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APPLICATION TO INITIAL-BOUNDARY-VALUE

PROBLEMS

S. T

DiSGG, Faculty of Engineering, University of Basilicata, Via della Tecnica 3,
85100 Potenza, Italy

(Received 11 March 1998, and in final form 22 June 1998)

Two non-linear dynamical systems have been considered. In both cases, the
governing equation of motion is reduced to two second-order non-linear
non-autonomous ordinary differential equations using the differential quadrature
method with a careful distribution of sampling points. To check the numerical
results, a comparison with those obtained using the Galerkin approach is
proposed.
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1. INTRODUCTION

The reduction of continuous non-linear systems to single-degree-of-freedom
oscillators can be performed by using various equivalent approaches, as for
example the averaging methods or the Ritz–Galerkin techniques [1]. The resulting
system can be investigated deeply in the non-linear regime, and harmonic and
non-harmonic response can be obtained. Nevertheless, the drastic reduction to a
single degree of freedom leads to neglect of some qualitative phenomena, as for
example the internal resonances, which can significantly change the system
behaviour. Consequently, a number of papers have been devoted to the influence
of higher modes on both regular and chaotic responses [2].

In this paper, the reduction of non-linear boundary-initial-value problems to a
system of coupled non-linear ordinary differential equations is carried out by using
the generalized differential quadrature (GDQ) method [3]. The method can be
conveniently applied to the purpose, by substituting the four boundary conditions
into the governing equations [4], so that the number of sampling points reduced
by four represents the degrees of freedom of the discretized system.

Because of the complexities involved in the analysis of multi-degree-of-freedom
systems, attention will be restricted to two-degree-of-freedom systems. So, caution
is required in the choice of the sampling points, since their number must be limited
to six. Actually, the GDQ method uses the Lagrange interpolated polynomial as
test functions and the roots of shifted Legendre polynomial as grid co-ordinates
(a brief overview of the method is given in the next section), and this choice is
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shown to produce inaccurate results, even in the linear regime, at least if the
number of sampling points is a priori limited. Consequently, a new, more
satisfactory distribution is proposed, which is able to reduce the discretization
errors.

Finally, the strongly non-linear oscillations of the two-degree-of-freedom
systems obtained are studied with the modified Lindstedt–Poincarè (MLP)
method, using an automatic code [5].

This perturbation approach, which was recently developed by Cheung and
coworkers [6], seems to be the most natural choice for a strongly non-linear,
undamped system where no restriction on the non-linearity can be introduced.

As a guideline, two prototype structural models are used, i.e., the simply
supported beam resting on a non-linear Winkler soil and the slender
clamped–hinged beam in which the axis shortening is taken into account. In both
cases, the numerical results have been compared with the results obtained by using
the usual GDQ grid co-ordinates, and with the results given by the classical
Galerkin approach.

For a different application of the differential quadrature method to the vibration
analysis of a geometrically non-linear beam, see reference [7].

2. METHODS OF ANALYSIS

The basis idea of the differential quadrature method is that the derivative of a
function with respect to a space variable at a given point is approximated as a
weighted linear sum of the function values at all discrete points in the domain of
that variable. In terms of dimensionless variables, one has that, at a point z= zi ,
the rth-order derivative of a function w(z), defined in the domain (0, 1) with N
discrete grid points, is given by:

$drw
dzr%

z= zi

= s
N

j=1

A(r)
ij wj i=1,2, . . . , N, (1)

where A(r)
ij are the weighting coefficients of the rth-order derivative.

The weighting coefficients are determined by substituting approximating
functions to the originary function w(z) in equation (1). In the GDQ method [3, 4],
these test functions are assumed to be the Lagrange interpolation polynomials.

The off-diagonal terms of the weighting coefficient matrix of the first-order
derivative turns out to be:

A(1)
ij =

t
N

n=1
n$ i

(zi − zn )

(zi − zj) t
N

n=1
n$ j

(zj − zn )

i, j=1, 2, . . . , N j$ i. (2)
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The off-diagonal terms of the weighting coefficient matrix of the higher-order
derivative are obtained through the recurrence relationship:

A(r)
ij = r$A(r−1)

ii A(1)
ij −

A(r−1)
ij

(zi − zj)% i, j=1, 2, . . . , N j$ i, (3)

where 2E rE (N−1).
The diagonal terms of the weighting coefficient matrix are given by:

