
Journal of Sound and Vibration (1998) 218(4), 605–618
Article No. sv981855

CONTROL OF SOUND TRANSMISSION
THROUGH THIN PLATE

C.-C. S  C.-Y. C

National Taiwan University,
Department of Naval Architecture and Ocean Engineering, 73 Chow-Shan Road,

Taipei, Taiwan, R.O.C.

(Received 20 February 1997, and in final form 29 June 1998)

Active suppression of the acoustic transmission through plate structure is the
major target of this paper. The model consists of a plane acoustic wave incident
onto a clamped elastic rectangular thin plate and the piezoceramic patches
modelled as four point moments are bonded on the surface of the plate as
controllers. Control methods are model based, and rely on state or output
feedback to change dynamic characteristic of the plate. The transmitted sound
power before and after control is compared using different numbers of controllers.
The results show that both the plate responses and the transmission of sound
power obtained theoretically and experimentally match. After control the
transmitted acoustic power is reduced by about 30–40 dB by one or two
piezoelectric ceramics and the global sound pressure level is reduced by about
20–30 dB for low to mid-range frequencies.
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1. INTRODUCTION

The interest in sound radiation or transmission control of elastic structure has been
increasing in acoustic engineering. Recent research suggests that for structurally
radiated noise there is some advantage in applying the control action directly to
the structure in the form of vibration inputs. Fuller [1, 2] demonstrated, both
experimentally and analytically, that significant reduction in far-field radiated
pressure was possible by applying control forces directly to a plate. The
experimental work by Fuller used acoustic pressure sensors in the far field to
generate a radiated power cost function minimized by using electrodynamic
actuators on a circular plate. Akishita [3] used piezoelectric ceramics as actuators
and sensors to control sound transmission through a clamped rectangular plate.
Optimal use of the piezoelectric ceramic actuator was investigated theoretically by
using the transfer function from incident sound pressure to radiated sound
pressure.

In this paper, we used piezoelectric ceramics as controllers to suppress the
acoustic transmission power for clamped rectangular plate. A piezoelectric ceramic
actuator is very attractive because it retains the benefit of compactness and it does
not need supporting structure, which can bear reacting force. The model consists
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of a baffled clamped square elastic plate which is excited on one side by a plane
acoustic wave as a noise input. The sound field radiated from the other side of
the plate, i.e., the transmitted field, was reduced by applying vibrating control
forces to minimize the radiated sound power. Active control techniques are modal
based and rely on state or output feedback to change dynamic characteristic of
the plate. Instead of microphones, we choose accelerometers as error sensors. Since
the error sensors will not measure acoustic pressure which is the quantity to be
reduced, the present work is concerned with estimating the total radiated power
measured on the structure. Using this estimate as a cost function, we design a
feedback controller to minimize the cost.

2. GENERAL THEORY

2.1.  

The bending of the thin plate is governed by the following equation when the
coordinate system are defined as shown in Figure 1.

D0 14

1x4 +2
14

1x2 1y2 +
14

1y41w(x, y, t)+ rsh
12w(x, y, t)

1t2 = pe (x, y, t) (1)

where w is the panel displacement, D is the bending stiffness defined by the relation
D=Eh3/12(1− n2), E is the modules of elasticity, n is Poisson’s ratio, h is the
thickness of the plate, rs is the density of the plate and pe represents the external
excitation. Assuming the plate is clamped at four edges, the boundary conditions
can be described as follows:

w=0,
1w
1x

=0 x=−
a
2

,
a
2

(2)

Figure 1. The coordinate system of the plate.
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(3)

where a and b are the length and width respectively.
Through shape functions of the clamped beam [4], the panel displacement w

(s, t) can be expressed in terms of a mode shape matrix SP (s)= [S1(s),
S2(s), . . . , Sl (s)]T1× l and a modal amplitude matrix WP =[W1, W2, . . . , Wl ]T1× l as

w(s, t)=SP (s)TWP (t) (4)

where Sl (s)=Xm (x)Yn (y),

Xm (x)= J0lm (x)
a 1−

J(lm )
H(lm )

H0lm (x)
a 1,

Yn (y)= J0ln (y)
b 1−

J(ln )
H(ln )

H0ln (y)
b 1,

6J(u)= cosh (u)− cos (u)
H(u)= sinh (u)− sin (u)

,

lm and ln satisfies cosh (l) cos (l)=1 and m, n are integers.
Using the orthogonal property of the mode shape functions, we can convert the

partial differential equations of the distributed system into an infinite set of
ordinary differential equations.

