
Journal of Sound and Vibration (1998) 218(3), 501–525
Article No. sv981837

FAULT DETECTION AND MONITORING OF A
BALL BEARING BENCHTEST AND A

PRODUCTION MACHINE VIA
AUTOREGRESSIVE SPECTRUM ANALYSIS

J. P. D
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This paper deals with the implementation of parametric spectrum analysis using
the high-resolution technique in setting up conditional maintenance via vibration
analysis on a forming press. To achieve this, the resolution power of
signal-modelling-based parametric techniques is shown through spectrum
assessment computation. The processing of the experimental results enabled (i)
various AR spectrum analysis methods and especially Burg’s algorithm to be
tested, and (ii) conventional spectrum analysis techniques such as the correlogram
to be compared with parametric methods at a detection level as well as for
mechanical component fault monitoring, especially ball bearing defects. Among
various possible models, the AR model was retained along with Burg’s algorithm
and the AIC criterion. A detection and spotting methodology of faults likely to
occur on rotating machinery was developed on the basis of the results which were
obtained. This methodology, supplementing other analysis techniques, relies on
the understanding of component spectrum behaviour and various constraints to
be mastered such as component access availability and problems due to industrial
measuring device spectrum resolution, as well as static properties of the power
spectrum density assessors of a random signal. The results show that parametric
methods are particularly worthwhile in the early detection of component defects,
especially when two typical frequencies are close to one another. However, the
complexity of these techniques necessitates many precautions when they are
implemented; consequently, they should not replace conventional methods, but
supplement them.

7 1998 Academic Press

0022–460X/98/480501+25 $30.00/0 7 1998 Academic Press



. .   .502

1. INTRODUCTION

To be competitive one has, among other things, to maintain manufacturing tools
in perfect working order so as to reduce maintenance and repair delays as much
as possible. To reach this goal, various maintenance policies may be considered,
but the most rational is to implement a conditional maintenance policy. This is
based on analysis techniques and process monitoring and must be efficient and
easy to implement. Among the different methods in use, the machine vibration and
monitoring technique is presently the most widespread. This consists of
monitoring on a time scale the evolution of the vibratory signal of a mechanical
system to assess the mechanism damage.

There exist several methods to characterize and to monitor the condition of
every essential rotating machinery component (see, e.g., reference [1]). Each
of these techniques copes with various phenomenon understanding levels and
the use of more or less developed analysis devices. Among the vibration
signal analyses and kinds of processing available, the AR spectrum analysis
has certainly been one of the most important and widespread in industry
since spectrum analyzers made their appearance. However, the resulting
spectrum is too rich in sinusoidal components blurred with parasitic noises,
which often makes it difficult to exploit the obtained spectra. Moreover,
most industrial measuring devices have limited signal acquisition
characteristics (predefined frequency range, limited sample number, . . . ).
Thus, to tell apart some very close typical frequencies becomes difficult.
Therefore, more efficient analysis techniques able to distinguish very close
sinusoidals independently of the resolution power of the measuring device are
required.

In this paper, an experimental procedure dealing with fault monitoring and
particularly those resulting from quasi-identical components giving very close
typical frequencies is provided. This procedure is based on the use of an
autoregressive spectrum analysis along with Burg’s algorithm and the AIC
criterion. Various constraints such as vibration variations, sensor position,
measuring parameters like frequency range and sample number were taken into
account in order to determine the choice of the suitable technique(s) depending
on these parameters.

An industrial implementation of sensitive forming press component damage
monitoring, which relies on a judicious choice of vibration monitoring conditions
and on the use of the retained so-called ‘‘high-resolution’’ analysis technique which
supplements conventional analyses, is presented (time analysis: RMS value,
kurtosis; frequency analysis: envelop and spectrum analyses).

2. THE IMPLEMENTED SIGNAL ANALYSIS METHODS

Research has been done to highlight and monitor the mechanical component
damaging condition of rotating machinery. When a complex or protected (forming
press) machine is involved in the process it is often difficult to position the sensor
near every component to be monitored. Therefore, several components are
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monitored from the same sensor position. The acquired signal does display the
whole mechanical component vibration signature. The use of more efficient
techniques is required to enable more efficient diagnosis [2].

2.1.  

Along with the traditional AR parametric spectrum analysis method, a
conventional spectrum assessment technique was implemented (i.e., the
correlogram). It was then possible to compare these techniques and to highlight
the contribution of the former at the early stage of fault detection and the
monitoring of the components sensitive to rotating machinery. The conventional
method is based on Fourier’s transform of the vibration autocorrelation function
in association with a Hanning-type weighting window (correlogram): i.e.,

Sx ( f )= r(0)+2 s
N−1

p=1

r( p) cos (2ppf ), (1)

where r( p) denotes the assessment of autocorrelation coefficients.

