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The method of multiple scales is developed to analyze the free and forced
vibration of non-linear rotor-bearing systems. The rotating shaft is described by
the Timoshenko beam theory which considers the effect of the rotary inertia and
shear deformation. A non-linear bearing pedestal model is assumed which has a
non-linear spring and linear damping characteristics. Numerical simulations are
carried out to illustrate the non-linear effect on the free and forced vibrations of
the system. It is shown that for free vibrations, the amplitude has a one-to-one
relationship with the non-linear natural frequency. For steady-state response,
however, multi-valued displacements occur, indicating the existence of bifurcation
points in the system.
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1. INTRODUCTION

Bearings in rotor–shaft systems possessing non-linear behavior have received
considerable attention. The non-linearity in ball bearings is due to Coulomb
friction and the angular clearance between the roller and the ring. Yamamoto et
al. [1] showed that the non-linear force in single-row deep groove ball bearing is
the third power of deflection. Ishida et al. [2] obtained the bearing force being the
fourth power of deflection in a double-row angular contact ball bearing.

The existence of the non-linear bearing forces makes the dynamic analysis of
such rotor-bearing systems complicated. Yamamoto et al. [1, 3, 4] used the
harmonic balance method to study the subharmonic and superharmonic
vibrations of a two-degree-of-freedom rotor mounted on non-linear bearings. For
the same rotor system, Ishida et al. [2] theoretically and experimentally discussed
non-linear forced oscillation caused by quartic non-linearity in angular contact
ball bearings. They showed a good agreement between analytical results and
experimental results. Using the transfer matrix method in conjunction with the
harmonic balance method, Lee et al. [5, 6] performed the steady-state analysis of
a shaft–rotor system supported by linear and power non-linear bearing. In all the
work mentioned above, only forced vibration analysis for steady-state response
was performed. Free vibration analysis to calculate non-linear natural frequencies
has not been reported for non-linear rotor-bearing systems.
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Dowell [7] examined the free vibration of a simply supported beam with an
attached non-linear spring–mass system by using component modal analysis.
Pakdemirli and Nayfeh [8] extended the work of Dowell [7] by including stretching,
damping and an external primary resonance excitation using the method of
multiple scales and the time-averaged Lagrangian method.

In this paper, the method of multiple scales is adopted for free vibration analysis
and forced vibration analysis of shaft–rotor systems with a non-linear bearing
pedestal model. The shaft is modelled based on the Timoshenko beam theory. A
typical roller bearing model is assumed, which has cubic non-linear spring and
linear damping characteristics. Non-linear natural frequency response and
steady-state response are obtained using the third order perturbation expansion.
A typical non-linear rotor bearing system is simulated to show the effectiveness
of the analysis method and to illustrate the non-linear effect on the free and forced
vibrations of the system.

2. EQUATIONS OF MOTION

Consider a continuous shaft–rotor system mounted on non-linear bearings, as
shown in Figure 1. The shaft is modelled by the Timoshenko beam theory so that
any shaft, either slender or stubby, can be treated, and the rotor is considered as
a rigid disk.

For a continuous shaft depicted in an inertial frame oxyz, there are four
generalized displacements when considering the shear deformation and rotary
inertia. ux and uy are the two transverse displacements along the x and y directions
and cx , cy are the corresponding bending angles. Introducing the complex
variables, u= ux + iuy , c=cx + icy and the non-dimensional space variable,
j= z/l, the equations of motion of the rotating shaft based on the Timoshenko
beam theory are given by

12u
1t2 +

kG
rl2 $l 1c

1z
−

12u
1z2%=0, (1)

12c
1t2 − i

VJz

rI
1c
1t

−
E
rl2

12c
1z2 +

kAG
rIl 0lc−

1u
1z1=0, (2)

Figure 1. A shaft–rotor system.
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where l, A, I and Jz are the length of the beam, cross-sectional area, transverse
moment of inertia and polar mass moment of inertia; r is the mass density and
V is the rotating speed of the shaft; E, G and k are Young’s modulus, shear
modulus and shear coefficient, respectively. The relationship between the stress
resultants and displacements in a complex form can be written as

M(z, t)=Mx (z, t)+ iMy (z, t)=EIc'(z, t)/l,

Q(z, t)=Qx (z, t)+ iQy (z, t)= kAG01l u'(z, t)−c(z, t)1, (3)

where M(z, t) and Q(z, t) are the transverse bending moment and shear force at
each cross-section along the shaft.

