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1. 

From the point of view of the theory of dynamical systems, the onset of the vocal
fold oscillation at phonation may be described by a Hopf bifurcation [1, 2]: at a
certain bifurcation value of a control parameter, an equilibrium position changes
its stability and a limit cycle appears. For example, Titze [3] has shown that a
minimum value of the subglottal air pressure (phonation threshold pressure) is
required to start the vocal fold oscillation. At this threshold pressure, the initial
equilibrium position of the vocal folds becomes unstable, and the vocal fold
oscillation appears. Several theoretical studies of the oscillation have used the
concept of the Hopf bifurcation, on a variety of mathematical models of the vocal
fold system such as the mucosal wave model [3], the one-mass model [4], and
two-mass models [5–8].

However, the type of bifurcation (i.e., subcritical or supercritical) has been left
unclear. Let one recall briefly that in a supercritical bifurcation, a stable limit cycle
is generated as the control parameter passes through its bifurcation value, whereas
in a subcritical bifurcation, an unstable limit cycle is absorbed [2]. The supercritical
Hopf bifurcation is the simplest way for the onset of an oscillation and it would
seem to apply to the vocal folds: e.g., at phonation threshold pressure, the
observed vocal fold oscillation (a stable limit cycle) would be generated from the
bifurcation. However, experimental evidence suggests that the subcritical case
would be more appropriate. In various experimental settings, it has been observed
that the biomechanical configuration of the vocal folds at oscillation onset is
different from their configuration at oscillation offset. For example, studies of
excised larynges [9] and physical models of the vocal fold mucosa [10] have shown
that the subglottal pressure is lower at oscillation offset than at oscillation onset.
Studies on subjects producing speech have shown that the intraoral pressure is
lower at voice onset than at voice offset [11], the airflow is lower [12], the
transglottal pressures is higher [13], and the glottal width is smaller [13]. This
difference between oscillation onset and offset cannot be explained by a
supercritical Hopf bifurcation (which would result in the exact same configuration
at oscillation onset and offset). In fact, they suggest the phenomenon of oscillation
hysteresis [14]. This phenomenon appears from the combination of a saddle–node
bifurcation between limit cycles [2], where a stable and an unstable limit cycle are
generated, with a subcritical Hopf bifurcation, where the unstable limit cycle is
absorbed. Since oscillation onset and offset occur through different bifurcations
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(the Hopf bifurcation and the saddle–node bifurcation, respectively) and at
different values of the control parameter, then the different configurations
observed experimentally would result. This phenomenon is also called
hard-excitation of an oscillation, in opposition to the soft-excitation, which
corresponds to the supercritical bifurcation [1].

In this letter, the existence of a subcritical Hopf bifurcation at oscillation onset
will be shown by applying the Hopf Bifurcation Theorem [2] to a simple
bidimensional model of the vocal folds, and the subglottal pressure as control
parameter considered. Next by deriving a bifurcation diagram by numerical
techniques, the phenomenon of oscillation hysteresis will be shown. A more
detailed version of this study will be published elsewhere [15].

2.   

A large amplitude version [16] of Titze’s mucosal wave model [3], as shown
schematically in Figure 1 will be used. One assumes that during the oscillation,
the vocal fold tissues propagate a surface mucosal wave in the direction of the
airflow. The model is valid for an open glottis only, without collision between the
vocal folds during the oscillation cycle. One assumes further that the subglottal
pressure Ps is constant during the oscillation cycle, the supraglottal pressure is the
atmospheric pressure, and the opposite glottal walls are parallel at the initial
(prephonatory) position. The glottal aerodynamics is described following the
boundary layer model [17] for high Reynolds numbers, and neglecting pressure
losses due to air viscosity.

The model is described by the differential equation

mẋ+ rẋ+ kx=Pg , (1)

where x is the lateral displacement of the vocal fold at the midpoint of the glottis,
m, r, and k are the mass, damping, and stiffness, respectively, of the oscillating
portion of the vocal fold per unit area of its medial surface, and Pg is the mean
glottal air pressure. When the glottal channel along the direction of the airflow

Figure 1. Mucosal wave model of the vocal folds.
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is convergent or slightly divergent such that a2 E 1·1a1, where a1 and a2 are the
cross-sectional areas at glottal entry and exit respectively, Pg is given by

Pg =Ps (1− a2/a1), (a2 E 1·1a1). (2)

When the glottal channel is highly divergent, such that a2 q 1·1a1, the airflow
detaches from the glottal wall at the point where the glottal area is equal to 1·1a1

and forms a free jet downstream of the glottis [17]. In this case, Pg becomes

Pg =−0·01Ps (a1/(a2 − a1)), (a2 q 1·1a1). (3)

Finally, the glottal areas a1 and a2 are given by

a1 =2L(x0 + x+ tẋ), a2 =2L(x0 + x− tẋ), (4, 5)

where L is the vocal fold length in the antero–posterior direction, and t is the delay
of the mucosal wave in travelling half the glottal width (in the direction of the
airflow). Initially, the vocal folds are at rest at x=0, and a1 = a2.