2.2.  AR   

Parametric spectrum analysis methods were defined and developed in signal
processing in the spectrum analysis domain in order to determine signal power
spectrum density. This enabled signal characteristics to be obtained beyond the
conventional methods bound resolution based on Fourier’s transform [3]. These
methods, known as high resolution techniques, have numerous application
domain, recently in the vibration analysis of rotating machinery [4].

Parametric spectrum analysis methods rely on time-modelling the signal. This
modelling consists of the assumption that the observed signal is generated by the
action of a linear filter on a white noise. The spectral analysis problem then reduces
to the identification of the filter model where the number of parameters is obtained
by minimizing the error between the measured signal and the output of the model
according to an optimality criterion [5]. The power spectrum density is then
computed from the recorded model.

The class of parametric methods which provides the model of a random process
with an ARMA (Autoregressive Moving Average), AR (Autoregressive), or MA
(Moving Average) type model is among the most conventional and above all the
most widely used in vibration analysis [6].

The major problems encountered when implementing parametric spectrum
analysis methods lie in the choice of (i) the vibration signal representation model,
and (ii) the model parameter computing algorithm, and (iii) the model order
selection criterion, i.e., the number of its parameters since it is a polynomial model.

Among signal representation models, the AR model was chosen here since it is
the best compromise between temporal representation and speed, efficiency and
simplicity of algorithms enabling the computation of model parameters. The AR
model is currently being used for the detection of the most common mechanical
defects via the parametric spectrum analysis. Besides spotting typical frequencies
of rotating machinery sensitive components, AR modelling allows the detection
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of the presence of vibration signal local non-stationarities through the error of
linear prediction. These non-stationarities display, in most cases, component
defects, such as on a gearing system [7].

The AR model is provided with the recurring equation

e(n)= y(n)+ s
p

i=1

aiy(n− i). (2)

Here e(n) represents the linear or residual prediction error, ai represents the model
parameters, and y(n) represents the sensor output value.

The ai parameter value is obtained via the solution of a linear system, the
so-called Yule–Walker equations, which depict the relationship between model
parameters and signal correlation coefficients (or correlation matrix/array).
Yule–Walker equations can be obtained either with the maximal entropy condition
or via a linear prediction method. Burg’s algorithm enables one, however, to assess
model parameters directly from the observed data without having recourse to the
intermediary step of correlation matrix assessment. Burg’s algorithm is based on
the arithmetic mean of direct and regressive prediction error powers. The direct
prediction error is defined by

ef
m (n)= x(n)+ s

m

i=1

am,ix(n− i). (3)

The regressive prediction error is provided by

eb
m (n)= x(n−m)+ s

m

i=1

am,ix(n+ i−m). (4)

By introducing Levinson’s recurring principle in the definition, error recurring
relations are obtained:

ef
m (n)= ef

m−1(n)+Kmeb
m−1(n−1), eb

m (n)= eb
m−1(n−1)+Kmef

m−1(n).
(5, 6)

Burg’s criterion is the arithmetic mean of direct and regressive prediction error
powers:

Cm =
1

2(N− p+1) $ s
N

n=m

(=ef
m (n)=2 + =eb

m (n)=2)%. (7)

By replacing ef
m (n) and eb

m (n) with relations (5) and (6), em becomes a single Km

parameter function, for at m order prediction errors at m−1 are known. Resetting
the Cm derivation with respect to Km provides the Km assessment:

Km =−

2 s
N

n=m

ef
m−1(n)eb

m−1(n−1)

s
N

n=m

(=ef
m−1(n)=2 + =eb

m−1(n−1)=2)

. (8)



Initialization of direct and regressive prediction errors and variance

e0 (n) = e0(n) = x(n),   0<n<N-1,f

em–1(n), em–1(n–1)f b

2 2

b

0 =  x(n) 21
N

2
(9)

Model and variance parameters computation
1 < i < m–1,

am,i = am–1,i – Km, am–1,m–i ,

(12)

(11)

Direct and regressive prediction errors computation

em (n) = em–1(n) + Km, em–1(n–1),

em (n) = em–1(n–1) + Km, em–1(n). (14)

(13)

Km reflection ratio computation
m = m + 1,

2
Km= am,m= –

m =   m–1(1– Km 2)

( em–1(n) 2 +f em–1(n–1) 2)b

(10)

n=0

N–1

n=m

N

n=m

N

f f b

b b f

.

