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This paper is the second in a series of two devoted to a detailed study of
Composite Element Method for vibration analysis of structures. The first paper
focused on the principle and C0 element of the Composite Element Method. The
present one concentrates on developing the beam element of the Composite
Element Method. The related contents cover the expression of displacement field,
the stiffness matrix and the consistent mass matrix of beam element, and
transformation matrix. Especially, the detailed numerical verifications for the
beam element of Composite Element Method are presented, which involve the
h-version and the c-version. Also, some applications to the vibration analyses of
lathe, automobile and frame are given in detail.
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1. INTRODUCTION

As has been shown in Part I of this series of papers, the Composite Element
Method is a new approach combining the conventional FEM and the classical
theory, with the goal of utilizing the advantages of both FEM and classical theory,
i.e., the former’s versatility and the latter’s closed analytical solution. This paper
addresses the derivation of the beam element of Composite Element Method,
covering the formulation of stiffness and mass matrices, the h-version, the
c-version, the superconvergence, and the applications to the vibration analysis of
lathe, automobile and frame.

2. DISPLACEMENT FIELD

Consider a bending beam as shown in Figure 1 where the local x-axis is taken
in the axial direction of the element with origin at a corner (or local node) 1.
Assume that the rotary inertia and shear deformation can be neglected. We
construct the displacement field function W(x) as:

W(x)=WFEM (x)+WCT (x) (1)
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W Derivation of WFEM (x) by FEM
Since there are four nodal displacements v1, u1, v2, u2, we assume a cubic

displacement model for WFEM (x), which can be expressed as [1]

WFEM (j)= v1(1−3j2 +2j3)+ u1l(j−2j2 + j3)+ v2(3j2 −2j3)+ u2l(j3 − j2)

=N(j)q (2)

where

N(j)= [(1−3j2 +2j3) l(j−2j2 + j3) (3j2 −2j3) l(j3 − j2)] (3)

q=[v1 u1 v2 u2]T

j=
x
l
. (4)

W Derivation of WCT (x) by classical theory
We know that the Composite Element requires an analytical solution under the

coupling boundary conditions. Here, for the beam element of Composite Element
Method, these coupling boundary conditions should be

Wr (x)=x=0 =0, Wr (x)=x= l =0

W'r (x)=x=0 =0, W'r (x)=x= l =0 r=1, 2, 3, . . . (5)

where Wr (x) is the permissible displacement functions of deflection. Actually, this
is the case of the clamped-clamped beam [see Figure 1(b)]. The corresponding
solution under the condition (5) can yield the characteristic equation for natural
frequency

cos l*r · cosh l*r =1, r=1, 2, 3, . . . (6)

Figure 1. Constructing of CEM for bending beam.
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and the eigenfunctions (natural mode shapes) are found to be

Wr (x)= cr · Fr (l*r , x)

= cr$sin l*r
x
l
−sinh l*r

x
l
−

sin l*r −sinh l*r
cos l*r −cosh l*r 0cos l*r

x
l
−cosh l*r

x
l1% (7)

where cr are a set of constants. Finally, the solution of dynamic problem, w(x, t),
is given as

w(x, t)=Wr (x) · Gr (t)

= crFr (l*r , x) · Gr (t)

= cr$sin l*r
x
l
−sinh l*r

x
l
−

sin l*r −sinh l*r
cos l*r −cosh l*r 0cos l*r

x
l
−cosh l*r

x
l1%

· sin v*r t (8)

where

v*2
r =

EI
rl4

l*4
r , r=1, 2, 3, . . . . (9)

Note that Wr (x) are a set of natural mode functions, which will be combined or
embedded into the displacement field of the bending beam element in CEM
together with the interpolation polynomial function of the conventional FEM.

So, as to the WCT (x) of equation (1), we take

WCT (x)= s
n

r=1

crFr (l*r , x)

=f(x)c (10)

where

f(j)= [F1(l*1 , j) F2(l*2 , j) · · · Fr (l*r , j)] (11)

c=[c1 c2 · · · cr ]T (12)

Fi (l*i , x)= sin l*i
x
l
−sinh l*i

x
l
−0 sin l*i −sinh l*i

cos l*i −cosh l*i 10cos l*i
x
l
−cosh l*i

x
l1

i=1, 2, 3, . . . (13)

and the l*i satisfies equation (6).
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W Combination of WFEM (x) and WCT (x)
According to equation (1), we combine WFEM (x) and WCT (x) into W(x), i.e.,

W(j) =WFEM (x)+WCT (x)

= v1(1−3j2 +2j3)+ u1l(j−2j2 + j3)+ v2(3j2 −2j3)+ u2l(j3 − j2)

+ c1F1(l*1 , j)+ c2F2(l*2 , j)+ · · ·+ crFr (l*r , j)

