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The theory of vibrations in cylindrical pipes within the context of thin shell
theory is reviewed. Beginning with a summary of the thin shell equations of
motion and their application to cylindrical shells, solutions are obtained for a
specific example of a typical pipe for each of several thin shell theories including:
Donnell’s theory, Love’s theory and an improved theory which includes the effects
of rotary inertia and transverse shear. For comparison, finite element (FE) models
of the pipe are also constructed. To investigate the effect of shell curvature on the
thin shell equations, various models of open shells evolving from a curved plate
are also examined. The FE results are shown to agree well with those from the
improved theory over the range of frequencies studied (the lowest 15–20 modes),
though the time for their computation when using commercial FE software is
three orders of magnitude longer.
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1. INTRODUCTION

Pipe-work is common on many offshore structures, with recent years seeing the
advent of larger, thinner walled pipes made of new materials. Such pipes may
suffer fatigue failure by processes not previously encountered in smaller diameter,
thicker walled systems and this makes a review of pipe theory, i.e., thin shell
theory, worthwhile. Industry currently uses Finite Element (FE) analysis to model
such systems which, while general purpose, does have certain shortcomings. The
FE method depends heavily upon numerical procedures which demand large, fast
computational facilities in order to deal with mathematical models representing
very detailed idealizations of the physical structures. The computational demands
increase with structural and material complexity and with analysis frequency
range. Even today, with computational methods highly developed and optimized
and escalating computing power, it is generally not practicable to predict the
detailed vibrational behaviour of such structures beyond the first twenty or so
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vibrational modes. In addition, as the complexity of such numerical methods
increases the would-be user needs to be wary of the many pitfalls associated with
the use of large packages of software. Analytic solutions of simpler problems may
then provide a check against which to measure the accuracy of more complex
numerical methods.

The work presented here forms part of a larger project examining vibration
energy flow within systems of pipe-work, the study of which is generally not
amenable to analysis by using FE methods. Instead it is proposed to use
approximate energy methods, coupling together FE and classical solutions with
models of the contained fluid to study vibrations at low to medium frequencies
(50–500 Hz, say). As a precursor to this long term project an initial review of the
limitations of classical and FE methods is necessary and this forms the motivation
for the present work.

With this in mind, the paper proceeds from a recapitulation of thin shell
assumptions to an improved theory in some detail. Three different theories are
presented and applied to a cylindrical pipe and a series of shells evolving from a
flat plate to an open circular cylindrical shell, subjected to simply supported
boundary conditions. The corresponding FE models are then constructed to
provide numerical solutions. An appraisal of the three theories is achieved by
comparing the analytical solutions and FE results, leading to some comments and
conclusions about the accuracy of the FE models.

2. CLASSICAL ANALYSIS

Theories concerning shells abound, since simplifying approximations can be
made at various points in the derivation of the governing equations (see, for
example, Chapter 1 of the book by Leissa [1] and Calladine [2]). One of the simpler
theories for thin shells is that of Love [3]. Some represent a further simplification
of the derivation of the thin shell equations as proposed by Love (e.g., the theory
of Donnell [4]). Others represent so called ‘‘first order’’ theories, in which one or
more of Love’s postulates are relaxed and the first-order transverse shear
deformation and rotary inertia are incorporated to allow for arbitrary rotations
of normals to the midsurface. These can be applied to moderately thick shells, as
in the case of the Flügge–Lur’ye–Byrne theory [5–7] in which the thin shell
approximation is retained whilst the shell’s thinness is assumed proportional to
(h/a)2�1 as opposed to h/a�1. Finally, there are so-called ‘‘higher order’’
theories, which generalize ‘‘first order’’ theories by eliminating dependence on the
shear correction factor; they are, therefore, valid for a relatively thick shell. Most
of the higher order theories assume cubic inplane displacements in the through
thickness direction, and transverse inextensibility. Here a comparison is made of
the theories of Donnell [4] and Love [3] (but using as a basis the
Reissner–Naghdi–Berry [8, 9] version of Love’s theory) and an improved theory
(first order) which includes the effects of rotary inertia and transverse shear and
which can be attributed to various workers in the field (see for example reference
[10] and the references therein).
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Pipes of fairly small thickness to radius ratio, h/aU 0·1, are the primary subject
of interest here, with a being the radius and h the thickness of the shell. Such
thin-walled pipes admit the use of thin shell theories and first order theory and
allow the equations of motion to be described in terms of the deformation of a
reference surface, which here is taken to be the middle surface of the pipe. In
addition, the comparison is restricted to pipes of constant thickness and uniform
properties, ignoring temperature gradients.

2.1. L’  

Thin shell theories typically include the postulates expressed in Love’s first
approximation [3] as a common basis. These postulates may be written as follows:
(i) the thickness of a shell is small compared to a characteristic dimension; (ii) the
deflections of the shell are small; (iii) the transverse normal stress is negligible and
(iv) normals to the reference surface of the shell remain normals and the shell
thickness remains unchanged.