A(r)
ii =− s

N

n=1
n$ i

A(r)
in i=1, 2, . . . , N, (4)

where 1E rE (N−1).
Assuming the Lagrange interpolation polynomials as test functions, there is no

restriction in the choice of the grid co-ordinates. So, in order to have more accurate
solutions, it is possible to generate the sampling points as follows:

zi =
1
2 $1−cos

(i−1)
(N−1)

p% i=1, 2, . . . ,N. (5)

In order to overcome the problem of the d-points [8], Shu and Du [4] support the
GDQ method with a direct substitution of the boundary conditions into the
governing equation. In the present work, the Shu and Du approach is used, but
the grid co-ordinates are not given by equation (5).

It is well-known that the distribution of sampling points must be symmetric and
it must result in z1 =0 and zN =1. So, it will be sufficient to determine (N−2)/2
(two, for N=6) points after the first, since the others are automatically fixed by
the relation that defines the symmetry of the distribution:

zi + z(N+1− i) = 1.

By induction, the following rule has been deduced:

zi =0 i−1
N−11

Nbi /izi

, (6)

where bi are unknown coefficients to be fixed.
As it has been said, for the symmetry, only b2 and b3 need to be fixed.
This distribution has been checked with a linear analysis: the comparison term

between numerical and exact results has been given by the critical value of the axial
force. After many numerical simulations, it has been possible to see that the third
co-ordinate plays an important role in obtaining good results. In fact, for a certain
value of b3, the non-linear results are not influenced very much by varying b2,
whereas the linear results are the same. This is true even if the second point is near
to the third. Finally, it has been noted that the results are in good agreement for
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values of b3 close to N/5=1·2. For b3 =1·2 and b2 =1, for example, the following
distribution of sampling points is obtained:

{0, 0·033, 0·281, 0·719, 0·966, 1} (7)

This is the distribution which is used for the final non-linear results.

3. THE FIRST MODEL: A SIMPLY SUPPORTED BEAM ON A NON-LINEAR
WINKLER SOIL

Consider a simply supported beam with span L, Young modulus E, moment
of inertia I, mass per unit length m and cross-sectional area A, which rests on an
‘‘hardening’’ non-linear elastic foundation and which is subjected to a compressive
load P and to an exciting transverse force F(z, t)=F(z) cos v̄t. The foundation
is supposed to be defined by the following load–displacement relationship:
q(z)= k1v(z)+ k3v(z)3, where q(z) is the force per unit length, k1 is the linear
Winkler foundation stiffness and k3 q 0 is the ‘‘hardening’’ non-linear elastic
foundation stiffness.

If the beam is considered to be slender, the equation of motion can be written
as:

m
12v
1t2 +EI

14v
1z4 +P

12v
1z2 + k1v+ k3v3 =F(z) cos v̄t. (8)

Equation (8) can be conveniently written in terms of dimensionless variables as:

12w
1t2 +

14w
1z4 + s

12w
1z2 + u1w+ u3w3 = f(z) cos vt, (9)

where

w=
v
L

, z=
z
L

, t=XEI
m

t
L2 , v=Xm

EI
L2v̄,

s=
PL2

EI
, u1 =

k1L4

EI
, u3 =

k3L6

EI
, f(z)=

F(z)L3

EI
.

In the Galerkin method, the deflection is approximated by:

w(z, t)= s
M

m=1

um (t)fm (z), (10)

where um are generalized co-ordinates and fm =sin mpz are the characteristic
modal functions of a simply supported beam subjected to a compressive load.

If two co-ordinates are employed, equation (10) can be inserted into equation
(9), the result multiplied by fn and integrated over the span. Then, the
orthogonality property of the modal functions fn , allows one to write the
following equations:

üi +v2
i0ui + u3(3

4u
3
i + 1

2uiu2
k )= fi cos vt i, k=1, 2 k$ i, (11)
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where the dot denotes differentiation with respect to t, and

v2
i0 = i2p2(i2p2 − s)+ u1, fi =2 g

1

0

f(z)fidz

are the natural frequencies squared and the excitation amplitudes, respectively.
The differential quadrature analog of equation (9) may be written, using the

quadrature rules in the z co-ordinate only, as

ẅi + s
N

j=1

Lijwj + u1wi + u3w3
i = fi cos vt i=1, 2, . . . , N, (12)

where

Lij =A(4)
ij + sA(2)

ij , fi = f(zi )

and N is the number of the sampling points.
It may be noted that the derivative is total, since wi =wi (t) at a sampling point

z= zi . The boundary conditions are:

w1 =0 w01 =0,

wN =0 w0N =0,

which can be immediately written as:

s
N−1

j=2

A(2)
1j wj =0, s

N−1

j=2

A(2)
Nj wj =0. (13, 14)