=N(j)q+f(j)c

=S(j) · d (14)

where

S(j)= [N(j) f(j)]

= [(1−3j2 +2j3) l(j−2j2 + j3) (3j2 −2j3) l(j3 − j2)

F1(l*1 , j) F2(l*2 , j) · · · Fr (l*r , j)] (15)

d=[qT cT]

= [v1 u1 v2 u2 c1 c2 · · · cr ]T (16)

and the generalized shape function matrix and the coordinates (or DOF) of CEM
respectively. From the beading theory of beam, the axial strain induced in the
element is given by

o=−y
12W(x)

1x2 (17)

where y is the distance from the neural axis. From equation (14) the
strain–displacement relation can be expressed as

o=−y
12W(x)

1x2

=−
y
l 2

12S(j)
1j2 · d=B(j) · d (18)

where

B(j)=−y$1
l 2 (12j−6)

l
l
(6j−4) −

1
l 2 (12j−6)

l
l
(6j−2)

F01 (l*1 , j) F02 (l*2 , j) · · · F0r (l*r , j)% (19)

F0r (l*r , j)=−
l*2

r

l2 $sin l*r j+sinh l*r j

−0 sin l*r −sinh l*r
cos l*r −cosh l*r 1(cos l*r j+cosh l*r )% r=1, 2, 3, . . . (20)

and the l*r satisfies equation (6).
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3. STIFFNESS MATRIX AND CONSISTENT MASS MATRIX

When the matrix S of shape function and the matrix B of strain–displacement
relation of composit element are available, we can derive the stiffness matrix and
the consistent mass matrix by the following expressions [2]

ke =gV

BTDB dV (21)

me =gV

rSTS dV (22)

where D is the elastic matrix, it will be equal to E (Young’s modulus) in the case
of planar beam element in the case of pure bending, and the superscript e denotes
for each element. We calculate the stiffness matrix ke of the element according to
the expression (21) as

ke =gV

BeTDeBe dV

=E gA g
l

0

BeTBe dx dA

v1 u1 v2 u2 c

12 v1

6l 4l 2 sym. u1

G
G

G

G

G

K

k

G
G

G

G

G

L

l

=
EI
l 3 · −12l −6l 12 0 v2 (23)

6l 2l 2 −6l 4l 2 u2

0 kcc c

where I= fA ȳ2 dA and kcc is given by

kcc =

c1 c2 c3 c4 c5 · · · cr

1·035936l*4
1 c1

0·998447l*4
2 0 c2

1·000067l*4
3 c3

0·9999971l*4
4 c4

0 1·0l*4
5 c5

· · ·
···

1·0l*4
r cr

(24)

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l



. 664

in which l*1 , . . . , l*r are the constants, i.e.,

l*1 =4·730041

l*2 =7·853205

l*3 =10·995608

l*4 =14·137165
···

l*r =(r+0·5)p, re 4. (25)

Similarly, from the expression (22) the consistent mass matrix me of the element
is given as

me =gV

rSeTSe dV

= rA g
l

0

SeTSe dx

v1 u1 v2 u2 c

13
35

v1

11
210

l
1

105
l 2 sym. u1

=rAl · 9
70

13
420

l
13
35

sym. v2
(26)

−
13
420

l −
1

140
l 2 −

11
210

l
1

105
l 2 u2

mqc mcc c

where mcc is given as

c1 c2 c3 c4 c5 · · · cr

1·035936 c1
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and mqc is

v1 u1 v2 u2

0·42282930 0·09098435l 0·42282930 −0·09098435l c1

0·25467310 0·03240400l −0·25467310 0·03240400l c2
mqc = 0·18189080 0·01654269l 0·18189080 −0·01654269l c3

(28)
G
G

G

G

G

K

k

G
G

G

G

G

L

l

0·14147110 0·01000702l −0·14147110 0·01000702l c4

0·11574900 0·00669892l 0·11574900 −0·00669892l c5

···
···

···
···

···

Note that the generalized coordinate de is composed of two parts: the nodal
coordinate q (or nodal DOF) and the c-coordinate (or c-DOF) c:

de =[v1 u1 v2 u2 = c1 c2 · · · cr ]T. (29)

Stiffness and mass matrices of the planar beam element in CEM possess same
properties as those of the conventional FEM [3], i.e.,

(1) Both the stiffness matrix and the mass matrix in the Composite Element
Method are symmetric.

(2) The stiffness matrix in the Composite Element Method is positive
semi-definite. Also, after elimination of rigid body motion, a stiffness
matrix will be positive definite.

(3) The diagonal elements of both stiffness matrix and mass matrix are always
positive.

4. SPATIAL BEAM ELEMENT AND COORDINATE TRANSFORMATION

4.1.   