Postulate (i) presents the general definition of a thin shell. Generally, the
characteristic dimension is the radius of curvature or the shortest planform
dimension. For vibration analysis, the wavelength of the transverse displacement
can be the characteristic dimension. Here a shell is taken to be thin if the ratio
of its thickness to the radius of the curvature of its surface is less than or
approximately equal to one-tenth, h/aU 0·1. Postulate (ii) permits the use of the
equations of the undeformed shell to describe its subsequent deformation and,
with the use of Hooke’s law, results in a linear elastic theory. Postulate (iii) is a
result of postulate (i). The first part of the fourth postulate, that of the preservation
of the normal, represents an extension of Euler–Bernoulli beam theory to the
problem of transverse bending in shells and requires that locally plane sections
remain plane during deformations of the shell. The second part requires that all
the strain components in the direction normal to the reference surface vanish.

Love’s postulates imply that a generic point in the volume of a shell can be
described in terms of the behaviour of a point on a reference surface of the shell,
which is taken to be the middle surface for convenience. This process reduces the
problem from a full three-dimensional treatment of the shell to a two-dimensional
one. For ease of derivation, the shell geometry is described in terms of the
orthogonal set of curvilinear coordinates which correspond to the orthogonal lines
of principal curvature. Relationships describing the differential geometry of the
shell can be found in references [11, 12].

Hooke’s law for a homogeneous elastic medium is expressed in terms of the
principal coordinates of the shell. By Love’s postulate (iii) it is assumed that the
transverse normal stress is zero and that by postulate (iv) the transverse normal
strain and the transverse shearing strains are also zero, further simplifying the
analysis. The shell displacements can be related to the strains by linear theory [11].
In Love’s theory the fourth postulate is invoked when deriving the stress–strain
relations: it is assumed that the displacements are linearly distributed through the
thickness of the shell. The thin-shell approximation is then introduced to simplify
the resulting non-vanishing strains in terms of the displacements (higher order
theories generally diverge from Love’s theory at this stage).
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2.2.      

The derivation of the equations of motion is summarized here. A more detailed
derivation can be found in many texts on shells [1, 10–12]. Figure 1 indicates the
system of coordinates used in this case: axial coordinate x, radial coordinate r,
azimuthal coordinate u and displacements in the coordinate directions ux , w
and uu respectively, as well as rotations bx and bu . For convenience these have
been made dimensionless as follows: ūx = ux /a, w̄=w/a and ūu = uu /a, where
we recall that a is the radius of the mid surface or reference surface of the
shell. The variable x is made dimensionless using h= x/a. The variable z is
defined to be the perpendicular distance from the reference surface
(−h/2E zE h/2). The strain–displacement relations for a circular cylindrical
shell are then given by

ox = o0
x + zkx , ou = o0

u + zku , gxu = g0
xu + zt, (1)

where ox , ou and gxu represent the in-plane strains and shearing strains; kx and ku

are the bending components of the strain representing changes in the curvature
of the reference surface during deformation; and t is the torsion of the reference

Figure 1. Coordinates for a cylindrical shell.
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surface during deformation. Terms with superscripts zero represent the normal
and shearing strains on the reference surface. These various terms are given by

o0
x =

1ūx

1h
, o0

u =
1ūu

1u
+ w̄,

kx =
1
a

1bx

1h
, ku =

1
a

1bu

1u
,

g0
xu =

1ūu

1h
+

1ūx

1u
, t=

1
a 01bu

1h
+

1bx

1u 1, (2)

while the rotations of the tangents to the reference surface, bx and bu (see Figure
1) are given by (except for the improved theory, discussed below)

bx =−
1w̄
1h

, bu = ūu −
1w̄
1u

. (3)

The equivalent static stress resultants, obtained from the integration of the
stresses across the thickness of the shell (which is assumed to be isotropic), are
given by Hooke’s law:

Nx =K(o0
x + o0

un), Nu =K(o0
u + o0

xn), Nxu =Nux =Ghg0
xu . (4)

The equivalent static couples are given in these theories by:

Mx =D(kx + kun), Mu =D(ku + kxn), Mxu =Mux =K0Dt=Gh3t/12,

(5)

where n, G and E are, respectively, Poisson’s ratio, the shear modulus, and
Young’s modulus for the material; K0 = (1− n)/2; and K and D are the extensional
and the bending rigidity of the shell, given by K=Eh/(1− n2), D=Eh3/12(1− n2).
The equations of motion can then be obtained from Hamilton’s principle, leading
to

