
,

f(X, X� )=

8v
2
1 (=X=−D)+2j1V1X�

0
0

[
[
[

=X=eDg{[sgn f(X, X� )][sgn (X)]}q 0
=X=eDg{[sgn f(X, X� )][sgn (X)]}Q 0

=X=QD 9. (19)

Here the parameters v and j define the undamped natural frequency and loss
factor of linear vibration isolator, v1 and j1 are the apparent undamped natural
frequency and loss factor of the bumper related to the mass of the machine. The
notations v̄ and v̄1 denote corresponding natural frequencies expressed in Hz.

The intergation of equation (18) with the force of impact of equation (19) was
carried out in a MatLab/Simulink computational environment by using the
fifth-order Dormand-Prince method with variable time steps. The Simulink model
is represented in Figure 11. In accordance with the MIL-810E as applied for the
specific gimballed electro-optical device, the vibration isolator was subjected to the
standard vibration inputs: classical saw-tooth shock 50g . 18 ms and broadband
random excitation with overall level of 16·6g RMS (see Figure 15(c) of section 4.4).
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Figure 11. Simulink model of bumpered vibration isolator.

4.2.    

The typical problem of the optimization of robust vibration isolator with respect
to space limitation, resilient support and flexible interface integrity is to minimize
peak acceleration at the permitted peak deflection.

In a very common case, the solution of this problem requires numerous
simulations of the model in Figure 11 with application of an optimization
procedure.

In order to simplify the solution of this primary optimization problem we will
introduce into the consideration the criterion of quality of the vibration isolator
(as discussed previously in section 3). It is the product of the peak values of
acceleration and deflection obtained in the same test.

The single collision of a solid free body with viscoelastic bumper was studied
analytically in section 3. It was shown that there exists a minimum of the above
criterion with respect to bumper loss factor. The optimal value of the loss factor
of the bumper appeared to be 0·4 independently of the other parameters of the
model, such as approaching velocity and stiffness of the bumper.

The results of this analysis cannot be applied directly for the case of arbitrary
excitation. Nevertheless, one could expect some sort of similarity with respect to
the existence of such an optimum. Moreover, for the undamped and low-frequency
vibration isolator such a minimum has to be located close to that obtained for the
free body.
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4.3.  -  

The model in Figure 11 was subjected to the classical saw-tooth shock of
acceleration 50g . 18 ms. The invariable parameters of the model were as follows:
v̄=15 Hz, j=0·05, D=0·0015 m. The variables v̄1 and j1 were varied within the
ranges v̄1$ [80, 200] Hz with a step of 10 Hz and j1$ [0, 1] with a step of 0·1. At
each simulation, the product of the peak values of acceleration and deflection
(signified as P) was saved and the corresponding set of 12 curves P=P(j1) at
different v̄1 were put together. The curves obtained, when plotted on the same
graph, were located very close to one another. The corresponding minimum of
each curve was located in the close neighbourhood of the point j1 =0·4.
Figure 12(a) represents the averaged curve P(j1) with standard deviation error
bars superimposed. Thereby, our suggestion about the existence of a general
optimum with respect to bumper loss factor was confirmed.

Figure 12. Optimization and choice of vibration isolator for shock test.
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Figure 13. Deflection (a) and acceleration (b) time histories of optimized vibration isolator for
shock test.

The further solution of a primary optimal problem is carried out with the fixed
value of bumper loss factor j1 =0·4. Figure 12(b) depicts superimposed curves
representing the peak values of acceleration and deflection as functions of
apparent natural frequency of the bumper at a fixed loss factor 0·4. This figure
may be treated as a diagram for the choice of bumper stiffness at permitted peak
deflection of the vibration isolator. If, for example, it was defined by design the
maximum deflection of 2·5 mm, then the apparent natural frequency of the
bumper of 108 Hz has to be chosen. As a result of this choice the peak acceleration
will be about 54g (see Figure 12(a)). Figures 13(a, b) represent the corresponding
simulated time histories for the deflection and acceleration with labelled peak
values.

In the same manner, the inverse optimization problem for a vibration isolator
may be solved. By setting any desirable value of peak acceleration, the necessary
stiffness of the bumper may be chosen and the peak deflection of the vibration
isolator may then be estimated.
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4.4.    

