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This paper presents a method of vibration control for a beam carrying a mass
at its tip subjected to earthquakes. A vibration isolation mechanism consisting of
a gear train for the beam is presented. Theoretical analysis for the beam is
developed, and to validate the method and analysis, experimental tests are carried
out for a model of the present mechanism. It is clarified that the vibration
displacements and the moments in the beam are suppressed significantly in
comparison with a general beam without the mechanism. A method of optimal
design has also been presented, and numerical calculations have been carried out
for the beam with actual sizes. In the present beam, energies for controlling
vibrations are not required, because the earthquake force is utilized as a control
force. Therefore, the structure using the beam has advantages as compared with
the structure having an active vibration control system.
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1. INTRODUCTION

In the Hanshin-Awaji earthquake in Japan, a number of structures and buildings
were destroyed. To suppress vibrations of structures and buildings, various
methods have been reported. Xue et al. [1] presented an intelligent passive
vibration control system, in which an ordinary passive system is combined to an
additional intelligent passive part. Prendergast [2] reported a base isolation system,
and discussed vibration isolation of bridges. A numerical simulation was also
carried out to assess the effectiveness of a passive isolator, an active vibration
absorber, and an integrated passive/active control in the paper given by
Lee-Glauser et al. [3]. Villaverde Koyama and Leslie [4] discussed a tuned
mass–spring–dashpot system. In the paper, the displacement of the roof is reduced
by up to about 40% for a 10-story building. A method of tuned mass dampers
for seismic applications was also discussed by Sadek et al. [5]. Utku et al. [6]
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presented a method in which gravitational energy of the mass of the building was
used to achieve active vibration control. Active control of flexural structures was
discussed by Ohsumi and Sawada [7]. They discussed a method of optimal control
system. Chuang et al. investigated the LQR control method [8], and Feng and
Mita [9] discussed an innovative vibration control system for reducing the dynamic
response of tall buildings due to wind and seismic load. The other method is to
strengthen the structures. The method is simple because the strength of structures
increases with their thickness, but the cost increases with the thickness as well.
Columns and beams without walls used in highway bridges and perking were
destroyed by the earthquakes. If one of the important elements of a structure is
destroyed, the structure is also destroyed, so it is important to prevent destruction
of elements such as beams and columns.

Earthquakes have significantly large energies, so if their energies are applicable
in the control of structures, vibrations due to earthquakes can be suppressed
without increasing the thickness of the structures. But few studies espousing this
standpoint have been reported. Hence, the present article discusses a method for
reducing the displacements and the bending moments in the beam by using an
earthquake force as a control force. To transform the earthquake force into the
control force, a gear train mechanism is inserted in a hollow pipe. In the
mechanism, an inertia force of the mass at the tip of the beam is transformed into
a control moment. Theoretical analyses have been made for the proposed
vibration control system. To validate the present method and analyses,
experimental tests have been performed.

2. PRINCIPLE OF THE INTELLIGENT BEAM USING THE EARTHQUAKE
FORCES AS CONTROL FORCES

Figure 1 depicts the proposed beam in which the earthquake force is
transformed into vibration control force. The beam consists of a hollow pipe and
a gear train. In Figure 1, a rigid arm 0 is rigidly connected to the tip of the beam,
and its other end is rigidly connected to a gear 1 by a shaft. The shaft of the middle
gear is connected to the beam, but it can rotate freely around its axis. Gear 3 is
rigidly connected to the beam. Hence, when the upper end of the beam moves in
the right direction, gear 1 connected to the rigid arm moves, and gear 2 rotates
corresponding to the movement of gear 1. The rotation of gear 2 is transmitted
to gear 3, but since gear 3 is rigidly connected to the beam, the restoring moment
M3 is generated whose direction is opposite to that of the beam displacement. In
this system, the restoring moment due to the reaction force Q can be greater than
that due to the applied force 2Q when the axes of gears are chosen in appropriate
positions, and the restoring moment M3 can be increased by using the gear ratios
of the gear train. Since gear 1 does not rotate in this system, a rack gear is also
applicable instead of the spur gear of course.
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Figure 1. Geometry of the present beam.