1Nx

1h
+

1Nux

1u
= a2rhū

..
x ,

1Nu

1u
+

1Nxu

1h
+Qu = a2rhū

..
u ,

1Qx

1h
+

1Qu

1u
−Nu = a2rhw̄

..
+ qn ,

1Mx

1h
+

1Mux

1u
− aQx =0,

1Mxu

1h
+

1Mu

1u
− aQu =0, (6)

where qn represents the external forces acting normal to the surface of the shell
and r is the density of the shell material. The last two lines of equation (6) give
the equivalent static shearing stresses Qx and Qu enabling them to be eliminated
from the equations of motion. Note that this is not the case for the improved
theory.
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2.2.1. Love’s theory

Substituting equations (4) and (5) into equation (6) yields the equations of
motion for Love’s theory:

12ūx

1h2 +K0
12ūx

1u2 +K'0
12ūu

1u1h
+ n

1w̄
1h

=
a2

c2
p
ū
..
x ,

K'0
12ūx

1u1h
+(1+ o)K0

12ūu

1h2 + (1+ o)
12ūu

1u2 +
1w̄
1u

− o013w̄
1u3 +

13w̄
1u21h1=

a2

c2
p
ū
..
u ,

− n
1ūx

1h
−

1ūu

1u
+ o013ūu

1u3 +
13ūu

1h21u1− o94
huw̄− w̄=

a2

c2
p
w̄
..
+

aqn

K
, (7)

where 92
hu = 12/1h2 + 12/1u2, o= h2/(12a2), K'0 = (1+ n)/2, and c2

p =E/[ r(1− n2)]
(cp is the phase speed of a flexural wave propagating in a thin plate).

2.2.2. Donnell’s theory

Donnell’s theory [4, 10] represents a further simplification of the theory of Love
and is applicable in the case of sufficiently thin shells. It is appropriate only for
responses with large numbers of circumferential waves, especially for long
cylindrical shells. It is argued that in the equations of motion (6) the transverse
shearing stress resultant Qu makes a negligible contribution to the equilibrium
forces in the circumferential direction, and hence Qu may be neglected in the
second line of equation (6). Secondly it is argued that the stretching displacement
uu has no effect on the relationship between curvature and the displacements. The
curvatures expressed in equation (2) are therefore altered as follows

kx =−
1
a

12w̄
1h2 , ku =−

1
a

12w̄
1u2 , t=−

2
a

12w̄
1u1h

. (8)

Clearly this has an effect on the resulting couples as expressed by equation (5),
and upon substitution the equations of motion for a cylindrical shell become

12ūx

1h2 +K0
12ūx

1u2 +K'0
12ūu

1u1h
+ n

1w̄
1h

=
a2

c2
p
ū
..
x ,

K'0
12ūx

1u1h
+K0

12ūu

1h2 +
12ūu

1u2 +
1w̄
1u

=
a2

c2
p
ū
..
u ,

− n
1ūx

1h
−

1ūu

1u
− o94

huw̄− w̄=
a2

c2
p
w̄
..
+

aqn

K
. (9)

These two assumptions lead to treating a thin shell of small curvature as if it were
a thin plate. The resulting equations differ very little from the membrane equations
of a shell [12, 13], except for the term o94

huw̄ in the last line. This term arises from
the transverse forces Qu and Qx .
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2.2.3. Improved theory

Next an improved theory for circular cylindrical shells is considered which
includes the effect of rotary inertia and transverse shear [10]. A full derivation of
the equations of motion in this case can be found in references [10–12]. The
derivation proceeds in a similar fashion to that for Love’s theory except that fewer
assumptions are made.

Firstly, Love’s postulate (iv), that normals to the reference surface of the shell
remain normals and the shell thickness undergoes no change in length during the
deformation, is partly relaxed; i.e., normals to the reference surface of the shell
no longer remain normal, but they remain straight during deformation. This
allows rotations of normals to the midsurface, and the two associated variables
bx and bu are thus independent [equation (3) is abandoned]. Hence the number of
independent variables is increased to five, namely, ūx , ūu , w̄, bx and bu . In this way
the theory is extended to include the first-order transverse shear deformation.
Accordingly, the transverse forces Qx and Qu are not eliminated from the equations
of motion as in equation (6), but are replaced by expressions derived
independently. The effects of rotary inertia are also included in the improved
theory.

Finally, this theory includes terms of higher order in z/a when the stresses are
integrated over the thickness of the shell [the strain–displacement relationships,
e.g., ou , involve the Lamé parameter, 1/(1+ z/a), which is approximated by unity
in thin shell theory, c.f. equation (1)]. Terms of higher order than third, however,
are neglected. The other assumptions remain in place. Postulate (ii) requires that
the deformations be small: this is essential if a linear theory is required. The full
derivation yields the following set of governing differential equations:

12ūx

1h2 +K0(1+ o)
12ūx

1u2 +K'0
12ūu

1h1u
+ n

1w̄
1h

+ o012bx

1h2 −K0
12bx

1u2 1=
a2

c2
p
(ū
..
x + ob� x ),

(10a)