The model of Figure 11 was subjected to the wideband random vibration with
total level of 16·6g RMS. The PSD spectra of the excitation is presented in Figure
15(c). As in the case of shock excitation, the invariable parameters of the model
were v̄=15 Hz, j=0·05 and D=0·0015 m. The variables v̄1 and j1 were
subjected to variation within the ranges v̄1$ [80, 200] Hz with a step of 10 Hz and
j1$ [0, 1] with a step of 0·1. At each simulation the product of the peak values of
acceleration and deflection (signified as P) was saved and the corresponding 12
functions P=P(j1) at different v̄1 were put together. Similarly to those obtained
previously, the mentioned curves were located very close to one another and the
corresponding minimum of each curve was located in the close neighbourhood of
the point j1 =0·4. Figure 14(a) represents the averaged curve P(j1) with standard
deviation error bars superimposed. Thereby, the suggestion about the existence of

Figure 14. Optimization and choice of vibration isolator for random vibration test.
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a general optimum with respect to bumper loss factor was confirmed even in the
more complex case of wideband random excitation.

Further solution of a primary optimal problem may be carried out for the fixed
value of bumper loss factor of j1 =0·4. Figure 14(b) presents the superimposed
curves of peak values of acceleration and of deflection under wideband random
vibration as a function of apparent natural frequency of the bumper. The figure
may be treated as an independent diagram for the choice of bumper stiffness for
permitted peak deflection of the vibration isolator under wideband random
vibration.

From Figure 14(b) the peak deflection at wideband random test does not exceed
the previously specified level of 2·5 mm. Therefore, the value of apparent natural
frequency of the bumper of 108 Hz, which was considered as optimal for the shock
test, will be applied for the wideband random test. From Figure 14(b) the peak
values of deflection and acceleration will be 2·15 mm and 43g.

Figure 15 presents the results of simulation of an optimized vibration isolator
for a random vibration test. The superimposed fragments of time histories of
excitation (dotted line) and of vibration isolator response (solid line) are presented
in Figure 15(a). The relatively rare spikes in the vibration isolator response are
of a characteristic quasi-periodic impulsive nature with peak values even lower
than that of the excitation.

Figure 15(b) depicts the normalized probability density distributions (PDF) of
excitation and that of the vibration isolator response. The analysis of the
corresponding densities emphasizes the conclusion: the main portion of the
response of the vibration isolator is low-powered. It is located mainly in a centred
narrow area of 22g; the distribution tails (embodying the high levels of
acceleration) are much lower than that of the excitation.

Figure 15(c) presents the superimposed graphs of power spectral densities (PSD)
of excitation and of vibration isolator response. It illustrates the vibration
attenuation in a wide high-frequency range of 100–2000 Hz. In fact, the overall
level (OA) of vibration was attenuated up to 7·7g RMS as compared with
16·6g RMS of the excitation.

From Figure 15(c) only a narrow frequency band located to the right of the
linear natural frequency represents certain amplification. Because of system
non-linearity, the curve of the apparent transfer function is slightly distorted. It
presents a maximum of 2·4 at 35 Hz instead of 15 Hz (natural frequency of the
linear system); see the graph of the apparent transfer function in Figure 15(d).
Such an amplification ratio is typical for linear heavily damped vibration isolator
with a loss factor of about 0·3.

4.5.   

As was shown above in section 2, the designed vibration isolator can attenuate
the self-induced force exported from the machine to its foundation by a factor of
014. At the same time, the optimally designed bumpers are capable of
guaranteeing a soft trim of excessive motions in the case of intensive ambient
disturbances, as discussed previously.
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It is known from references [2, 3] that vibro-impact resonance in a frequency
range located well above the system’s linear natural frequency may arise after
casual vibration disturbance or frequency pulling at machine start-up. Because of
this fact, an additional and absolutely necessary feature of a bumpered vibration
protection arrangement is the ability to suppress the vibro-impact resonance for
any initial conditions. For this purpose, an additional simulation test was carried
out.

In the dynamic safety test the dynamic response of the bumpered vibration
isolator under intensive disturbance was simulated. The test parameters were:
self-induced force 14 N RMS . 60 Hz and as an external disturbance a classical
saw-tooth shock 50g . 18 ms. This test was provided with the apparent natural
frequency of the bumper 108 Hz and loss factor 0·4. Figure 16 represents the safe

Fig. 15.
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Figure 15. Optimized vibration isolator for random vibration test.

transient response to the vibration isolator on the shock application at the time
0·2 s.