KWP (t)+MIW� P (t)=FP (5)

where

K=D ·

gs 0 14

1x4 +2
14

1x2 1y2 +
14

1y41S2
1 ds · · · 2 gs

14SlS1
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···
·· ·

···

Symmetric · · · gs 0 14

1x4 +2
14

1x2 1y2 +
14

1y41S2
l ds l× l

is a real symmetric matrix, MI = rshab · Il× l is a diagonal matrix, I is the unit
matrix and FP (t)= [fsS1Pe (x, y, t) ds, . . . , fsSlPe (x, y, t) ds]Tl×1 is the forcing
term converted from the external force.

2.2.      

Now, we consider an acoustic plane wave Pin incident to the plate

Pin (r, t)=P0 exp(−ik · r+ ivt) (6)
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where

k= kx i+ ky j+ kzk= k sin u cos fi+ k sin u sin fj+ k sin fk, r= xi+ yj+ zk

and k=v/C0 is the acoustic wavenumber.
If we assume that the plate is a rigid wall than the pressure field exciting the

plate into motion will be twice the incident pressure, and we can derive the plate
forced response to the incident acoustic wave.

The transmitted sound wave due to the plate motion is assumed to propagate
in the semi-infinite space. If the distance R from the origin to the field point is
long enough compared with the wave length l, the far field of the transmitted
sound Prad (t) can be computed from the structural response by using the Rayleigh
integral:

Prad (R, t)=
ra

2p gs

ẅ(s, t)
exp(−ik=R− rs =)

=R− rs =
ds.

The pressure resulting from the acceleration distribution

ẅ(s, t)=SP (s)TW� P (t)

associated with the Pth spatial function on the structure can be written as [5]

Prad (R, t)=
ra exp(−ikR)

2pR gs

SP (s)T exp(ik · rs ) ds · W� P (t)

=
ra exp(−ikR)

2pR
H
 T · W� P (t) (7)

where

Ĥ= iv gs

SP (s)T exp(ik · rs ) ds.

By the acoustic far field assumption, the proportionality constant (between
pressure and velocity) will be the characteristic impedance raC0. This relationship
holds for instantaneous signals as well as steady-state signals.

Using the real-valued pressure and fixing R, the intensity I radiated into the far
field in direction (u, f) is

I(u, f)=
=P=2
raC0

.

The total radiated power can be obtained from the integration of sound intensity
I over a hemisphere of radius R in the far field. Thus the power is expressed as

P=g
2p

0 g
p/2

0

I(u, f)R2 sin u du df

=W� P (t)T* · M · W� P (t) (8)
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Figure 2. The block diagram of the control system.

where

M� =
ra

4p2C0 g
2p

0 g
p/2

0

Ĥ* · ĤT sin u du df,

* means the complex conjugate and M� is real, symmetric and non-negative matrix.
Note that the matrix M� has explicit physical significance, defining the relationship
between structural modal acceleration levels and radiated acoustic power. The
diagonal terms of the matrix M� are relevant to the value of the power that results
from the vibration of a single, isolated structural mode, and the off-diagonal terms
are relevant to the modification to this value caused by the coexistence of the other
structural modes. In general, M� will be of normal rank P. For certain degenerate
cases, it may happen that M� will be of normal rank rQP. This is also discovered
by Baumann [6].

2.3.  

A controller was designed using modal space for the structural dynamics. The
traditional view of feedforward controlled system is of ‘‘active cancellation’’ where
the modes of the structure excited by the ‘‘primary’’ disturbance input are
cancelled by the ‘‘secondary’’ control input of appropriate magnitude and phase
driving the same structural modes. This view arises from the superposition
theorem of the system response. However, recent work has shown that the
feedforward controlled system responds effectively with a new set of eigenfunctions
and eigenvalues to the disturbance input [7]. The controlled resonant frequencies
and associated eigenfunctions are functions of the selected control actuators and
independent of the disturbance input. Thus, the design approach is based on

Figure 3. The arrangement of the plate with the measuring system.
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finding the configuration of the actuators such that the controlled structure will
respond to the weakest set of modal radiators.