K'0
12ūx

1h1u
− k0K0ūu +K0

12ūu

1h2 + (1+ o)
12ūu

1u2 + (1+ o+ k0K0)
1w̄
1u

+k0K0bu + o0K0
12bu

1h2 −
12bu

1u21=
a2

c2
p
(ū
..
u + ob� u ), (10b)

−n
1ūx

1h
−(1+ o+ k0K0)

1ūu

1u
+ k0K0012w̄

1h2 +
12w̄
1u21

−(1+ o)w̄+ k0K0
1bx

1h
+(k0K0 + o)

1bu

1u
=

a2

c2
p
w̄
..
+

aqn

K
, (10c)
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o012ūx

1h2 −K0
12ūx

1u21− k0K0
1w̄
1h

+ o012bx

1h2 +K0
12bx

1u2 1
−k0K0bx + oK'0

12bu

1h1u
=

a2o

c2
p

(ū
..
x + b� x ), (10d)

k0K0ūu + o0K0
12ūu

1h2 −
12ūu

1u21−(k0K0 + o)
1w̄
1u

+o0K'0
12bx

1h1u
+K0

12bu

1h2 +
12bu

1u21− k0K0bu =
a2o

c2
p

(ū
..
u + b� u ), (10e)

where k0 is a shearing correction coefficient and the other constants are as previously
defined for Love’s theory.

2.2.4. Boundary conditions

In the case of the improved theory it is necessary to specify five boundary
conditions for each edge, one from each of the following five pairs:

Nn or u'n , Nns or u's ,

Qn or w', Mn or b'n , Mns or b's . (11)

Here the subscript n denotes the component normal to the edge, while s denotes
the component parallel to the edge. In the case of Love’s or Donnell’s theory, only
four of these boundary conditions need be specified, since it can be shown that
these five boundary conditions do not form an independent set in these cases but
can be re-expressed in terms of Kirchhoff’s effective shearing stresses [10, 11] [see,
for example, equations (12a)].

2.3.     

Equations (7), (9) and (10) are next solved for an example pipe, in order to
establish whether any notable differences exist between the theories for typical pipe
parameters. We consider a pipe of length L, radius a and thickness h simply
supported at both ends with no normal constraints (see Figure 1).

2.3.1. Boundary conditions

The boundary conditions appropriate to Love’s theory and Donnell’s theory for
such a pipe are

Nx =0, ūu =0, w̄=0, Mx =0, (12a)

at h=0 and h=L/a, i.e., the ends are free to translate in the axial direction and
are not subjected to bending moments. In addition to these, the condition on shear
deformation leads to

bu =0 (12b)

at h=0 and h=L/a for the improved theory.



     369

2.3.2. Normal mode shapes

The set of normal modes which satisfy the boundary conditions for Love’s and
Donnell’s theory is given by

ūx =− s
a

m=1

s
a

n=0

s
1

l=0

A1mnl cos (bmh)Ul (nu) eivnmt,

ūu = s
a

m=1

s
a

n=0

s
1

l=0

A2mnl sin (bmh)Ul (nu+ p/2) eivnmt,

w̄= s
a

m=1

s
a

n=0

s
1

l=0

A3mnl sin (bmh)Ul (nu) eivnmt, (13a)

where m and n are the axial and circumferential mode numbers, respectively. In
addition, for the improved theory,

bx =− s
a

m=1

s
a

n=0

s
1

l=0

A4mnl cos (bmh)Ul (nu) eivnmt,

bu = s
a

m=1

s
a

n=0

s
1

l=0

A5mnl sin (bmh)Ul (nu+ p/2) eivnmt, (13b)

where

bm =(mpa)/L, Ul (nu)= sin (nu+ lp/2), l=0, 1. (13c)

These equations give rise to pairs of modes (l=0, 1) shifted by u= p/2 (except
for n=0); i.e., Aimn1 =Aimn0 =Aimn , and the corresponding frequencies occur in
pairs.

2.3.3. Natural frequencies

The natural frequencies can be extracted by solving the determinants acquired
from the differential equations using the assumed normal modes. The natural
frequencies for Love’s, Donnell’s, and the improved theory are denoted by vL

nm ,
vD

nm , and vI
nm , respectively.

In the case of Love’s theory, the natural frequencies of the torsional modes
(ūx =0 and w̄=0) are given by

vL
nm =

cp

a
z(1+ o)K0bm , (14)

while the longitudinal and radial or ring modes, for which ūu =0, are given by the
solution of the quadratic in vL2

nm ,

a4

c4
p
vL4

nm −(1+(1+ ob2
m )b2

m )
a2

c2
p
vL2

nm +(1− n2)b2
m + ob6

m =0. (15)
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This has two positive roots, one coresponding to the longitudinal mode and the
other to the radial or ring mode. Similarly, the natural frequencies of the torsional
modes obtained from Donnell’s theory are

vD
nm =

cp

a
zK0bm . (16)

It can be shown by decomposing the determinant that the natural frequencies of
the other (longitudinal and ring) axisymmetric (n=0) modes are also given in
Donnell’s theory by the solution of equation (15). Thus Donnell’s and Love’s
theories return the same natural frequencies for the radial and longitudinal
axisymmetric modes (though not for nq 0). For the improved theory, use of
equations (13a) and (13b) leads to a 5×5 determinant which must be set to zero
to obtain the natural frequencies vI

nm . The determinant can be decomposed into
2×2 and 3×3 determinants for convenience, from which, respectively, the
natural frequencies of the torsional modes (ūx =0, w̄=0, bx =0) and the
axisymmetric modes (ūu =0, bu =0) can be obtained.