.
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Therefore, the algorithm is as follows:

Initialization of direct and regressive prediction errors and variance

ef
0(n)= eb

0 (n)= x(n), 0E nEN−1,

s2
0 =

1
N

s
N−1

n=0

=x(n)=2. (9)

Km reflection ratio computation

m=m+1

Km = am,m =−

2 s
N

n=m

ef
m−1(n)eb

m−1(n−1)

s
N

n=m

(=ef
m−1(n)=2 + =eb

m−1(n−1)=)2

. (10)
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Model and variance parameters computation

1E iEm−1,

am,i = am−1,i −Kmam−1,m− i , (11)

s2
m = s2

m−1(1− =Km =2). (12)

Direct and regressive prediction errors computation

ef
m (n)= ef

m−1(n)+Kmeb
m−1(n−1), (13)

eb
m (n)= eb

m−1(n−1)+Kmef
m−1(n). (14)

Here N is the number of samples, and m is the recursivity iteration.
Other techniques such as Capon’s or the least recurring square method, to

mention some of the most conventional ones, were implemented on other rotating
machinery.

Thus, the understanding of parameters and model order enables the
computation of power spectrum density through the relation

P( f )=
1

=A( f )=2 =
s2

e

b1+ s
p

i=1

ai e−2jpfTeb
2
, (15)

where ai denotes the AR filter coefficients, s2
e the white noise variance, p the AR

model order and Te sampling time.
Contrary to conventional techniques the power spectrum density recorded via

AR methods did not permit a good assessment of typical frequency amplitude. The
advantage of this method lies in the early detection of the defects as well as the
dissociation of two neighbour typical frequencies, hence, its importance in
conditional maintenance.

One must bear in mind that the recording of an AR spectrum, with vibration
signal significance, essentially depends on the number of AR model parameters
(called model order filter). Actually, if the selected order is too weak, then the
spectrum is smoothed and some information is lost, consequently the method is
no longer a high resolution one in this case. On the other hand, if the model order
is too high, spectrum stripes with no physical meaning appear in the spectrum [8].
This might be misleading and cause a diagnosis error.

Two order selection criteria were retained: the FPE (Final Predictor Error) (16),
the AIC (Akaike Information Criterion) (18) and the MDL (Minimum
Description Length) (19) criteria (the numbers here are those of the following
equations); these criteria, based on prediction error power, were developed by
Akaike; the prediction error power monotonously decreases with filter order,
whereas assessed variance increases with order; prediction error-based criteria tend
towards a compromise between error power and variance:

The FPE criterion is

FPE(p)=Vp
N+ p+1
N− p−1

, (16)
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where

Vp =
s2

p

rxx (0)
= t

p

i=1

(1− =Ki =2), (17)

in which Vp denotes the variance of the standardized prediction error and N is the
number of samples (time data);

the criterion AIC is

AIC( p)=N ln (Vp )+2p; (18)

the MDL criterion (proposed by Rissanen) is

MDL( p)=N ln (Vp )+ p ln (N). (19)

The first term of the AIC criterion is proportional to the maximum likelihood of
model assessed parameters and the second term is a bias correction one. The FPE
criterion is viewed as the sum of the unpredictable part variance of the observation
process and a quantity representing AR parameters’ assessment inaccuracy.
Research has recently been done on the study and the comparison of various AR
model order selection criteria [9]. The AIC criterion was retained for our
experiment, for it enabled us to assess quite reasonably the number of AR model
parameters, whereas the FPE criterion overestimated model order.

The model order will minimize these criteria. Figure 1 denotes the determination
of the model order with the AIC criterion for a number of samples and a frequency
range considering. This criterion was obtained with a vibratory signal from a
forming press.

Figure 1. Determination of the model order via the AIC criterion; number of samples 2048,
frequency range 100 Hz.
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3. EXPERIMENTAL VALIDATION OF AR SPECTRUM ANALYSIS METHODS
ON A BENCHTEST

3.1.    

The monitoring of ball bearing damage was achieved through regular
monitoring of 13 ball bearings mounted on a single shaft between the chuck and
the tailstock of a horizontal lathe (see Figure 2). The bearings’ outer rings were
blocked rotationally via a simple assembly (a clamping screw). Furthermore, a
small round sticker was stuck on each outer ring perpendicular to the shaft axis
so as to facilitate measures.

In these conditions, a single sensor enabled serial monitoring according to a
radial direction of the bearing damage. In addition to the accelerometer, the
measuring chain incorporated an industrial FFT analyzer with limited
characteristics (present frequency range, maximum sample limited to 4096) linked
to a microcomputer via an IEEE 448 which enabled the analyzer to be controlled
from the computer. The analyzer was only used for time signal acquisition, while
the other processing was carried out through a microcomputer and the
custom-built piece of software.