The first two (geometric) boundary conditions, in z=0 and in z=1, have already
been imposed by changing the summation limits. The other two (natural)
boundary conditions, now expressed by equations (13) and (14), can be used in
order to obtain w2 and w(N−1):

w2 = −
1
D

s
N−2

j=3

Ejwj , w(N−1) = −
1
G

s
N−2

j=3

Hjwj , (15, 16)

where

D=A(2)
N2 −

A(2)
N(N−1)

A(2)
1(N−1)

A(2)
12 , Ej =A(2)

Nj −
A(2)

N(N−1)

A(2)
1(N−1)

A(2)
1j ,

G=A(2)
N(N−1) −

A(2)
N2

A(2)
12

A(2)
1(N−1), Hj =A(2)

Nj −
A(2)

N2

A(2)
12

A(2)
1j .

Finally, w2 and w(N−1) can be substituted into the equations system (12), giving:

ẅi + s
N−2

j=3

Rijwj + u3w3
i = fi cos vt i=3, . . . . , (N−2), (17)
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where

Rij =Lij −
Ej

D
Li2 −

Hj

G
Li(N−1) + u1dij (18)

and dij is the Kronecker operator.
Choosing N=6, one obtains a set of two non-linear ordinary differential

equations, coupled in the linear part. As already stated, this sytem will be studied
by means of the MLP perturbation method, so that it is necessary to reduce it to
the following normalized form

üi +v2
i0ui +(ki1u3

i + ki2u2
i uj + ki3uiu2

j + ki4u3
j )= fi cos vt i, j=1, 2 j$ i (19)

and this is possible through a change of reference.
The direction cosines of the new rotated axes are the eigenvectors of the matrix

R, whose elements are defined by equation (18).
Let V be the matrix which has columns that are the eigenvectors of R, u the

new co-ordinates vector, w the old co-ordinates vector.
From the relation u=Vw, one obtains:

0w̄1

w̄21=
1
C 0−V22

V21

V12

−V1110u1

u21, (20)

where C= −det (V) and w̄i =w(i+2).
After some algebra, it is possible to write the non-linearity coefficients as

follows:

k11 =−
u3

C3 V3
22, k12 =3

u3

C3 V2
22V12, k13 =−3

u3

C3 V22V2
12,

k14 =
u3

C3 V3
12,

k21 =−
u3

C3 V3
11, k22 =3

u3

C3 V2
11V21, k23 =−3

u3

C3 V11V2
21,

k24 =
u3

C3 V3
21.

It is obvious that the eigenvalues of R are the squares of the natural frequencies
vi0 of the normalized system.

Now, let scrit be the critical value of the dimensionless compressive axial load
for the associated linear system

The exact value of scrit is:

sex
crit = p201+

u1

p41.
If u1 =1, then sex

crit =9·97092.
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Using the quadrature method with six grid points (N=6) and with the classical
grid distribution [cf. equation (5)], the non-dimensional critical load is found to
be equal to sDQM

crit =8·94676, which is more than 10% smaller than the exact value.
This error implies that the subsequent non-linear analysis will be almost
meaningless.

If seven points are employed (N=7), then the non-dimensional critical load
becomes sDQM

crit =10·0691, which is less than 1% larger than the exact value.
Nevertheless, as already pointed out, the introduction of other grid points greatly
complicates the non-linear analysis, and should be avoided, as far as possible.

If the proposed grid distribution [cf. equation (6)] is employed, the
non-dimensional critical loads reported in Table 1 are obtained, from which it is
possible to realize the good improvement of the linear results.

4. THE SECOND MODEL: CLAMPED–HINGED BEAM

Now consider a slender clamped–hinged beam, having the same physical and
mechanical characteristics of the preceding beam and subjected to the same
harmonic exciting force. In this case, however, the beam is considered to be so
slender that the shortening of the beam axis cannot be neglected.