The non-linear bearings are assumed to have cubic non-linear and linear
damping characteristics. Thus, the bearing force is given as

Fx =K1ux +K3u3
x +Cu̇x , Fy =K1uy +K3u3

y +Cu̇y , (4)

where K1 and K3 are the linear and non-linear stiffness coefficients and C is the
linear damping coefficient.

Consider the symmetry, only half of the system is analyzed. The boundary
conditions can be written as

M(0, t)=0, Q(0, t)=Fl (0, t)+Fn (0, t),

c(1, t)=0, Q(1, t)= (−MDü(1, t)+MDeV2 exp(iVt))/2, (5)

where MD is the total mass of the disk and e is the eccentricity of the unbalanced
mass of the disk. Note there is no influence from the gyroscopic moment and the
moment of inertia of the disk because the disk is located at the symmetric point
of the system. Fl and Fn are the linear and non-linear terms in equation (4),
respectively. Fl is given by

Fl =Fxl + iFyl =K1u+Cu̇ (6)

and Fn can be written as

Fn =K3(u3
x + iu3

y )=K3(3
4u

2ū+ 1
4ū

3) (7)

where ū is the complex conjugate of u. The dimensionless quantities are introduced
as follows:

t*=XkG
rl2

t, u*=
u
l
, c*=c, V*=XkG

rl2
V. (8)
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Substituting equation (8) into equations (1) and (3), non-dimensional equations
of motion can be obtained.

12u*
1t*2 +01c*

1z
−

12u*
1z2 1=0, (9)

12c*
1t*2 − ia1V*

1c*
1t*

− a2
12c*
1z*2 + a30c*−

1u
1z1=0, (10)

where the coefficients a1, a2 and a3 are defined as

a1 =
Jz

rI
, a2 =

E
kG

, a3 =
Al2

I
. (11)

The non-dimensional moment and shear force are given by

M*= a2
1c*
1z

, Q*= a301u*
1z

−c*1. (12)

The relationships between M and M*, Q and Q* can be expressed as

M=
kGI

l
M*, Q=

kGI
l2

Q*. (13)

For a shaft with circular cross-section, Jz =2rI. In this case, the coefficient a1 =2.
Using equations (6) to (8) and equations (11) to (13), the boundary conditions

in equation (5) can be rewritten in terms of the non-dimensional variables as

M*(0, t*)=0,

Q*(0, t*)=K*1 u*(0, t*)+C*
1u*(0, t*)

1t*
+K*3 (3

4u*2(0, t*)ū*(0, t*)+ 1
4ū*3(0, t*)),

Q*(1, t*)= 1
2M*D

1u*2(1, t*)
1t*t*

+ 1
2F*V*2 exp(iV*t*),

c*(1, t*)=0, (14)

where the dimensionless quantities K*1 , K*3 , C*, M*D and F* are defined as

K*1 =
l3

kIG
K1, K*3 =

l5

kIG
K3, C*=

l2

IzkGr
C,

M*D =
l
rI

MD , F*=
eMD

rI
. (15)

3. METHOD OF MULTIPLE SCALES

The method of multiple scales is used in this section to solve for the free and
forced vibration of the system. The expansions for the displacement u* and the
bending angle c* are assumed in the form

u*= ou1(z, T0, T2)+ o3u3(z, T0, T2)+ · · · ,

c*= oc1(z, T0, T2)+ o3c3(z, T0, T2)+ · · · , (16)
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where un and cn (n=13, . . . ) are O(1); o is a small dimensionless parameter;
T0 = t* is a fast-time scale characterizing motions occurring at the spin-rate V and
natural frequency vn of the rotor bearing system; T2 = o2t* is a slow-time scale,
characterizing the modulation of the amplitude and phase due to damping,
non-linearity and possible resonance. In this analysis, only the primary resonance
is considered. Hence, the damping, the forcing term and the excitation frequency
are assumed as

C*= o2Co , F*= o3Fo , V*=v*n + o2s, (17)

where v*n =vnzrl2/kG and s=O(1) is a detuning parameter. For linear systems,
s=0, thus V*=v*n at the primary resonance. For non-linear systems, however,
v*n is slightly deviated from V* and this deviation is reflected by the value of s.