3. ANALYSIS

3.1.  

Figure 2 shows the model of the beam. The beam is divided into a number of
elements without mass, and concentrated masses. The transfer matrix method is
applied for obtaining vibration response, but in which the effects of axial force on
the bending displacement is neglected under the assumption of the bending
displacement due to the axial force being small. Then the analysis developed here
is also applicable to a column, but the gravity force acting on the column should
be small in comparison with its buckling force. Since thick columns are used in
standard buildings, shear deformation is considered, and friction forces due to
friction between gear teeth are also considered as damping forces.

Figure 2. Analytical model.
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Figure 3. Relation between displacements of the beam and angles of rotation of gears: r1, radius
of gear 1; r2, radius of gear 2; r3, radius of gear 3.

Figure 4. Column used in the experiment: W, rigid joint; w, pin joint.
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The field transfer matrix for an element of the beam between point i−1 to point
i is
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where w is the displacement, 8 is the bending slope, M is the bending moment,
V is the shearing force, l is the element length, EJ is the flexural rigidity,
GAs =GA/Ks is the shear rigidity, and Ks is the shear coefficient. The point transfer
matrix at point i is written by
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Figure 5. Experimental set-up: w1 Column; w2 horizontal exciter; w3 strain gage; w4 acceleration
pick-up; w5 bridge head; w6 charge amplifier; w7 strain meter; w8 oscillograph; w9 function generator;
w10 mass.
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Figure 6. Comparison between theoretical tip displacements and experimental ones: — – —, base
displacement; ——, theoretical (with gears); – – –, theoretical (without gears); R, experimental (with
gears); q, experimental (without gears).

where mi is the mass at point i and v is the forced angular frequency. Hence, the
matrix at the point 0 is given by
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for gear 2 by
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and for gear 3 by
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There is a lot of friction at the contact point between gear teeth because the gear
teeth make sliding motions, and it gives damping in the system. In the above

Figure 7. Comparison between theoretical bending moments at the base of the column and
experimental ones: ——, theoretical (with gears); – – –, theoretical (without gears); R, experimental
(with gears); q, experimental (without gears).
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T 2

Dimensions of the beam with hollow-square cross-section used in the optimal design

Length in the axial direction (mm) 4000
Length of the cross-section (mm) 310
Width of the cross-section (mm) 310
Thickness of the beam (mm) 5
Thickness of the gear (mm) 300
Radii of the shaft (mm) 100 (shaft for gear 1)

100 (shaft for gear 2)
90 (shaft for gear 3)

Module of gears (mm) 12
Mass on the top of the beam (kg) 1000
Mass of the beam (kg) 190

equations c1–c3 are the equivalent damping coefficients for the friction of gear 1
through gear 3, and j=z−1. The upper line of each state variable denotes the
complex number, and m0, m1, m2 and m3 are the masses at points 0, 1, 2 and 3,
respectively (see Figure 1), l1 is the length of the rigid arm, r3 is the radius of the
pitch circle of gear 3, and c1, c2 and c3 are the damping coefficients at points 1,
2 and 3, respectively.

Let the beam be a cantilever beam whose base is built-in and the other end is
free, but carrying a concentrated mass. The boundary conditions are

−w'0 = u0, −wi
0 =0, 8r

0 =0, 8i
0 =0, (7a)

Mr =0, Mi =0, Vr =0, Vi =0. (7b)

The transfer matrix involves the tip mass, so the boundary condition equation (7b)
denotes the values at an upper point of the mass. The subscript r denotes the values
of the real part, and i the imaginary, and u0 the amplitude of sinusoidal forced
displacement. The matrix B� which connects point o to point T is written by
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· · ·
··· V�

Q� T B51 · · · · · · · · · B55 Q� 0

T 3

Optimal parameters for the gear mechanism obtained by the optimal design method

Before After
optimization optimization

Diameter of pitch circle of gear 1 (mm) 204 228
Diameter of pitch circle of gear 2 (mm) 204 212
Diameter of pitch circle of gear 3 (mm) 204 180
Location of the rigid arm (mm) 2000 3046
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from which

B31ū0 +B33M� 0 +B34V� 0 +B35Q� 0 =0
B41ū0 +B43M� 0 +B44V� 0 +B45Q� 0 =07. (9)

Then one has

M� 0 =
1

B33B44 −B34B43

× {(B34B41 −B31B44)ū0 + (B34B45 −B35B44)Q� 0}

V� 0 =
1

B33B44 −B34B43

× {(B31B43 −B33B41)ū0 + (B35B43 −B33B45)Q� 0}

−w̄0 = ū0

8̄0 =0. (10)

3.2.      Q

In the above equations, the reaction force Q should be decided for calculating
the response of the beam. The horizontal displacement of the contact point
between gear 1 and gear 2 is (see Figure 3)

w1 − r181, (11)

where w1 is the displacement of gear 1 in the horizontal direction. The horizontal
displacement at the contact point is also written by using the values of gear 2:

w2 + r282 + r2u2. (12)

Equation (11) is equal to equation (12), so one has

w1 − r181 =w2 + r282 + r2u2. (13)

Gear 3 is driven by gear 2, so there is the following relation:

r2u2 = r3u3 + r383. (14)

The moment due to the force Q is equal to the restoring torque at gear 3:

r3Q� −K� uu�3 =0, (15)

where r1, r2 and r3 are the radii, u1, u2 and u3 are angles of rotation of gears 1, 2
and 3, respectively, and Ku is the rotational spring constant at gear 3 due to the
shaft which makes the connection of gear 3 to the column. Equation (15) is
rewritten by

X(1)=Re (r3Q� −K� uu�3)=0
X(2)= Im (r3Q� −K� uu�3)=07, (16)
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where Re denotes the real part, and Im the imaginary part. The angle u3 is obtained
by equations (13) and (14):

u3 =
r2

r3 6w1 − r181

r2
−82 −

w2

r27−83.

Equation (16) cannot be solved analytically, because the displacements and
bending slopes are included in a matrix with complex numbers. Equation (16) is
solved numerically by using the Brent method which is applicable to non-linear
equations.

4. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

4.1.  -

To validate the method, experimental tests have been carried out for a vertical
beam (a column). The column used in the experiment is made up of two steel plates
of thickness 3 mm, as shown in Figure 4. In the figure, the arm (the rigid lever)
made of steel with high rigidity is rigidly connected to the top of the column, and
the shaft of gear 3 is rigidly connected to the column and gear 3. There is a slit
for the support plates which support the shaft of gear 1, so gear 1 moves in the

Figure 8. Frequency response of the tip displacements of the beam treated in the optimal design:
——, with gears (after optimization); —–—–, with gears (before optimization); –––, without gears.
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Figure 9. Frequency response of the bending moments at the base of the beam treated in the
optimal design: ——, with gears (after optimization); — – —, with gears (before optimization); – – –,
without gears.

horizontal direction with the arm. Gear 2 can rotate around its axis freely, so the
movement of gear 1 is transmitted to gear 3 passing through gear 2, but the
rotating direction is changed by the middle gear 2. The height of the column is
500 mm, the length is 150 mm, the width is 150 mm, and the mass of the column
is 7·4 kg. A mass of 3·75 kg is laid on the top of the column, and the base of the
column is fixed on the table of horizontal oscillator. The column without gears
having the same sizes is also made. The mass of the column is 5·6 kg.

Figure 5 depicts the experimental set-up, in which the tip displacement and the
strain at the base are measured. To detect the displacement, an acceleration sensor
is used. The displacement is obtained by integrating the acceleration signal twice.
The strain is measured by using the dynamic strain-meter. These values are input
to a memory oscilloscope, and time response curves are generated by using a
printer. The measured data are depicted by white squares and black triangles in
Figures 6 and 7.