Three other sensor positions were chosen (Figure 2 positions 1–3) to study the
propagation of the vibrations emitted by mechanical components, on the one
hand, and record the various typical frequencies of bearing faults from a single
sensor on the other. This enabled the determination of suitable detecting methods
according to sensor position.

3.2.         

Two types of defects are likely to occur on a ball bearing: defects evenly
distributed on the active parts of the bearing, essentially due to bearing
manufacture (geometrical defects of elements, defect of surfaces in contact); these
defects can only be detected via temporal methods. Such methods use statistical
or energy parameters e.g., kurtosis, RMS value, defect factor or other methods

Figure 2. Measuring bench and monitoring device. The 10 6002 SNR bearings are labelled A, B,
C, D, E, F, G, H, I, J, K, L, M, and the three 6202EE bearings D, F, I.
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in the time domain [1]; defects spotted on elements being part of bearings such
as flaking, impression, jamming. Characterized by repetitive shocks, which occur
whenever a rolling element encounters the defect, each spotted defect is identified
by a recurring frequency which depends on the geometrical characteristics of the
bearing and rotational frequency.

If a defect is localized on the outer ring race, a recurring frequency shock fe

appears at each ball pass (20):

fe =
n
2

N
60 01−

d
D

cos u1. (20)

Likewise, a defect spotted on the inner ring is characterized by a frequency fi :

fi =
n
2

N
60 01+

d
D

cos u1. (21)

If a defect is spotted on a rolling element, its typical frequency will be

fb =
D
d

N
60 01−0d

D
cos u1

2

1, (22)

where n, N, d, D, u, respectively denote ball number, shaft rotational speed (rpm),
ball diameter, average diameter and contact angle. To spot defects, frequential
techniques are the most efficient since they allow both the detection of defects and
the monitoring of their propagation.

Bearing specifications are shown in Table 1.

3.3.   

In this section, defects spotted on bearing moving parts (flaking, strain, imprint)
are given particular attention. The clamping, which was achieved via a screw/bolt
on the outer ring, allows a punctual load to be applied in a given direction. The
generated stress, in turn, engenders fatigue in two given points on the ring. It

T 1

Typical fault frequencies

Bearing specifications 6002 bearing 6202 bearing

Average diameter (mm) 23·5 25
Ball number 9 8
Ball diameter (mm) 4·7 6
Contact angle (°) 945 945
Outer ring speed (rpm) 0 0
Defect localized on the outer ring (Hz) 56·7 47·8
Defect localized on the inner ring (Hz) 85·05 78·12
Defect localized on a rolling element (Hz) 75·6 61·84
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Figure 3. Evolution of the frequency amplitude characteristic of bearing A defects.

causes the appearance of an imprint whose evolution explains the higher vibration
level at typical outer-ring-linked-defect frequency (see Figure 3).

3.3.1. Experimental results analysis on the 6002 bearing

The experiment consisted of monitoring the evolution of the spectrum which is
characteristic of each bearing on a time scale, and, in particular, the amplitude of
the frequencies which are typical of the localized defects. This evolution is
characterized by (i) an increase in the overall level; (ii) the appearance of the
harmonics of different typical fault frequencies; and (iii) the appearance of other
phenomena like modulation. Figure 3 displays the tendency curves assessed by AR
parametric spectrum analysis of the frequencies, which are characteristic of
bearing A defects.

Initially both (conventional and parametric) analysis methods give a fault-free
spectral signature for each bearing. Despite the similarity of the spectra gained
with the two methods, the overall amplitude differs between spectra. Actually,
both techniques do not possess the same statistical characteristics. Moreover, for
a judiciously selected model (depending on the order selection criterion and the
sample number), the AR spectrum reveals all the periodic phenomena contained
in the vibratory signal. Thus, only the axle rotational speed ( fr =15–75 Hz) and
all of its harmonics ranging from 0 to 100 Hz can appear on each bearing
spectrum. The other peaks correspond to lathe kinematic frequencies.

After 200 operating hours, each tendency curve regularly increases, especially
the 6002 bearing outer ring defect. The parametric spectrum reveals the typical
groove of the fault localized on the outer ring (see Figure 4). As a result, the first
signs of damaging of this latter can be assumed. However, even though the peak
seems very high at this frequency, nothing can be concluded about the fault
seriousness. The corresponding amplitude varies little compared to the previous
values as the evolution of the tendency curve shows. As far as monitoring is
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Figure 4. A bearing spectrum after 200 operating hours; Burg (110); appearance of the defect
spotted on the outer ring (56·75 Hz).

concerned, it is the amplitude’s increasing speed which provides information on
the health condition of a component, not the single value at a set time.