Using the chain rule, the time derivatives in terms of T0 and T2 become

1

1t*
=D0 + o2D2 + · · · ,

12

1t*2 =D2
0 +2o2D2D0 + · · · , (18)

where Dn = 1/1Tn (n=0, 2). Substituting equations (16) to (18) into equations (9),
(10) and (14) and equating coefficients of the same powers of o, the following
equations are obtained.

Order o:

12u1

1T2
0
+

1c1

1z
−

12u1

1z2 =0,

12c1

1T2
0
− ia1v*n

1c1

1T0
− a2

1c1

1z2 + a30c1 −
1u1

1z1=0, (19)

c'1 =0,

a301u1

1z
−c11−K*1 u1 =0,9 at z=0; (20)

c1 =0,

a301u1

1z
−c11+

M*D
2

12u1

1T2
0
=0,9 at z=1. (21)

Order o3:

12u3

1T2
0
+

1c3

1z
−

12u3

1z2 =−2
12u1

1T2 1T0
,

12c3

1T2
0
− ia1v*n

1c3

1T0
− a2

12c3

1z2 + a30c3 −
1u3

1z1
=−2

12u1

1T2 1T0
+ ia10v*n

1c1

1T2
+ s

1c1

1T01, (22)
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c'3 =0,

a301u3

1z
−c31−K*1 u3 =K*3 (3

4u
2
1 ū1 + 1

4ū
3
1 )+Co

1u1

1T0
0,9 at z=0; (23)

c3 =0,

a301u3

1z
−c31+

M*D
2

12u3

1T2
0
=−M*D

12u1

1T0 1T2
+ 1

2Fov*2
n eiV*t*,9 at z=1. (24)

The equations and boundary conditions are linear at order o, hence, a solution
of the form

u1 =A(T2) eiv*n T0Yu (z), c1 =A(T2) eiv*n T0Yc (z) (25)

can be assumed. Substituting equation (25) into equation (19) and decoupling the
subsequent set of ordinary differential equations, the following equations are
obtained:

L2
d4Yu

dz4 +L1
d2Yu

dz2 +L0Yu =0, L2
d4Yc

dz4 +L1
d2Yc

dz2 +L0Yc =0. (26)

The coefficients in equation (26) are given by

L0 =v*4
n (1− a1)− a3v*2

n , L1 = (1+ a2 − a1)v*2
n , L2 = a2. (27)

The solution to equation (26), when zL2
1 −4L2L1 qL1, is

Yu (z)=A1 cosh (s1z)+A2 sinh (s1z)+A3 cos (s1z)+A4 sin (s1z),

Yc (z)=A'1 sinh (s1z)+A'2 cosh (s1z)+A'3 sin (s1z)+A'4 cos (s1z), (28)

where

s1 =X−L1 +zL2
1 −4L2L1

2L2
, s2 =XL1 +zL2

1 −4L2L1

2L2
. (29)

A1 0A4 and A'1 0A'4 in equation (28) are arbitrary complex constants. Of the eight
constants, only four of them are independent. The relationship between A'1 0A'4
and A1 0A4 can be obtained from either one of the equations in equation (19) as

A'1 =C1A1, A'2 =C1A2, A'3 =C2A3, A'4 =−C2A4, (30)

where

C1 =
1
s1

(v*2
n + s2

1 ), C2 =
1
s1

(v*2
n − s2

1 ). (31)

Substituting equations (25) and (28) into the boundary conditions, equations (20)
and (21), the eigenmatrix B for solving the eigenvalue v*n and the eigenconstants
A1 0A4 are obtained as



-  299

−
K

* 1
n 1

−
K

* 1
n 2

c 1
s 1

0
c 2

s 2
0

GG GK k

GG GL l

B
=

c 1
si
nh

(s
1
)

c 1
co

sh
(s

1
)

c 2
si
n

(s
2
)

−
c 2

co
s
(s

2
)

,
(3

2)

n 1
si
nh

(s
1
)−

m
co

sh
(s

1
)

n 1
co

sh
(s

1
)−

m
si
nh

(s
1
)

−
n 2

si
n

(s
2
)−

m
co

s
(s

2
)

n 2
co

s
(s

2
)−

m
si
nh

(s
2
)
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where

n1 = a3(s1 − c1), n2 = a3(s2 − c2), m=
M*D
2

v*2
n . (33)

From =B==0, the natural frequency v*n can be obtained. Considering that the
coefficient function A(T2) in equation (25) is arbitrary and only three constants
in A1 0A4 are independent, the constant A1 is assumed as 1. A2 0A4 can be derived
from the eigenmatrix B and thus, the normal modes Yu (z) and Yc (z) in equation
(28) are uniquely defined by the coefficients A1 0A4.