The effect of the square piezoceramic patch, which has been shown in the
previous research [4], can be treated as four point moments concentrated on the
midpoint of four edges. The point moment m0 generated at the midpoint of the
four edges is related to the external voltage V(t) by coupling constant [4] k0:

m0 = k0V(t). (9)

Since this model has been shown to be a good approximation of the piezoelectric
actuator when the dimension of the square ceramic is far less than that of the plate.
The resulting displacement of the plate under the excitation of the piezoelectric
actuator is obtained as [4]

w(x, y, t)= s
m

s
n

k0V(t)Xm (x)Yn (y)
MI (v2

mn (1+ ih)−v2) $Yn (z) ·
1Xm (j)

1j bj= j0 − lp/2
z= z0

− Yn (z) ·
1Xm (j)

1j bj= j0 + lp/2
z= z0

+ Xm (j) ·
1Yn (z)

1z bj= j0
z= z0 − lp/2

− Xm (j) ·
1Yn (z)

1z bj= j0
z= z0 + lp/2

% (10)

where vmn is the natural frequency of (m, n) mode, h is the loss factor, lp is the
length of the ceramic and (j0, z0) is the coordinate of the centre of actuator.

Figure 4. The setup of the rectangular waveguide and the anechoic chamber.
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T 2

Calculated and measured transmitted sound power in the anechoic chamber

Transmission sound
Incidence sound Incidence sound power (dB)

Frequency pressure power ZXXXXCXXXXV
(Hz) (dB) (dB) Calculated Measured

105 95·85 87·72 71·78 80·16
390 101·25 93·12 73·92 80·32

T 3

Natural frequencies of controlled system

Mode 1 2 3 4 5 6 7

Controlled natural
frequency (Hz) 118·00 218·09 222·42 304·78 321·60 390·00 488·89

Now, we introduce the effect of the actuator and the incident pressure to
equation (5), and it can be written as:

W� P (t)=−M−1
I KWP (t)+M−1

I Bu(t)+M−1
I Lv(t) (11)

where B is the location matrix of the actuators; u(t)$Rm is a vector of the actuator
inputs that can be used to control the structure and L is the location matrix of
the disturbance input; v(t) is a vector of the disturbance input.

Figure 5. The displacement contour of the plate subject to 106·93 Hz plane-wave normal incidence
before control (unit:mm).
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By introducing equation (11) to equation (8) and assuming the disturbance input
is unknown, we choose the cost function J as follows

J=WP (t)T* · A	 · WP (t)+WP (t)T* · B	 · u(t)+ u( t)T* · B	 T* · WP (t)

+ u(t)T* · C	 · u(t)+ bu(t)T* · u(t) (12)

where

A	 =(−M−1
I K)H · M� · (−M−1

I K),

B	 =(−M−1
I K)H · M� · (−M−1

I B),

C	 =(−M−1
I B)H · M� · (−M−1

I B),

and b is a constant which limits the amount of control energy that can be applied
in a given time interval. As b approaches zero, the control energy is less
constrained and the cointrol effect is better.

The optimal control is a time-invariant modal amplitude feedback of the form

uOPT (t)=GzWP (t)

=−(C	 + b · I)−1 · B	 T* · WP (t). (13)

If the full modal amplitude is not available for feedback, the problem is how to
estimate the modal amplitude by a finite number of sensors. This can be
accomplished by a Kalman filter or a modal filter [8] and the estimates are used
in the feedback control law. Figure 2 shows the overall system (the plate/control
system) block diagram.

Figure 6. The displacement contour of the plate subject to 106·93 Hz plane-wave normal incidence
after control (unit:mm).
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Figure 7. The SPL at half sphere surface of radius 1·0 m for the plate subject to 106·93 Hz
plane-wave normal incidence before control.