The equation of motion is:

m
12v
1t2 +EI

14v
1z4 −

EA
2L 0g

L

0 01v
1z1

2

dz1 12v
1z2 =F(z) cos v̄t. (21)

This equation in terms of dimensionless variables becomes:

12w
1t2 +

14w
1z4 − k0g

1

0 01w
1z1

2

dz1 12w
1z2 =F(z) cos vt, (22)

where k=AL2/2I.
In this second case, the fm appearing in equation (10) are given by:

fm =Am (sin lmz−Bm sinhlmz) m=1, 2,

where

Am =$12 (1−B2
m)+

1
4lm

(B2
m sinh 2lm −sin 2lm )%

−1/2

, Bm =
sin lm

sinh lm

and the lm =zvm0 are the roots of the transcendental equation tan lm =tanh lm .

T 1

Non-dimensional critical load of a simply supported beam on non-linear soil

b3 1·056 1·15 1·18 1·19 1·194 1·195 1·2

scrit 9·1896 9·6984 9·8740 9·9358 9·9568 9·9778 9·9993
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The two Galerkin’s equations are:

ün +v2
n0un − s

2

m,p,q=1

anmpqumupuq = fn cos vt n=1, 2, (23)

where

anmpq =2k g
1

0

1um

1z

1up

1z
dz g

1

0

12uq

1z2 fn dz, fn =2 g
1

0

f(z)fn dz

and

a1121 = a1211, a1122 = a1212,

a2121 = a2211, a2122 = a2212.

The system (23) is in normal form with:

k11 =−a1111, k12 =−(a1112 + a1121 + a1211),

k13 =−(a1122 + a1212 + a1221), k14 =−a1222,

k21 =−a2222, k22 =−(a2122 + a2212 + a2221),

k23 =−(a2112 + a2121 + a2211), k24 =−a2111.

Before applying the quadrature method to equation (21), it is convenient to
rewrite the integral at the first member of this equation as:

$1w
1z

w%
1

0

−g
1

0

12w
1z2 w dz.

The bracket is null, so using the quadrature rules in the space co-ordinate, the
following equations are obtained:

ẅi + s
N−1

j=2

A(4)
ij wj + k s

N−1

k,l,m=2

CkA(2)
kl A(2)

im wkwlwm = fi cos vt i=2, . . . , (N−1),

(24)

where Ck are the weighting coefficients of the integral.
It is also worth noting that the boundary conditions

w1 =0, wN =0

have been already introduced.
The remaining boundary conditions are written as follows:

s
N−1

j=2

A(1)
1j wj =0, s

N−1

j=2

A(2)
Nj wj =0. (25, 26)



--  581

T 2

Non-dimensional critical load of a clamped–hinged beam

b3 1·194 1·2 1·22 1·225 1·23

scrit 19·5703 19·7401 20·094 20·1624 20·3009

From these two equations, one can obtain w2 and w(N−1), which have the same form
as (15) and (16), with:

D=A(2)
N2 −

A(2)
N(N−1)

A(1)
1(N−1)

A(1)
12 , Ej =A(2)

Nj −
A(2)

N(N−1)

A(1)
1(N−1)

A(1)
1j ,

G=A(2)
N(N−1) −

A(2)
N2

A(1)
12

A(1)
1(N−1), Hj =A(2)

Nj −
A(2)

N2

A(1)
12

A(1)
1j .

Finally, w2 and w(N−1) have to be substituted into the equations system (24). The
weighting coefficients Ck are derived by the Newton–Cotes integration formulas:

Ck =g
1

0

t
N

i=1
i$ k

z− zi

zk − zi
dz,

using unequally spaced sampling points.
After all the substitutions, for N=6, the final form of the system (24) may be

written as:

ẅi + s
4

j=3

Sijwj + k s
4

k,l,m=3

Tiklmwkwlwm = fi cos vt i=3, 4, (27)

where

Sij =A(4)
ij −

Ej

D
A(4)

i2 −
Hj

G
A(4)

i(N−1). (28)

The Tiklm coefficients have been calculated with a simple Mathematica code.
The normalization of the system (27) requires the calculation of the eigenvalues

and the eigenvectors of the matrix S whose elements are defined by equation (28).
The new kij coefficients are more complex than the preceding ones and they have

been calculated with the quoted Mathematica code.
Imagine now that the beam examined is subjected to an axial load P.
Let s be the dimensionless compressive axial load and scrit the critical value of

it for the associated linear system.
The exact value of scrit is sex

crit =20·1907.
Using the quadrature method with the distribution (5), for N=6 results

sDQM
crit =16·5861.
Using the quadrature method with the distribution (6), one obtain the results

reported in Table 2.
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5. NUMERICAL RESULTS

The solutions obtained by using the sampling points generated by the relation
(5) are compared with the results obtained by using the distribution given by (7).