The 2×2 determinant satisfies

=dij ==0, i, j=1, 2, (17a)

with

d11 =−
a2

c2
p
v2

nm + k0K0 +K0b
2
m ,

d12 = d21 = o0a2

c2
p
v2

nm +K0b
2
m1− k0K0,

d22 = o0K'0b2
m +

a2

c2
p
v2

nm1− k0K0. (17b)

The 3×3 determinant satisfies

=eij ==0, i, j=1, 2, 3, (18a)
with

e11 = b2
m −

a2

c2
p
v2

nm , e12 = e21 = nbm ,

e13 = e31 = o0b2
m −

a2

c2
p
v2

nm1, e22 =
a2

c2
p
v2

nm + k0K0b
2
m +1+ o,

e23 = e32 =−k0K0bm , e33 = o0b2
m −

a2

c2
p
v2

nm1+ k0K0. (18b)

The equation with the 3×3 determinant can be solved by root searching to obtain
the vI

nm . Using the natural frequencies, one may then solve for each Ainm , in terms
of A1nm , to obtain each of the modal displacements by means of equations (13).
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Figure 2. Schematic of open shells evolving from a plate (c=0) to a pipe with slit (c=2p).

2.4.       

We have also compared results from classical analysis with finite element results
for open cylindrical shells. Here we review the theories. Consider an open shell
of length L, radius b, thickness h and opening angle c simply supported with no
normal constraints at each end and also simply supported on the open edges. We
define a length a, which is the radius of the equivalent closed pipe whose
circumference is Lc , i.e., Lc =2pa=cb.

2.4.1. Boundary conditions

The boundary conditions at h=0 and h=L/a are as before, but in addition
there are boundary conditions on each straight edge given by

ūx =0, Nu =0, w̄=0, Mu =0, (19a)

T 1

Models used for comparison of the thin shell theories and FE analyses

Structure b/a Opening angle c Ring frequency

Pipe 1 Closed 11·4 kHz
Open shell 1 2p 11·4 kHz

2 p 5·70 kHz
4 p/2 2·85 kHz
8 p/4 1·43 kHz

180 p/90 63 kHz
Flat plate a 0 0
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Figure 3. Quadrilateral parabolic shell element with 9 nodes.

at u=0 and u=c, i.e., the edges are not free to translate in the axial and radial
directions, but are free to translate in the circumferential direction, without
bending moments being applied to them. In addition to these, for the improved
theory

bx =0 (19b)

at u=0 and u=c.

2.4.2. Normal mode shapes

The set of normal modes which satisfy the boundary conditions for Love’s and
Donnell’s theory is now given by

ūx =− s
a

m=1

s
a

n=0

A1mn cos (bmh) sin (bnu) eivnmt,

ūu = s
a

m=1

s
a

n=0

A2mn sin (bmh) cos (bnu) eivnmt,

w̄= s
a

m=1

s
a

n=0

A3mn sin (bmh) sin (bnu) eivnmt, (20a)

where m and n are again the axial and circumferential mode numbers, respectively.
In addition, for the improved theory,

bx =− s
a

m=1

s
a

n=0

A4mn cos (bmh) sin (bnu) eivnmt,

bu = s
a

m=1

s
a

n=0

A5mn sin (bmh) cos (bnu) eivnmt, (20b)
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Figure 4. Mode count for pipe models.

where

bm =
mpb
L

, bn =
np

c
. (20c)

Figure 5. Deviation of Improved and Love’s theory from FE model.
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Figure 6. Deformed FE mesh (900 meshes) for m=2, n=1 mode.

Substitution of these mode shapes into the governing differential equations
yields determinants similar to those for the pipe, from which the natural
frequencies and modes may be obtained. In this case, axisymmetric radial and
longitudinal modes (ring modes), for which ūu =0 and n=0, are not permitted
by the boundary conditions. The only modes associated with n=0 which occur
in this case are the torsional modes. It is, however, convenient to define ‘‘ring
frequencies’’, corresponding to an open shell with free boundary conditions at
edges u=0 and u=c [cf. equations (19a) but now the radial translation is
allowed]. Such ring frequencies are therefore equal to those for a cylindrical pipe
of the same radius of curvature. They are used below in discussing the types of
behaviour observed in open shells.