3. RESULTS AND DISCUSSION

The dimension and material constants of the clamped square plate are chosen
as follows: a= b=0·4 m, thickness h=2 mm, density rs =7099 kg/m3, Young’s
modules E=190×109 N/m2, Poisson ratio n=0·3, and loss factor h=0·0045.
The density of the air, ra , and sound speed, C0, are 1·21 kg/m3 and 344 m/s
respectively. Each piezoceramic patch measured 25 mm×25 mm×1 mm and
weighed 6·3 g. The centers of the No. 1 and No. 2 piezoceramics are located at
(−11·25, 8·75) cm and (−8·75, −11·15) cm respectively. For measuring the plate

Figure 8. The SPL at half sphere surface of radius 1·0 m for the plate subject to 106·93 Hz
plane-wave normal incidence after control.
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Figure 9. The displacement contour of the plate subject to 390·99 Hz plane-wave normal incidence
before control (unit:mm).

responses, one of the piezoceramic patches was used as an actuator to excite the
plate and an accelerometer (B&K 4393), weighing 2·2 g, was used as an
acceleration sensor. Figure 3 shows the arrangement of the plate and the response
measuring system and Table 1 lists the calculated and experimental frequencies.

Figure 10. The displacement contour of the plate subject to 390·99 Hz plane-wave normal
incidence before control (unit:mm).
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Figure 11. The SPL at half sphere surface of radius 1·0 m for the plate subject to 390·99 Hz
plane-wave normal incidence before control.

The arrangement of the clamped plate described above was baffled and placed
on the opening of the anechoic chamber (Figure 4). A 0·4 m×0·4 m×1·2 m
rectangular wave guide was attached to the frame of the plate perpendicularly on
the other side of the plate. A microphone was placed in the pipe 0·2 m in front
of the plate. A microphone and a sound intensity probe were also placed 0·2 m
from the rear of the plate in the anechoic chamber. Harmonic disturbance,

Figure 12. The SPL at half sphere surface of radius 1·0 m for the plate subject to 390·99 Hz
plane-wave normal incidence after control.
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T 4

Transmitted acoustic power before and after control (re: 10−12 W)

Frequency (Hz) 106·93 390·99
Incidence sound power (dB) 85·85 85·85
Transmission sound power (dB) 84·90 70·47

without control
Transmission sound Controlled by PZT 1 50·56 58·54

power (dB) Controlled by PZT 1 47·74 40·87
and 2

generated using a loud speaker, mounted on the other end of the pipe, was applied
onto the plate as the normal incident wave. The microphone in the pipe was used
for measuring the incident sound pressure. The microphone and sound intensity
probe in the anechoic chamber were used to measure the transmitted sound
pressure and sound intensity respectively. Table 2 shows the comparison of the
calculated and measured transmitted sound power.

Due to plane wave normal incidence, only the (odd, odd) eigen modes can be
excited. Table 3 shows the new natural frequencies of the controlled system when
the plate is excited at 106·93 Hz and controlled by the No. 1 actuator. The rank
of the system dynamic matrix after control is reduced by 1, i.e., the controller
reduces the dynamic degrees of freedom of the system by 1 and makes the
structural response a linear contribution of weak radiating mode. It can be also
seen that the resonant frequencies of the system were pushed away from the
spectrum of the disturbance input. Figures 5 and 6 show the displacement contour
diagrams of the plate subjected to plane wave normal incidence at 106·93 Hz
without control and controlled by No. 1 actuator respectively. The amplitude of
the displacement is significantly reduced and the shape of the contour is altered.
Figures 7 and 8 show the corresponding sound pressure level (SPL) at the half
sphere surface of radius R=1·0 m. Figures 9 and 10 show the displacement
contour diagrams of the plate subjected to plane wave normal incidence at
390·90 Hz without control and controlled by No. 1 actuator respectively. It can
be seen that after control the plate is shifted to the mode with low radiation
efficiency and the displacement amplitude is substantially reduced. The global
sound pressure level is also reduced after control (Figures 11 and 12). Table 4
shows the comparison of acoustic power before and after control when one or two
actuators are employed. The reductions of plate displacement, sound pressure level
and acoustic power are further increased as the number of the actuator increases.

4. CONCLUSIONS

In this paper, a technique using point structural sensors has been developed for
the prediction of acoustic power transmitted through thin plate. The experimental
verification has been accomplished in the anechoic chamber equipped with a
rectangular wave guide. Details are sketched for a pure tone active control of
sound transmission through the plate. By changing the system to a weaker radiator
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via the control strategy, the reduction of transmitted acoustic power can be
reached at about 30–40 dB by one or two piezoelectric actuators. The global sound
pressure level is also reduced at about 20–30 dB. The results show that for a low
to middle frequency range, substantial reductions in acoustic power can be
achieved with one or two actuators.
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