On the other hand, the conventional spectrum (correlogram) of bearing A does
not display the signs of a defect after 200 operating hours (see Figure 5). This is
not a spectrum resolution problem since the selected measuring parameters were
computed so as to enable the localization of typical bearing fault stripes. The
conventional spectrum does not highlight the low amplitude variations of the
typical stripes as far as the whole is concerned. The amplitude of harmonic 3 is
much higher than those of typical close frequencies.

Figure 5. Conventional bearing A (correlogram) after 200 operating hours.
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The p order of the AR model steadily increased as time passed. This can be
explained by the fact that the number of spectrum stripes increases as the bearing
deteriorates. In fact the number of model parameters is strongly linked to the
number of periodic signals contained in the vibration signal. The model is
determined for a given operating condition at a given time. When the bearing
deteriorates, the previous model cannot be adapted to the new condition. Thus,
it is redefined anew.

Among the three selection criteria of the selected order, the Akaike (AIC)
criterion seems to be the best to assess the parameters number of the AR model.
The MDL criterion often underestimates model order, whereas the FPE
overestimates it. These order selection criteria do not possess the same statistical
properties, and most of the time, the important decrease in the signal-to-noise ratio
may result in an overestimation of the AR model order whatever the retained
criterion.

That the retained model order does not correspond to the exact model order
but is close, does not mean a strong variation at the level of the overall amplitude
of the computed spectrum. A close to minimum p value can then be retained via
the order selection criterion.

3.3.2. 6202EE bearings (D, F, I ) experimental analysis

The tendency curves of the SNR bearings with 6202EE reference have features
which are analogous to the 6002 bearings, as shown in Figure 6.

As in the previous case, at the beginning (conventional or parametric) bearing
F spectra display only the output shaft rotational speed ( fr ) with its harmonics
in the frequency range as well as lathe kinematic frequencies. All of the phenomena
previously described with the 6202EE bearings are encountered again. The
amplitude of each characteristic fault frequency of 6202EE bearing varies on
average (about −160 dB; Figure 6) for the 0–200 operating hour period. It begins

Figure 6. Advancement of typical frequency amplitudes of the bearing F defects.
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Figure 7. Bearing F parametric spectrum after 350 operating hours. Note appearance of peak at
47·88 Hz due to the outer ring defect.

to increase after 200 h and it is more noticeable with the amplitude of the defect
localized on the outer ring (47·88 Hz). The parametric spectrum (see Figure 7) of
each reveals the first damaging signs of this component. In contrast, the
conventional correlogram-type spectrum (see Figure 8) displays a dynamic
problem linked to spectrum stripes width. This problem is even greater for 6202EE
bearings since the harmonic 3 of the output shaft rotational speed (47·25 Hz) is
very close to the localized defect typical frequency on the outer ring (47·88 Hz).
The same applies to the fault spotted on the inner ring at the 78·12 Hz frequency
while the harmonic 5 of shaft rotational speed (15·75 Hz) is at 78·75 Hz.

Figure 8. Conventional bearing F spectrum after experimental testing.
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In summary, parametric spectral assessment techniques are high-resolution
methods and thus enable the detection of the first signs of a fault localized on a
mechanical component. Then, they may complement conventional methods based
on the Fourier transform which still remain the easiest when the component
vibratory signature does not show the frequency characteristics of very close
defects that devices cannot dissociate.

3.3.3. Experimental results from the three sensor positions (1–3)

The sensor was placed in three different positions (Figure 2: positions 1–3)
in such a way as to study the propagation of vibrations emitted by
various mechanical components and recover the whole set of typical fault
frequencies on different bearing types. This study is essential in so far as (i) each
sensitive rotating machinery component is not accessible via a sensor; and (ii) the
monitoring chain installation cost by reducing the amount of sensors is
required. It is important, too, to point out that time techniques are no longer
suitable for bearing damage monitoring since the vibratory signal obtained
denotes the vibratory signature of the whole component set. Hence, only frequency
analysis enables the detection and the monitoring of the (6002 and 6202EE)
bearing damage advancement. Whatever the spectrum assessment in use, the
10 6002 and the three 6202EE bearings display the same frequencies which are
typical of localized faults; thus, it is extremely difficult to identify the bearing(s)
on which a defect appears. Bearing vibratory signatures have different
wavelengths, but, in terms of frequential localization, faults are blurred for each
of the types.

The amplitude corresponding to each localized defect typical frequency is the
output of the superposition of the 13 bearings’ vibratory signatures when these
faults are present.

The tendency curves for both types of bearings and the sensor placed in position
1 or 3 evolve as near neighbours in the same way as those obtained when the sensor
is placed on each bearing (see Figures 9–12).