A spatial beam element is a straight beam of uniform cross section which is
capable of resisting axial forces, bending moments about the two principal axes
in the plane of its cross section and twisting moment about its centroidal axis. The
corresponding displacement degrees of freedom are shown in Figure 2.

If the local axes (xyz system) are chosen to coincide with the principal axes of
the cross section, it is easier to construct the mass and stiffness matrices. According
to the engineering theory of bending and torsion of beams, the axial displacements
q1 and q4 depend only on the axial forces, and the torsional displacements u1 and
u4 depend only on the torsional moments. However, for arbitrary choice of the
xyz coordinate system, the bending displacements in the xy plane, namely, q2, u2,
q5 and u5 depend not only on the bending forces acting in that plane (i.e., shear
forces acting in the y-direction and the bending moments acting in the xz plane),
but also on the bending forces acting in the plane xz. On the other hand, if the
xy, and xz planes coincide with the principle axes of the cross section, the bending
displacements and forces in the two planes can be considered to be independent
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Figure 2. A spatial beam element.

of each other. In this section we shall choose the local xyz coordinate system to
coincide with the principle axes of the cross section with the x-axis representing
the centroidal axis of the spatial beam element. Thus the displacements can be
separated into four groups each of which can be considered independently of
others.

We will first utilize the mass and stiffness matrices corresponding to different
independent sets of displacements, which have been derived in the above, and then
obtain the total mass and stiffness matrices of the element by superposition.

4.2.  

As we know, the element characteristics are calculated in the local coordinate
systems suitably oriented for minimizing computational effort. However, the local
coordinate system may be different for different elements. In such a case, before
the element equations can be assembled, it is necessary to transform the element
equations derived in local coordinate systems so that all the elemental equations
are referred to a common global coordinate system.

In order to find the stiffness matrix and the mass matrix of the bar element of
the Composite Element Method in the global coordinate system, we need to search
the transformation matrix. Let a transformation matrix Te exist between the local
and the global coordinate systems such that

de =Ted�e (30)

where d�e is the generalized coordinates in the global coordinate system. The
stiffness matrix Ke and the mass matrix Me of the element corresponding to the
global coordinate system are given as [4]

Ke =TeTkeTe (31)

Me =TeTmeTe (32)

The main properties of transformation can be found as:
(1) The transformation is carried out only for nodal coordinate, not for

c-coordinate. The reason for this is that the c-coordinate is always defined in the
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local coordinate system in a closed form, contributes only to the internal
displacement field of the element and does not therefore influence its edge
displacements.

(2) Since the transformation matrix Te is the matrix of direction cosines relating
the two coordinate systems, it is orthogonal.

5. NUMERICAL VERIFICATION

5.1.  - 

Now, we give a validation for Composite Element Method, using a free-clamped
beam as an example. The contents include: discretization of 1, 2 as well as 4
elements, effect of the number of c-DOF.

Consider the bending vibration of a free-clamped beam as shown in Figure 3(a).
L is the length of beam, r, E are the mass density and Young’s modulus
respectively. Now, we idealize this beam into 1 element, 2 elements, and 4 elements,
and then apply CEM to calculate the natural frequencies.

Let

l4
i =

rAL4

EI
v2

i , i=1, 2, . . . (33)

where vi is the natural frequencies. We present the results below.

5.1.1. Discretization of 1 element

If we take total beam as 1 beam element, then consider several calculating
schemes wherein 1c-DOF, 4c-DOF, 6c-DOF, 10c-DOF and 16c-DOF are chosen.
Various order of eigenvalues li resulting from the above calculating schemes are
presented in Table 1, in comparison with the exact solutions.

From the results shown in Table 1, we can see that the resultant eigenvalues
from l1 to ln within the scope of the c-DOF number in each scheme will be very
close to the exact solution (the maximum relative error Q0·05%). For example,

Figure 3. A free-clamped beam and its discretization.
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in the scheme of CEM (1×16c), i.e., using one composite element with 16c-DOF,
the total-DOF is 18 (i.e. c-DOF plus nodal DOF), the resultant eigenvalues from
l1 to l16 are very close to the exact solution, and the maximum relative error (i.e.,
l16) only reaches 0·03575%.

5.1.2. Discretization of 2 elements

Now, we idealize this free-clamped beam into 2 elements [shown in Figure 3(b)].
Consider several calculating schemes wherein FEM, 1c-DOF, 2c-DOF are chosen.
Various orders of eigenvalues li in various schemes are presented in Table 2, which
are compared with the exact solution.

The results of Table 2 also show that the calculated eigenvalues from l1 to ln

within the scope of c-DOF number in each scheme approximate the exact solution
very well (the maximum relative error Q0·5%). For instance, in the scheme of
CEM (2×2c), i.e., using two composite elements with 2c-DOF, the total-DOF
is 8 (i.e., c-DOF plus nodal DOF), the resulted eigenvalues from l1 to l4 are very
close to the exact solution, and the maximum relative error (i.e., l4) only reaches
0·25692%.