3. RESULTS: COMPARISON WITH FINITE ELEMENT ANALYSIS

In order to compare results from the various theories outlined above with those
from finite element (FE) analysis, a model has been constructed for a pipe which
might be considered typical of water-main runs on many offshore installations and
structures. Models have also been constructed for various open singly curved shells
(gutters) of differing radii of curvature, but the same length, surface area and
thickness as the pipe models. Using open shell models in this way, it is possible
to isolate the effects that shell curvature has upon the respective natural
frequencies of the models. The FE models were typically constructed with 900
elements (12 circumferential by 75 longitudinal elements). However, in order to
examine convergence of the FE analysis, a larger 3148 element mesh was also used
for the pipe model. The FE analysis utilized the commercial IDEAS software
package [16] and ABAQUS [17].
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3.1.  

3.1.1. Pipe model

The pipe model has the following dimensions: length L=3·0 m, diameter
2a=0·15 m, and wall thickness h=0·005 m; and the material properties of steel:
Young’s modulus E=206·8×109 Pa, Poisson’s ratio n=0·29, shear modulus
G=80·16×109 Pa, density r=7·82×103 kg. As has already been noted, these
parameters are representative of typical water-main pipe runs on many offshore
structures.

Figure 7. Modal frequencies based on the improved theory for a pipe and for open shells: (a) Pipe;
(b) c=2p; (c) c= p; (d) c= p/2; (e) c= p/4; (f) c= p/90.
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3.1.2. Open shell models of different radii of curvature

The open shell models evolving from a plate to an open circular cylindrical shell
have the following dimensions (see Figure 2): length L=3·0 m, radii of curvature
b defined by c, lengths of curved side Lc =cb=2pa where 2a=0·15 m, opening
angles c=2p(b= a), p(b=2a), p/2(b=4a), p/4(b=8a), p/90(b=180a), wall

Fig. 8(a–b).
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thickness h=0·005 m; and also the material properties are those of steel as for
the above pipe model. These models are summarized in Table 1.

3.2.   :  

For the FE analysis a parabolic quadrilateral shell element was used in both
IDEAS and ABAQUS implementations. This was based on first order shell

Fig. 8(c–d).
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Fig. 8(e).

Figure 8. Comparison of mode count with frequency for open shells: (a) c=2p; (b) c= p; (c)
c= p/2; (d) c= p/4; (e) c= p/90.

equations, which include the displacements due to transverse shear strain. The
formulation is a nine-node shell element as described in Huang and Hinton [14]
and Hughes and Hinton [15]. A diagram of the shell element is given in Figure 3.
The element has four corner nodes, four edge nodes and a central node which is
internally generated and statically condensed prior to stiffness assembly. This
element has five degrees of freedom at each node. When the curvature is zero the
element degenerates to a plate element satisfying the Mindlin theory for plates with
shear deformations.

It is worth noting that most first order shell (and plate) elements have a
deficiency of membrane locking and shear locking [14], in which the transverse
shear strains in the element cannot tend towards zero with decreasing thickness
as they should according to thin shell theory. Hence when the shell becomes thin,
thick shell elements do not necessarily converge to thin shell solutions unless
specially formulated. Reduced integration is frequently employed to overcome this
difficulty. In the elements used here, enhanced interpolation of the transverse shear
strains is used to circumvent shear locking, and enhanced interpolation of the
membrane strains is used to prevent membrane locking. Accordingly the element
can be used for both moderately thick and thin shell structures. When using this
element it was found that it is necessary to use the shell auto restraint facility
available within IDEAS. This controls automatic restraints on the drilling degrees
of freedom for shell elements whose matrix is constructed using the consistent
rather than the lumped mass option. The usual implementation of shell theory in
finite element codes does not produce an element stiffness term associated with the
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rotational inertia about a local normal to the shell surface, the so called ‘‘drilling’’
degree of freedom. For doubly curved shells, a drilling freedom stiffness exists
naturally due to the process of assembling contribution from adjacent elements.
For cylindrical shells, however, these terms are very small.

Various techniques have been developed to deal with matrix singularity due to
the lack of drilling stiffness problem [16]. Two options are available in the IDEAS

Fig. 9(a–b).
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Fig. 9(c).

Figure 9. Comparison of the differences between modal frequencies of the Love —— and
Improved – · – theories and FEA for open shells: (a) c= p; (b) c= p/4; (c) c= p/90.

software. The first option is to add a small, out-of-plane rotational stiffness to the
shell element stiffness matrix using a penalty function technique, which is the
default setting. The second option is to use ‘‘shell auto restraints’’. When ‘‘shell
auto restraint’’ is on, the shell penalty function drilling stiffness will not be
generated, but the singularity is removed by eliminating a global rotational degree
of freedom, which is not in the plane of the shell. Here the cylindrical shells have
curvature only in one direction, i.e., they are flat along the axial direction of the
pipe and so the shell auto restraint removes singularities by eliminating redundant
rotational degrees of freedom. This choice is not provided in ABAQUS, which is
based on the use of lumped mass matrices.