The most prominent defects on the outer ring located at 56·75 Hz for the 6002
bearing and at 48 Hz for the 6202EE are present with equivalent respective
amplitudes on positions 1 and 3, positions which are symmetrical on the chuck
(see Figures 13 and 15 of section 4). Their amplitudes are strongly lowered on the
recording in position 2 where the sensor is placed on the chuck that softens
vibrations.

The study of the vibration propagation phenomenon in a machine frame is thus
preponderant. The understanding of these phenomena allows the determination
of ideal sensor positions likely to record a maximum of information in the best
conditions. It is actually useless to develop high-resolution spectrum analysis
methods if the information is recorded in a position where this information is
masked, as shown on position 2 for instance.

To conclude, sensor positioning is essential; however, the detection problem
of faults localized on two identical bearings cannot be solved with these
methods.
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Figure 9. Frequency amplitude evolution typical of bearings for a fault at position 1.

3.4. 

The frequency analysis has shown the benefits of the AR spectrum techniques
over conventional ones (correlogram). Burg’s algorithm-based parametric
spectrum assessment allows early damage detection and fault evolution
monitoring of bearings. This can be explained because this technique detects all
of the recurring phenomena contained in the vibratory signal. This is a

Figure 10. AR spectrum after 150 operating hours. Appearance of the defect localized on the outer
ring; sensor placed in position 1.
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Figure 11. AR spectrum after 150 operating hours. The amplitude of the fault localized on the
outer ring is weak; sensor placed in position 2.

high-resolution method which also softens noises. Thus, bearing faults can be
detected more quickly.

Model order selection has also been shown to be important. It cannot be over-
or underestimated since this might result in significant errors in spectrum
computation and completely incorrect interpretations.

Finally, emphasis has been placed on the possible ability of these high-resolution
methods to recover the vibratory signature of the complete set of monitored
components with a small number of judiciously placed sensors. These complex
techniques do not have to replace conventional methods, but complement them.

Figure 12. AR spectrum after 150 operating hours. Outer ring localized amplitude; sensor in
position 3.
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Figure 13. Two-axle press.

Nevertheless, in the case of identical components, the identification of the one
which has got a defect cannot be achieved without complementary techniques.

Thus, AR spectrum analysis has been implemented on a device whose
unexpected halts result in hefty financial loss: a forming press.

4. PARAMETRIC TECHNIQUES IMPLEMENTATION ON A FORMING PRESS

4.1.    

The study focuses on a swan-neck forming press with a 125-ton capacity (see
Figure 13).

The press consists of a frame which drives the shaft through two plain bearings
(bronze rings). This shaft acts as a cam in order to convert a rod/strut continuous
motion into an alternative rectilinear one. It also drives the flywheel through a
belt-based system. The shaft’s rotational motion is transmitted via a temporary
coupling of the friction gear type. It is slowed down and ground to a half by a
friction brake. The press hash two periodic operating modes and an ad hoc
operating mode. For this study, research was limited to the two periodic modes
in which the press behaves like rotating machinery.

4.1.1. Waiting mode

In this mode, one gear is not excited; only the flywheel, the driving belt and the
motor are operating. The flywheel is mounted freely in rotation on the primary
shaft and the brace slide set is insert. In these conditions, only the motor (6), the
driving belt (3), the flywheel (8) and the flywheel/primary shaft link ball bearing
(9) can monitored (see Figure 14).
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Figure 14. Press driving line.

4.1.2. Continuous mode

Here, the gear is excited, and all parts are moving. The press behaves like
rotating machinery and the dynamic stress is periodic. The flywheel drives the
brace rotationally through the pinions (1) and (10). The brace imposes an
up-and-down movement to the slide which contains the forming tool. For this
operating mode, motion transmissions (belt, pinion) as well as bearing (fluids (5),
rollers (2) and (4)) can be monitored (see Figure 4).

4.2.  

The experimental problems encountered were (i) the positions which are to be
selected for accelerometers in order to recover as much information as possible;
(ii) the optimal motor rotational speed enabling the best localization of typical
mechanical parts’ faults depending on motor shaft speed; and (iii) the typical
device frequencies which can be monitored, and the different fault spectrum
indication.

The choice of the accelerometer positions is guided by the accessibility of
machine components to be monitored, as well as the propagation of frame
vibrations. The restriction linked to component accessibility has led us to consider
two positions: close to the flywheel (position 1), which enables the monitoring of
components linked to the primary shaft and the flywheel; and close to the slide
(position 2), so as to monitor particularly the components linked to the brace
(pinion, fluid bearings).