The displacements u3 and c3 in equation (22) can be assumed as

u3(z, t)=fu (z, T2) eiv*n T0, c3(z, t)=fc (z, T2) eiv*n T0. (34)

Substituting equation (34) into equations (22)–(24) and equating the coefficient
exp (iv*n T0) on both sides of the equations leads to

−v*2
n fu +

1fc

1z
−

12fu

1z2 =−2iv*n A'(T2)Yu (z),

(a1 −1)v*2
n fc − a2

12fc

1z2 + a30fc −
1fu

1z 1=−i(2v*n − a1v*n )A'(T2)Yc (z)

−a1v*n sA'(T2)Yc (z), (35)

f'c =0,

a301fu

1z
−fc1−K*1 fu = 3

4K*3 A�(T2)A2(T2)Y3
u (z)+Coiv*n A(T2)Yu (z),9 at z=0;

(36)
fc =0,

a301fu

1z
−fc1−

M*D
2

v*n fc =−M*D iv*n A'(T2)Yu (z)− 1
2Foiv*2

n eio2st*,9 at z=1.

(37)

As pointed out by Nayfeh [10] for the homogeneous part of equation (22) to have
a non-trivial solution, the inhomogeneous equation (22) has a solution only if a
solvability condition is satisfied. The solvability condition demands that the right
side of equation (35) be orthogonal to every solution of the homogeneous problem.
Thus, the solvability condition can be derived by

g
1

0

[ũa3(−2iv*n A'(T2))Yu (z)+c	 (−i(2v*n − a1v*n ))A'(T2)Yc (z)

−a1v*n sA(T2)Yc (z)] dz= ũ(0)(3
4K*3 A�(T2)A2(T2)Y3

u (0)+Coiv*n A(T2)Yu (0))

+ũ(1)(M*D iv*n A'(T2))Yu (1) eiv*n T0 + 1
2F*o v*n eisT2), (38)
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where ũ and c	 are the solutions of the adjoint equation of the homogeneous part
of equation (35) with the following boundary conditions

c	 =0,

a301ũ
1z

−c	 1−K*1 ũ=0,9 at z=0; (39)

c	 =0,

a301ũ
1z

−c	 1+
M*D
2

12ũ
1T2

0
=0,9 at z=1. (40)

It can be proven that the homogeneous part of equation (35) is a set of self-adjoint
equations. Comparing equations (39) and (40) with equations (20) and (21), the
solutions for ũ and c	 should have the same form as u1 and c1. Thus,

ũ=A	 (T2) eiv*n T0Yu (z), c	 =A	 (T2) eiv*n T0Yc (z), (41)

Substituting equation (41) into equation (38), the solvability condition can be
rewritten as

−2iv*n A'(T2)b1 −v*n sA(T2)b2

=3
4K*3 A�(T2)A2(T2)Y4

u (0)+Coiv*n A(T2)Y2
u (0)+M*D iv*n A'(T2)Y2

u (1) eiv*n T0

+1
2F*o v*n eisT2Yu (1), (42)

where

b1 = a3 g
1

0

Y2
u (z) dz+g

1

0 01−
a1

2
Y2

c (z)1 dz, b2 = a1 g
1

0

Y2
c (z) dz. (43)

Express A in a polar form

A= 1
2a(T2) eiu(T2), (44)

where a(T2) and u(T2) represent the amplitude and phase angle of the response,
respectively. Substituting equation (44) into equation (42) and separating the real
and imaginary part, the modulation can be written as

v*n b3a'=−
Co

2
v*n aY2

u (0)− 1
2Fov*2

n sin (g)Yu (1),

v*n b3ag'= b4v*n as− 3
32 K*3 a3Y4

u (0)− 1
2Fov*2

n cos (g)Yu (1), (45)

where

b3 = b1 +
M*D
2

Y2
u (1), b4 = b3 − b2/2, g= sT2 − u. (46)
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Non-linear frequencies can be calculated from equation (45) by considering free
undamped vibrations. Letting dimensionless quantities Co , Fo defined in equation
(17) be zero in equation (45) leads to

v*n b3a'=0, v*n b3au'= 1
2v*n sb2 + 3

32K*3 a3Y4
u (0). (47, 48)