3.3.     

3.3.1. Results for the pipe models

The natural frequencies for the axisymmetric modes (n=0) and the
circumferential modes n=1, 2, 3, are given in Table 2 for each of the first three
longitudinal modes m=1, 2, 3, where these fall below a frequency of 2 kHz. No
breathing modes are found below 2 kHz since the ring frequency for such a pipe
occurs at 11·4 kHz. The numbers in parentheses at the top of the columns of FE
results indicate the number of nodes in the models. The r indicates a consistent
mass formulation with the auto restraint option switched on. The results for the
ABAQUS analysis are designated (A), the others being obtained from IDEAS.
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Axisymmetric modes (n=0). It is immediately apparent from Table 2 that each
of the theories and the FE analysis give results which agree to three significant
figures for the axisymmetric modes. The best agreement is between the improved
theory and the finite element model with 3148 elements, for the torsional modes
given in Table 2 (as might be expected), while the longitudinal modes are best
matched with FE by either Donnell’s or Love’s theories (which are identical in this

Fig. 10(a–b).
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Fig. 10(c).

Figure 10. Effect of curvature on the mode count versus frequency for (a) FE models; (b)
Improved theory; (c) Donnell, Love, the improved theory and FE models. (a) – · –, FEA IDEAS;
——, FEA-ABAQUS; (b) ——, Donnell; (c) - . - , Love, – – –, Improved; – · –, FEA-IDEAS; . . . . ,
FEA-ABAQUS.

case). The differences in all cases are however small, being at most one part in 200.
General n and m. From the table, it is seen that Donnell’s theory exhibits poor

agreement with either of the other two theories and the FE analysis. As pointed
out by Leissa in his monograph [1], most of the extensional theories such as
Donnell’s are completely inadequate for low circumferential number n, e.g., n=1
in the case of long shells, L/mae 20. The integrands in formulating the
Hamiltonian are dominated by the longitudinal bending energy [18] at low
circumferential mode numbers (except when n=0); this is inadequately
represented by Donnell’s theory due to elimination of the transverse shearing stress
resultants in the equations of motion. One notes, however, that the percentage
difference between Donnell’s theory and the others decreases as the circumferential
mode number n increases. In general the best match between the FE and the
analytical theories is with the improved theory, again as expected.

It is interesting to note that the best agreement between the results from FE and
the shell theories was obtained by using a lumped mass rather than a consistent
mass formulation for the FE. The consistent mass matrix formulation uses the
same finite element interpolation functions as is used to construct the stiffness
matrix, resulting in a banded matrix whose structure is identical to that of the
stiffness matrix. A lumped mass formulation leads to a diagonal mass matrix. For
structural vibration problems, mass lumping softens the discretized model. This
softening can sometimes improve the accuracy of the natural frequencies [19]. The
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first column of FE (designated r) results gives the modal frequencies obtained with
the consistent mass formulation and the shell auto restraint option switched on,
while the second FE column gives the same analysis with a lumped mass
formulation. All other features of these two models were the same. Note that using
a consistent mass formulation without shell auto-restraint resulted in the
occurrence of many unphysical spurious modes. This behaviour is noted in the
literature accompanying the software used. As can be seen from the table, the use
of the consistent mass formulation together with the shell auto-restraint on leads
to slightly higher modal frequencies for general n and m, in most cases. When using
the lumped mass formulation, the modal frequencies are closer to those for the
improved theory, which are expected to be the most accurate. The last but one
FE column shows the results for the FE model with a larger number of elements,
where again the lumped mass formulation was used. The modal frequencies of the
two lumped mass models are very close within this range of frequencies, giving
some confidence in the results achieved. Reassuring results are also achieved by
using similar models with the same number of parabolic quadrilateral shell
elements implemented in ABAQUS. The corresponding frequencies are shown in
the last FE(A) column. The insignificant differences in the frequencies between this
and the previous sets are mainly ascribed to the different eigensolution algorithms
rather than the shell models. (The last set utilizes the subspace iteration method
when using the Householder and Q–R algorithm for the reduced eigenproblem
executed in ABAQUS; whilst the others are obtained by the Lanczos method,
when using the Rayleigh–Ritz procedure with the M-orthonormal basis of the
Krylov subspace constructed from an orthogonal set of Lanczos vectors.)

Lumped mass formulations were therefore adopted for all the other FE models
used here.

Figure 4 shows the total mode count with frequency for each of the theories
and the FE models. The inaccuracy of the Donnell’s theory for such a problem
is apparent. The marked changes in the modal density, visible as gross changes
in overall gradient in Figure 4, can be attributed to the threshold frequencies for
the n=2 and n=3 circumferential modes. Figure 5 shows the difference in
frequency between Love’s theory, the improved theory and the FE model with the
largest number of elements (3148), plotted against mode number. In general, the
improved theory gives close results to the FE data.