Forming presses are machines with low shaft rotation speeds. The press which
was the object of this study had two conical roller bearings having almost identical
technical features. Very close typical frequencies resulted from this specificity.
Located very close to each other, the monitoring of the two bearings could be
achieved only via the same spectrum. With the typical frequencies depending on
their size and shaft rotational speeds, the most judicious speed was also the highest.
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When the motor rotational speed increased, the interval between two typical
component defect frequencies increased, this allowed each typical frequency to be
displayed more clearly on the spectrum.

In fact, when the motor rotational speed increases, the interval between two
typical components fault frequencies increases too; this allows all the characteristic
frequencies to be revealed on the spectrum. However, by increasing motor
rotational speed, it is necessary to increase the useful frequency range of the
measuring apparatus when acquiring the vibratory signal, which tends to reduce
spectrum resolution.

Therefore, compromise between rotational speed and spectrum resolution needs
to be determined so as to obtain good vibration measurement efficiency.
Therefore, ideal press rotational speed must be determined along with the most
appropriate spectrum analyzer settings during signal acquisition.

Typical fault frequencies and exciting source analysis according to motor
rotational speed enables the following to be specified: (i) the sample number to
take; (ii) the frequency range of the analysis; (iii) the motor rotational speed in
order to obtain optimal spectrum resolution.

When the press is in standby mode the typical frequencies that can be monitored
correspond either to motor shaft and flywheel unbalances, to belt motion driving,
or to flywheel/primary shaft link rolling bearings. For an 80-rpm motor shaft
rotational speed, typical fault frequencies are reported in Table 2.

4.3.  

Given the number of mechanical components to be monitored on the press, the
recorded vibration signal spectrum is very rich. Moreover, each typical fault
frequency generates harmonics whose number depends essentially on the nature
and seriousness of the localized defect. However, these harmonics cannot be
interpreted to characterize a component defect since the appearance and
disappearance of some harmonics are still randomly generated and depend on
several factors (rational speed variation, external parasites, . . .). Only amplitude
evolution monitoring corresponding to the characteristic fault frequency remains
efficient when characterizing component faults. To stress the contribution of ARR

T 2

Components to be monitored in position 1—waiting mode

Output
Typical shaft

frequencies speed Number of Frequency Sensor
Component defect (Hz) (rpm) samples range position

Motor shaft Unbalance 45·07 80 1024 50 1
Flywheel Unbalance 7·12 80 1024 50 1
Belt Driving 5·20 80 1024 50 1
Bearing 6220 Inner ring defect 42·04 80 1024 50 1
Bearing 6220 Outer ring defect 29·13 80 1024 50 1
Bearing 6220 Roller element defect 37·93 80 1024 50 1
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Figure 15. Conventional spectrum (correlogram).

parametric methods three recordings are presented which display the evolution of
various faults localized on press components. These three recordings correspond
to the waiting mode, where the sensor is placed in position 1. Theoretically, in
these conditions, six typical fault frequencies should be detected if the components
to be monitored are damaged or on the verge of sustaining damage (see Table 2).

4.3.1. Recording 1

From the first recording, the major difference between the two (conventional
and parametric) techniques have been highlighted at the localization level of
typical component defects. Flywheel unbalance (7·12 Hz) is detected in the
conventional spectrum (see Figure 15) with an amplitude of 158·54 dB. This
frequency generated three frequencies on the spectrum.

Theoretically, the typical frequency of 6202EE ball bearing defects is around
37·93 Hz. The 37·25-Hz peak on the spectrum could then be considered as a ball
bearing defect but the next measure would have to be awaited to ensure the exact
position of the rolling element fault frequency. Note that the 100-Hz range has
been preferred to the 50-Hz range. To offset this difference, 2048 samples were
taken of 1024. The presence of other peaks which are not harmonics or
modulations is ignored.

In the AR spectrum (see Figure 16), on the other hand, the presence of flywheel
unbalance at 7·12 Hz and the motor shaft rotational speed at 45·07 Hz that cannot
be detected on the conventional spectrum can be seen. The presence of two
frequency harmonics [harmonic 1: 11·75 Hz (−126·2 dB) and harmonic 2: 22·5 Hz
(−122·43 dB)] shows a belt-driving fault.

No peak on typical 6202EE bearings fault frequencies is detected, which
indicates that there is no damage.
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Figure 16. Parametric order ( p order=170 via the AIC criterion).

However, it is worth noticing that Burg’s algorithm is sensitive to noise effects
and that model order selection plays an important part in revealing all of the
recurring phenomena. This is one of the major problems related to signal
parametric modelling.

4.3.2. Recording 2

The results obtained confirm the previous results. As for recording 1, flywheel
unbalance amplitude has increased and belt-driving fault has appeared at 5·62 Hz
(see Figure 17). Motor shaft unbalance does not appear on the conventional
spectrum. There is no significant peak of the 6202EE bearing condition. All this
indicates that it is still in perfect working order.