It is clear from equation (47) that a is a constant. It is understood that for
undamped free vibration, the amplitude remains constant. The angular derivative
u' can be calculated from equation (48). Adding u' and the linear natural frequency
v*n , the non-linear natural frequency v*nt can be obtained:

v*nt =v*n + o2u'=v*n sb2 + (1
2v*n sb2 + 3

32K*3 a2Y4
u (0))o2. (49)

Note that v*nt depends on the amplitude of the response
The forced vibration of the system can be obtained by including the damping

and forcing-terms in equation (45). For steady-state response with periodic
motion, a' and g' should be equal to zero. Thus, the detuning parameter s can
be solved in terms of a by eliminating g from both equations in equation (45):

s=
3a

32v*n b4
K*3 Y4

u (0)2
1

2ab4
zF2

o v*2
n Y2

u (1)−C2
o a2Y4

u (0). (50)

4. NUMERICAL SIMULATIONS

Numerical simulations of free and forced vibrations of a typical non-linear
rotor-bearing system are presented in this section to show the effectiveness of the
analysis method. The system consists of a shaft supported by two bearings at two
ends and there is an intermediate rotor at the middle, as shown in Figure 1. The
half length and diameter of the shaft are chosen as l=1 m and d=0·2 m. The
dimensionless quantities in equation (12) are assumed as a1 =2, a2 =4, a3 =400.
The dimensionless quantities K*1 and M*D in equation (15) are chosen as 100 and
500, respectively.

In Figure 2, the steady-state response at the mid-shaft versus the excitation
frequency is shown near the synchronous resonance for F*=1, C*=100 and for
various K*3 . For the linear system, as K*3 =0, the response curve goes up, peaks
at the resonance and come down. For non-linear systems, as K*3 q 0, the response
curve near the peak is distorted and bends towards the right side. The higher the
K*3 value is, the more bending the curve displays. This curve bending causes
multiple valued displacements at the same excitation frequency. In other words,
there exists a jump corresponding to the multi-valued phenomenon, indicating the
bifurcation in the system. This is expected for non-linear systems.

The loci of the first and the second saddle-node bifurcation points of the
frequency-response curve are shown in Figures 3 and 4, respectively. Different
values of F* are chosen representing various excitation levels. The detuning
frequency Dvnt in Figures 3 and 4 denotes the difference between the non-linear
natural frequency vnt and the linear natural frequency vn at the saddle-node
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Figure 2. Frequency response curves for various K*3 : q, K*3 =0; w, K*3 =1·0e7; E, K*3 =5·0e7;
R, K*3 =1·0e8.

bifurcation point. The non-linear stiffness coefficient K*3 is chosen as 1·0×107. It
is seen from Figures 3 and 4 that the detuning frequency Dvnt increases as the
excitation force F* increases for both the first and second saddle-node bifurcation
points. However, the increase in Dvnt gets larger as F* increases for the first
saddle-node bifurcation point, while the increase in Dvnt gets smaller as F*
increases for the second saddle-node bifurcation point.

5. SUMMARY

The free and forced vibration analysis of shaft–rotor systems with non-linear
bearings are performed analytically in the paper. The shaft is described by the
Timoshenko beam model and the rotor is considered as a rigid disk. The bearings
possess linear stiffness and damping and cubic non-linear stiffness. The method of
multiple scales is used to determine the non-linear natural frequency and

Figure 3. Loci of the first saddle-node bifurcation point.
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Figure 4. Loci of the second saddle-node bifurcation point.

steady-state response. A typical non-linear rotor bearing system is simulated to
illustrate the non-linear effect on the free and forced vibrations of the system. It
is shown that for free vibrations, the amplitude has a one-to-one relationship with
the non-linear natural frequency. For steady-state response, multi-valued
displacements occur, indicating the existence of bifurcation points in the systems.
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