Details of the model and the derivation of the above equations may be found
in references [3, 15–17].

3.     

Letting all the derivatives in equations (1)–(5) equal zero, one finds a unique
equilibrium position at the initial position x=0. To investigate its stability, one
writes equation (1) as a system of two first order differential equations,

u̇= f(u), (6)

where u=(x, ẋ), and analyze the eigenvalues of the associated Jacobian matrix

A=01fi

1uj
(0)1

2

i,j=1

=0 0
−k/m

1
−r/m+2tPs /mx01 . (7)

By considering the subglottal pressure Ps as a control parameter, it can be easily
shown that two complex eigenvalues cross the imaginary axis transversally from
left to right and the equilibrium position becomes unstable at

Px = rx0/2t. (8)

At this value of subglottal pressure, the equilibrium position is a weak focus and
its Lyapunov number (the first non-zero derivative d(k)(0)$ 0, where
d(s)=P(s)− s and P(s) is the Poincaré map for the focus) [2] is

s=(3pr/2zmk)(rt/m+3kt2/m+1)q 0. (9)

Since s$ 0, and according to the Hopf Bifurcation Theorem [2], a Hopf
bifurcation occurs at the bifurcation value given by equation (8). Further, since
sq 0, this bifurcation is subcritical.
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Figure 2. Bifurcation diagram: ----, equilibrium position, stable on the darker portion; w,
maximum and minimum values of an unstable limit cycle; W, maximum and minimum values of
a stable limit cycle. A: subcritical Hopf bifurcation. CC': saddle-node bifurcation. A–BB'–CC'–D:
oscillation hysteresis cycle.

4.  

Figure 2 shows a bifurcation diagram for the parameter values m=4·76 kg
m−2, r=1000 Nsm−3, k=2×106 Nm−3, L=1·4 cm, t=0·81 ms, x0 =1 mm [3].
The diagram was derived using program XPP for solving differential equations in
combination with the continuation program AUTO for bifurcation analysis [18].
The horizontal line at x=0 represents the equilibrium position, which is stable
on the darker portion of the line. At point A (Ps =617·2 Pa) the subcritical Hopf
bifurcation occurs: the equilibrium position becomes unstable (to the right of point
A) and an unstable limit cycle appears (empty circles). There is also a stable limit
cycle (filled circles), which coalesces with the unstable limit cycle at points CC' in
a saddle-node bifurcation (at Ps =614·7 Pa).

The vocal folds are initially assumed at rest (at x=0) and the subglottal
pressure is increased from 0. The oscillation will start when reaching the Hopf
bifurcation at point A, and its amplitude will suddenly increase to points BB' and
will follow next the filled circles to the right. Next, if the subglottal pressure is
decreased, the oscillation amplitude will follow the filled circles to the left, until
reaching the saddle-node bifurcation at points CC'. The oscillation will then vanish
and the vocal folds will return to the rest position at point D. During this process,
the system follows the hysteresis path A–BB'–CC'–D. Note that, as a result of the
hysteresis, the subglottal pressure is higher at oscillation onset than oscillation
offset, in agreement with experimental results [9, 10].

As an additional illustration, Figure 3 shows a phase plane plot for a subglottal
pressure Ps =616·0 Pa, between both bifurcations. One can see the two limit cycles
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Figure 3. Phase plane plot for Ps =616·0 Pa showing two coexistent limit cycles: the internal limit
cycle (- - -) is unstable, and the external one (----) is stable. There is also a stable equilibrium position
at the origin.

of opposite stability, around the stable equilibrium position at the origin (for
clarity, no trajectory was plotted besides the limit cycles).

5. 

This letter has shown that the onset of the vocal fold oscillation may be
described mathematically by a Hopf bifurcation of the subcritical type. The
combination of this bifurcation with a saddle–node bifurcation between limit
cycles results in a oscillation hysteresis phenomenon, which would explain
experimental observations of differences in the configuration of the larynx between
oscillation onset and offset. This phenomenon appears commonly in cases of
flow-induced oscillations (as the vocal fold oscillation); e.g., in the oscillation of
buildings and bridges by action of the wind [19].

The analysis was done on a simple bidimensional model of the vocal fold, and
considering only the subglottal pressure as control parameter. The simplifications
were introduced to reduce the model to its basic principles and provide a
qualitative description of its oscillatory dynamics. Further studies of this
phenomenon on more elaborated models, such as the popular two-mass model
[20], and other control parameters, such as glottal width and vocal fold tension,
are desirable as a next step.
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