4.2.  

To validate the present analysis, numerical calculations are carried out for the
same model used in the experiment. Since there is a great deal of friction between
the gear teeth, and it varies with the forces applied to the gear teeth, the damping
coefficient c1 is decided by reference to the experimental data. The other
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coefficients are decided by using the gear ratios. Take, for instance, the damping
coefficient between the middle gear 2 and the fixed gear 3, given by

c3 = (r1/r3) · c1. (17)

Table 1 depicts the dimensions used in the numerical calculation which are related
to the experimental column. Numerical results are depicted by the solid and dotted
lines in Figures 6 and 7.

4.3.        

Figure 6 shows the frequency response curve at the tip of the column when the
base is excited. In the figure, q shows the experimental data for the column
without gear mechanism, and R shows the curve for the present column with the
gear mechanism, and the chain line shows the amplitude of the base displacement.
The resonance frequency for the present column is larger than that of the column
without gears, and the amplitude at resonance is significantly suppressed for the
present column due to the friction among gear teeth. Especially for frequencies
less than the resonance frequency, the displacement amplitude is significantly
smaller for the present column in comparison with the column without gears.

Figure 7 shows the frequency response of the bending moments at the base of
the column. The marks represent the experimental data, and lines represent the
theoretical results. The resonance peak is also suppressed in this figure, and the
experimental data for the present column in the low frequency region are
significantly smaller than those of the column without gears. In designing the
column used in the usual structures, resonance is avoided, and the principal
frequencies of the disturbances, such as earthquakes, are less than the natural
frequency of the structure, so the bending moments in low frequencies less than
the resonance frequency should be suppressed. In the present column, the bending
moments in the low frequency region can be suppressed, so the present column
has advantages.

Although a few discrepancies are found between the experimental and the
theoretical results, both sets of results are in good agreement from the design
engineering point of view, and the analytical results can be used in the design of
the present column.

5. METHOD OF OPTIMAL DESIGN

It has been ascertained that the present beam or column has advantages for
controlling vibrations of structures excited by earthquakes. However, the system
is not optimum. For the column, effects of vibration control will increase when
parameters such as the gear ratio and the location of the gear mechanisms are
chosen to be optimal values. In this case a method of optimal design is discussed
below.



  459

5.1.    

The above model used in the experiment is different from actual structures,
because the weight and the height of the beam are limited due to the capacity of
the oscillator. In the present section, sizes near the actual beams are chosen:
length=4 m, size of the cross-section=31×31 cm, and thickness=5 mm. The
mass of the gear mechanism is 500 kg, and the concentrated mass 1000 kg lies at
the tip of the beam which is made of steel. Details of the beam are given in Table
2. The allowable stresses are chosen as follows: sb =392 N/mm2 for the normal
stress of gear teeth, and ta =98 N/mm2 for the shear stress for the shaft. The
module of the gears is taken as 12.

In the optimal design the stresses are limited within the above values. The usual
design method of gears is used. The calculated minimum diameters of the pitch
circle are D1, D2(min)=183 mm, and D3(min)=173 mm, the minimum number
of gear teeth are Z1, Z2 =15·25, Z3V14·42. Then one takes Z1, Z2 =16, Z3 =15,
and the minimum pitch diameters are D1, D2 =192, D3 =180 mm. The inner space
of the hollow square beam is 300×300 mm, so the regions for the pitch diameters
yield:

192ED1, D2 E 228
180ED3 E 228 7.

The control effect is small when the shaft of the rigid arm lies in the low position,
so the minimum length from the base at the shaft is taken to be 1·5 m, the
maximum length is also limited by the geometrical relations, and it becomes 3·8 m.
Hence, the region for searching the optimal value for the location is
1·5 mE length from the base for the shaft of the rigid armE 3·8 m.

5.2.  