5. EXPERIMENTAL TESTING

The principles of the bumpered vibration isolator were utilized in the design of
the vibration protection arrangement for a Ricor model K529H cryocooler, as
discussed above in section 2. The characteristic parameters of the applied bumpers
were identified through the shock test (similarly to the test described above in
section 3) as v̄1 1 110 Hz and j1 1 0·42 at 23°C.
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Figure 16. Simulated transient response of the vibration isolator for dynamic safety test. ,
Acceleration; ——, deflection.

Figure 17 depicts schematically the experimental rig. The intermediate frame of
a sprung suspended linear compressor was mounted over the slip table of an
Unholtz-Dickie vibration exciter Type UD-4. The Brüel & Kjaer miniature
accelerometer Type 4393 1 was glued to the compressor housing, thus, the axial
compressor acceleration was measured. After the charge amplifier 3 the
acceleration signal was fed to the vibration analyzer. The second (control)
accelerometer 2 was glued to the compressor frame. Its signal after the charge
conditioner 4 was fed to the vibration analyzer and to the input of the
Unholtz-Dickie Type 5200 vibration controller, operating in a closed-loop mode.
The saw-tooth shock, random vibration and dynamic safety tests were carried out.

Figure 17. Experimental rig.
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Figure 18. Time histories of excitation (——) and of vibration isolator response ( ) for shock
test.

The non-operating compressor unit was exposed to the classical saw-tooth
shock test 50g . 18 ms. Figure 18 depicts the superimposed acceleration time
histories of the control point and of the compressor housing. The peak acceleration
of the primary shock was measured as 55·6g (compare with 52·8g obtained in
simulation; see Figure 13). The few secondary intensive collisions occurred as a
result of the operation of the vibration controller performing the fast return of the
exciter table to the initial position.

The compressor unit was exposed to random kinematic excitation (uniform
acceleration PSD value of 0·3g2/Hz from 20 to 1000 Hz and a further decline to
0·05g2/Hz at 2000 Hz; overall RMS value 16·4g; see Figure 19(b)).

The vibration analyzer registered the time histories of the control point and of
the compressor unit accelerations. Figure 19(a) depicts fragments of corresponding
samples superimposed. Similarly as in the simulation, the relatively rare, low peaks
in the compressor response (solid line) (compared with the acceleration excitation
(dotted line)) are of characteristic quasi-periodic impact nature with peak values
lower than that of the excitation.

By using 75% overlapping, Hanning weighting, 2048 point FFT and exponential
averaging the corresponding 800-lines PSD spectra were obtained. Figure 19(b)
(semilog-Y scaling is used) depicts the superimposed PSD spectra for the control
point and for the compressor. Similarly as in the simulation (see Figure 15(c)), the
experiment demonstrates vibration attenuation in a wide high-frequency span of
100–2000 Hz. As a matter of fact, the overall level (OA) of vibration was
attenuated up to 7·5g RMS as compared with 16·4g RMS of the excitation.

The apparent transfer function of Figure 19(c) displayed a maximum level of
02·3 at a frequency of 036 Hz; that is characteristic for the linear vibration
isolator with the loss factor of 0·3; the shift of the resonance frequency was
due to the vibration isolator non-linearity; see the discussion of the previous
section.
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Figure 19. Vibration isolator dynamics for random vibration test.
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Figure 20. Vibration isolator for dynamic safety test.

The aim of the dynamic safety test was to check the operating system’s ability
to withstand intense shock without a vibro-impact resonance arising.

The operating cryocooler was mounted upon the vibration exciter table and
exposed to a saw-tooth kinematic shock 50g . 18 ms. Figure 20 depicts the time
history of the compressor unit acceleration. Before the shock application, the
compressor unit steady state amplitude of acceleration was about 0·45g. As a
result of shock application, a few intensive collisions over the bumpers occurred
with sequential ‘‘positive’’ and ‘‘negative’’ acceleration peaks. After a finite
number of further low powered collisions the transient vibroimpact process was
over and initial impactless steady operation of the compressor unit was
re-established. The same test was repeated for each possible compressor
orientation. Even in the case of asymmetrical bumper locations due to the action
of gravitational forces, safe transients were obtained.

6. CONCLUSIONS

The tested bumpered vibration isolation arrangement of a Ricor model K529H
linear compressor provided the following: 93% vibration isolation of the
fundamental component of the self-induced force; safe and soft trim of excessive
dynamic deflections.

The Ricor K529H cryocooler met the requirement of low self-induced force
export and passed the full programme of shock and broadband random vibration
environmental testing in accordance with MIL STD-810E without degradation in
performance.
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