3.3.2. Results for the open shell models

By holding the length of the curved side of the open shell constant and therefore
the surface area constant, it is possible to investigate the effects that the radius of
curvature has upon the normal mode dynamics of the structure, without the
complicating effects of increasing mass. The FE models used for this study all use
the parabolic shell elements described above, with meshes of 900 elements (12 by
75 elements) as for the simple pipe model. The open shells are supported such that
the displacements normal to the shell plane are not allowed at the shell edges;
hence the only ‘‘axisymmetric’’ modes which occur are the torsional modes.
Figure 6 shows the deformed FE mesh (c= p/4) for the m=2, n=1 mode, to
give an idea of the relative element distortion in the model with 900 elements.
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Figures 7(a)–(f) show the evolution of the nq 0 modal frequencies as the radius
of curvature of the shells change from that of a pipe to that of an almost flat plate.
Figure 7(a) is for the closed pipe, shown for comparison. These results are based
on the improved theory. By taking those of Figure 7(b) (c=2p, but still an open
shell) to be most pipe-like an those of Figure 7(f) (c= p/90) to be most plate-like,
it is possible to examine the transition from a curved to a flat structure (see
Figure 2). For a pipe at low frequencies (relative to the ring frequency), for each
circumferential mode number n, the evolution of the modal frequency with
increasing longitudinal mode number m (which corresponds to the number of
longitudinal half waves) is such that the lines of circumferential mode numbers
cross, as in Figure 7(b); while at the other extreme, i.e., for plates, they do not,
as in Figure 7(f). Transitional behaviour from pipe to plate can be seen in Figures
7(d)–(e). It is interesting to note that the frequency at which this transition occurs
correlates reasonably well with the ‘‘ring frequency for such a structure (which can
be found in Table 1), although strictly speaking the ring frequency has no meaning
in the context of an open structure when all edges are simply supported.

Figures 8(a)–(e) give the mode counts for each of the theories, for each of the
open shells (where a FE analysis was performed, namely for c=2p, c= p,
c= p/2, etc., this is also plotted for comparison). As can be seen, as the radius
of curvature of the shell increases (i.e., the curvature becomes smaller) the
differences between Donnell’s and Love’s theory diminish, until by Figure 8(d) the
differences between these theories are negligible. The reason for this is the
decreasing size of the term o= h2/(12b2) in the governing differential equations (7)
and (9). As this term becomes smaller with increasing radius of curvature,
Donnell’s theory tends to Love’s theory. However, as can be seen from Figure 8(e),
significant differences still exist between the improved theory (and FE) and
Love’s/Donnell’s theory for an almost flat plate at large mode numbers. This must
be attributed to transverse shear and rotary inertia effects.

Figure 9(a)–(c) show the percentage differences between each of the modal
frequencies of Love’s theory and Donnell’s theory and the FE model for each of
the curved shells for which the FE analysis was carried out. In each case the modal
frequencies of the improved theory lie closer to the FE modal frequencies than
Love’s theory, as expected.

Finally, Figure 10 illustrates the evolution of the mode count versus frequency
with changing curvature for the various models. The global evolution towards a
flat plate with decreasing curvature can clearly be seen.

3.4.      FE 

In the finite element results based on the IDEAS software, we noticed that the
consistent mass plus shell auto-restraint feature slightly modified the modal
frequencies, even for the lowest frequency mode. These errors were commonly of
greater magnitude than the differences between the various shell theories used.

Another point concerning the accuracy of the FE results is that at high modal
numbers the error in the calculation of the modal frequency is often greater than
the difference between successive modes, and so the modes do not appear in their
correct order. This is particularly noticeable for a structure such as a pipe, in which
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modes should appear in pairs [as discussed following equation (14)] but which
often appeared noticeably split by several interposing modes. In the FE analysis
performed here, it was found that pairs of modes only agreed well when the
residuals calculated after the eigenanalysis were less than one part in 105. However,
as long as the detailed vibrational behaviour of the structure is not required for
a large number of modes the FE analysis performs reasonably well.

The final comment relates to CPU time. The large FE model for the pipe took
three and a half days of cpu time to solve on a Silicon Graphics R4400
workstation. The analytical results for the equivalent improved theory took only
five minutes on the same machine.

4. CONCLUSIONS

This brief review has shown the effects of adopting different sets of assumptions
on the solutions generated for pipes typical of those found in modern offshore
structures. It is seen that for appropriate boundary conditions an improved theory
can be set up and solved very much more rapidly than by using a finite element
approach. Moreover, such methods give greater insight into the effects of
parameter changes on the behaviour of pipes and, additionally, can provide higher
order modes in the correct sequence and allow for degenerate groups of modes.
The example studied shows the large number of elements needed in a FE model,
if it is to recover accurately the higher order modes required for studying the
fatigue lives of typical piping runs subjected to high frequency excitation.
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