Figure 17. Conventional spectrum (correlogram).
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Figure 18. Parametric order ( p order via the AIC criterion).

However, in the parametric spectrum (see Figure 18), a 6202EE roller bearing
element fault begins to appear and is characterized by a 38-Hz peak. This confirms
the usefulness of parametric techniques in early fault detection, but the same
previous phenomena are still encountered.

4.3.3. Recording 3

Compared with the previous recordings in the same mode, the 6202EE bearing
outer ring defect appears at 29·06 Hz (−165·98 dB; see Figure 19). Motor shaft
unbalance appears at 44·87 Hz with an amplitude of −195·83 dB. Flywheel
unbalance, which is around 7·12 Hz with an amplitude of −172·46 dB, generates
five harmonics. Likewise, the belt driving defect appears at 5·12 Hz with an

Figure 19. Conventional spectrum (correlogram).
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Figure 20. Parametric spectrum.

amplitude of −166·80 dB. This frequency, typical of the belt driving, generates
harmonics 2, 4 and 5, while harmonic 3 is absent. As before, these are not reliable
in determining the severity of the fault.

The parametric spectrum (see Figure 20) confirms the appearance of the outer
ring defect (29·06 Hz). The other previously detected faults are also present on this
spectrum.

4.4. 

Throughout this experiment, the number of faults increases, and in some cases
these defects are visible only on the parametric spectrum at an early stage. This
is because for a given measure of parameters setting (sample number, frequency
range, signal-to-noise ratio) parametric spectrum analysis techniques do offer a
better resolution than conventional Fourier transform-based methods. As pointed

T 3

Summary

Conventional spectrum Parametric spectrum
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

Recording Recording Recording Recording Recording Recording
Localized defects 1 2 3 1 2 3

Flywheel unbalance Yes Yes Yes Yes Yes Yes
Driving defect No Yes Yes Yes Yes Yes
Motor shaft unbalance No No Yes Yes Yes Yes
Ball defect No No No No Yes Yes
Outer ring defect No No Yes No No Yes
Inner ring defect No No No No No No
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out at the beginning of the recordings, these so-called high-resolution techniques
must be implemented very cautiously due to the computational complexity. These
methods should not replace conventional spectrum analysis techniques but
complement them when a large spectrum resolution is required, to dissociate
neighbour typical grooves, or when the vibratory signature of the entire system
has to be achieved when individual components cannot be monitored. Table 3
illustrates the various typical fault frequencies observed throughout the measuring
campaign for each implemented method and for a standby operating mode.

5. CONCLUSION

The problems related to press kinematics do not allow the use of all signal
processing digital methods. Hence, spectrum analysis remains the most efficient
tool to localize and monitor the damping condition of various components on an
industrial site.

This study has established that parametric techniques along with conventional
methods bring extra information since they display all of the signals occurring in
a vibratory signature. This enables the detection of a fault at an early stage and
the monitoring of its evolution on a time scale. Therefore, it is a worthwhile
technique at the conditional method level.

For machine accessibility purposes, the measuring campaign was limited to nine
months. This time period is not long enough to detect the evolution of the typical
frequency amplitudes of identified faults on the machine.

The press has been operating for more than 20 years and the damaging processes
of its part are slow; this research warns about the components which are becoming
damaged and those which are still in working order. Our research is currently
directed towards use of the appropriate vibration signal model like the ARMA
model which could permit the correlation between model parameters and typical
frequencies contained in the signal. In this case, model parameter evolution
monitoring may turn out to be significant for rotating machinery monitoring.
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1. C. P and C. F 1997 Mécanique Industrielle et Matériaux 50(2).
Contribution du facteur de crête et du kurtosis l̀ l’identification des défauts induisant
des forces impulsionnelles périodiques.

2. D. C. B and J. M 1996 Mechanical Systems and Signal Processing 2, 1–17.
A comparison of autoregressive modelling techniques for fault diagnosis of rolling
element bearings.

3. M. K. S and S. L. M, J. 1981 Proceedings of the IEEE 69, 81–87.
Spectrum analysis—a modern perspective.

4. C. M and J. M 1992 Mechanical Systems and Signal Processing 4,
297–3077. Fault detection and diagnosis in low speed rolling element bearings part I:
the use of parametric spectra.

5. H. A 1974 Proceedings of the IEEE 19, 716–723. A new look at the statistical
model identification.

6. S. M. K and S. L. M 1981 Proceedings of the IEEE 69(11), 81–87. Spectrum
analysis—a modern perspective.



   525

7. K. D, M. S and Y. G 1991 Trailement du signal 8(5), 331–343.
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