The cases f=0, f=1, f=100 have been studied. Since f is constant, operating
with the quadrature method results in fi = f, whereas with the Galerkin’s
procedure it results in fi =2f f1

0 fi dz.
Fundamental resonance with v1v10 has been considered.
Figures 1 and 2 show the relationship frequency–initial amplitude of the first

mode (A10) for the examined cases and f=0.
The curves obtained for fq 0 are not reported, because only for f=100 and

for small initial amplitudes A10, the discrepancies become noticeable.

5.1.  

Assume s=0·1 and u1 = u3 =1. The matrix R reflects the system symmetry with
the peculiarity of having equal diagonal elements. It will be:

R=0 516·2777
−429·6952

−429·6952
516·27771

if the distribution (5) is adopted and:

R=0 601·7479
−503·9223

−503·9223
601·74791

if the distribution (7) is chosen.

Figure 1. Free vibration response v–A10 for the simply supported beam examined. — ·—·,
Distribution (5); —— distribution (7); ---- Galerkin method.



8

–6

–4

–2

0

2

4

6

–8
10 16011060 260210 310 360 410 460

A
10

--  583

Figure 2. Free vibration response v–A10 for the clamped–hinged beam examined. — ·—·,
Distribution (5); —— distribution (7); ---- Galerkin method.

The natural frequencies are: for the distribution (5), v10 =9·305 and
v20 =30·7568; for the distribution (7), v10 =9·9411 and v20 =33·2666. As one can
see, v20 1 3v10, which is the condition of internal resonance.

The non-linear coefficients are, for both cases:

k11 =0·35355, k12 =1·06066, k13 = k12, k14 = k11,

k21 = k11, k22 = − k12, k23 = k12, k24 = − k11,

There is a s value (s0) close to 22·8 for which Rii =0.
If sQ s0, the results are Rii q 0 and Rij Q 0; if sq s0, then Rii Q 0 and Rij Q 0,

but only if sE scrit the frequencies are real. In particular, if s= scrit all the R
elements are equal in absolute value so that one frequency is null. If sq scrit one
frequency becomes imaginary.

Finally, as expected, as s is increased, the frequency values reduce since all the
R elements in absolute value reduce.

The application of Galerkin’s method produces the following results:

v10 =9·8703, v20 =39·4411.

5.2.  

It is assumed that k=12.
The quadrature method with the distribution (5) leads to the following results:

S=0 1309·5985
−478·8968

−752·1546
536·97861
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v10 =14·4754, v20 =40·4603,

k11 =3847·14, k12 =4473·144, k13 =2764·44, k14 =8228·388,

k21 =56·352, k22 = −1398·684, k23 = −1365·696, k24 = −3582·516.

The quadrature method with the distribution (7) gives:

S=0 1604·0068
−747·4094

−766·903
667·46181

v10 =15·6693, v20 =45·0105,

k11 =5083·89, k12 =5903·25, k13 =3449·23, k14 =1157·99,

k21 = −220·258, k22 = −2312·26, k23 = −3532·11, k24 = −5738·42.

The results obtained by the application of the Galerkin’s method are:

v10 =15·4182, v20 =49·8238,

k11 =3172·632, k12 =3539·4696, k13 =12 684·6096, k14 =4390·776,

k21 =43 940·88, k22 =13 172·328, k23 = k13, k24 =1179·8232.

6. CONCLUSIONS

In this paper a convenient approach is proposed, in order to study the non-linear
dynamics of continuous systems taking into account the internal resonances and
other phenomena which are neglected in the usual reduction to a single-degree-of-
freedom oscillator. In particular, attention is drawn to two-degree-of-freedom
systems. So, the initial-boundary value problem is first discretized by using the
generalized differential quadrature method, with an optimized choice of the
sampling points. In this way, the non-linear partial differential equation reduces
to a set of two non-linear ordinary differential equations. The problem, so
governed by two coupled equations, is then investigated in detail by using a
modified version of the Lindstedt–Poincarè method, in which the non-linearity
needs not to be small.

As an example, two simple structural models have been investigated by using
three different methods, and the numerical results show that the proposed
approach behaves quite satisfactorily.
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