Since the beam is destroyed near the base due to the bending moment in
earthquakes, the cost function is chosen for decreasing the bending moments at
the base of the beam. The forces acting on the gear teeth become large as the
control force increases, and it is often difficult to design the gear mechanism
because sizes of gears are limited in the hollow pipe. Vibrations can be suppressed
when the frequency response curve is suppressed in the frequency domain. From
this situation, the following cost function is chosen:

J= a1 g
v2

v1

=M(v)= dv+ a2 g
v2

v1

=Q(v)= dv, (18)

where M(v) is the bending moment at the base of the beam, Q(v) is the reaction
force which acts on the gear teeth, a1 and a2 are the weights, v is the forced angular
frequency, and v1 and v2 are the lower and upper bounds in the considered
frequency region. Equation (18) means that the bending moment at the base
becomes minimum under the minimum reaction force when the cost function J
is minimized. Equation (18) is the non-linear equation, so the numerical iteration
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method is applied. Table 3 depicts the calculated optimal parameter (values of
pitch diameters of gears and the location of the shaft of the rigid arm measured
from the base). In Table 3, the initial values of the parameters before the
optimization are also depicted. Optimal values are remarkably different from the
initial values, so the optimal design will be of importance in the design of the
present beam.

In Table 3, the tooth number of gear 2 with pitch diameter 212 mm is 17·67,
so that D2 =216 mm (Z=18) is applied in the calculation. The rotational spring
constant of the shaft is Ku =(Gpd 4/32l), where G is the shear modulus, d is the
diameter, and l is the length of the shaft. It is difficult to estimate the damping
coefficients because those values are decided by reference to the experimental data.
In the present calculation, the values are assumed by reference to the previous
experimental data. Figure 4 shows the data used in the numerical simulation in
the optimal design problem.

5.3.      

Figure 8 shows the frequency response of the tip displacement of the beam.
Three cases are depicted in the figure, one is the result for the beam without gears
(dashed line), the second is for the beam with the gear mechanism but without
optimization (chain line), and the third is for the beam with the optimal gear
mechanism (solid line). The resonance peak for the optimal gear mechanism moves
to the high frequency zone. Since the principal frequencies of earthquakes in Japan
are in the region of 2·5 to 4·5 Hz, the optimization is made in the region. Then
the amplitudes of the tip displacements for the optimal gear mechanism are quite
small in the region in comparison with two others.

Figure 9 depicts the frequency response of the bending moments at the base of
the beam. The results in three cases are shown. The tendency is similar to the
displacement. However, the bending moments for the beam with the optimal gear
mechanism in the target frequencies (2·5 through 4·5 Hz) are remarkably smaller
than those of the beam without gears. Since the beam is collapsed by the bending
moments at the base, small bending moments at the base are desirable. The
moments are suppressed within about 47% of those for the beam without gears
in the target frequencies, so the method using the cost function involving the
bending moments is valid in the design of the present beam.

The results obtained are based on the analysis of steady state vibrations. The
earthquake wave involves higher modes and has noisy shape, so the wave is
different from the sinusoidal one. In this study, the principle of the proposed
system is proven, and the results obtained are different from those under the
earthquake waves.

In the real column, since the earthquake force is large, there are effects of
deformations of gears. But the effects can be neglected from the design engineering
point of view, because the deformations of gear teeth are small in comparison with
those of the column when the gears are designed with consideration of the
appropriate safety factor.
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6. CONCLUSION

An intelligent beam is presented, in which the earthquake force is transformed
into vibration control force by using the gear mechanism, without using sensors.
Theoretical analysis was carried out on the beam, and the results for obtaining
the required response have been presented. To validate the present system and the
analytical results, experimental tests were carried out for a model of the beam. It
was ascertained that the present system suppresses vibrations of the beam. The
optimal design method for the beam has been presented. In the method, the cost
function was used in which both the bending moments at the base and the reaction
force at the gear teeth are included. The optimal parameters, such as the pitch
diameters of the gears and the position of the gears, have been calculated for a
beam whose size corresponds to actual structures. It has been ascertained that the
optimal beams can be designed by using the present method.
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