Obviously, a comparison of Tables 1 and 2 shows that, in the case of an equal
amount of computational efforts, the results of the scheme with 2 elements
discretization are not better than those with 1 element discretization.

5.1.3. Discretization of 4 elements

Here, we idealize this free-clamped beam into 4 elements shown in Figure 3(c),
and also consider several calculating schemes: FEM, 1c-DOF, 2c-DOF. Various
orders of eigenvalues li in various schemes are presented in Table 3, which are
compared with the exact solution.

The results of Table 3 also show that the calculated eigenvalues from l1 to ln

within the scope of the c-DOF number in each scheme approximate the exact
solution very well (the maximum relative error Q0·5%). For instance, in the
scheme of CEM (4×2c), i.e., using four composite elements with 2c-DOF, the
total-DOF is 16 (i.e., c-DOF plus nodal DOF), the resulting eigenvalues from l1

to l8 are very closed to the exact solution, and the maximum relative error (i.e.,
l8) only reaches 0·44593%.

Obviously, a comparison of Tables 1, 2 and 3 shows that, in the case of an equal
amount of effort, the results of the scheme with 4 elements discretization are not
better than those with 1 or 2 element discretization.

5.1.4. Effect of number of c-DOF

If we fix the number of total DOF as 12, then consider several schemes: CEM
(1×10c) (i.e., total c-DOF is 10), CEM (3×2c) (i.e., total c-DOF is 6), CEM
(4×1c) (i.e., total c-DOF is 4), FEM (i.e., total c-DOF is 0). The purpose of doing
so is to investigate the effect of the number of c-DOF on eigenvalue with the
computational effort remaining the same. The detailed results and comparisons are
presented in Table 4.

From Table 4, we find that the accuracy achieved by CEM is superior to that
by the conventional FEM. Moreover, the scheme with more c-DOF is superior
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T 2

li of various schemes in case of 2 elements discretization

FEM (2e)* CEM (2×1c) CEM (2×2c)
c-DOF:0 c-DOF:2 c-DOF:4

Order Exact Total-DOF:4 Total-DOF:6 Total-DOF:8

l1 1·875104 1·875557 1·875111 1·875107
l2 4·694091 4·713966 4·697333 4·694305
l3 7·854757 8·669320 7·870405 7·855822
l4 10·99554 14·76957 11·11274 11·02379
l5 14·13717 14·18547
l6 17·27876 17·51730
l7 20·42035 24·94674
l8 23·56195 33·88184

* Note: the symbol FEM (2e) of Table 2 denotes using 2 beam elements of the conventional FEM,
CEM (2×2c) means using 2 composite element with 2c-DOF each.

T 3

li of various schemes in case of 4 elements discretization

FEM (4e)* CEM (4×1c) CEM (4×2c)
c-DOF:0 c-DOF:4 c-DOF:8

Order Exact Total-DOF:8 Total-DOF:12 Total-DOF:16

l1 1·875104 1·875133 1·875104 1·875104
l2 4·694091 4·696825 4·694152 4·694110
l3 7·854757 7·885103 7·856252 7·854947
l4 10·99554 11·07509 11·01191 10·99633
l5 14·13717 15·10421 14·15534 14·13819
l6 17·27876 19·14127 17·40013 17·28335
l7 20·42035 24·10067 20·73256 20·44178
l8 23·56195 30·87079 23·93568 23·66702

* Note: the symbol FEM (4e) of Table 3 denotes using 4 beam elements of the conventional FEM,
CEM (4×1c) means using 4 composite element with 1c-DOF each, and so on.

to that with less c-DOF. Note that the above comparison is based on the same
computational effort used (i.e., total-DOF of each scheme is 12). If we compare
the errors of each scheme with the exact solution, e.g., as to l8, the relative error
of the CEM (1×10c) scheme is 0·03535%, and the error of the FEM (6e) scheme
already reaches 7·6085%; as to l6, the relative error of the CEM (1×10c) scheme
is 0·01638%, that of the CEM (3×2c) scheme is 0·3732%, and that of the FEM
(6e) scheme already reaches 0·83009%; as to l4, the relative error of the CEM
(1×10c) scheme is 0·0040925%, that of the CEM (3×2c) scheme is 0·00864%,
that of the CEM (4×1c) scheme is 0·1489%, and that of the FEM (6e) scheme
already reaches 0·32177%; as to l1, the relative error of the CEM (1×10c) scheme
is 0·0%, that of the CEM (3×2c) scheme is 0·0%, the relative error by CEM
(4×1c) scheme is 0·0%, and that of the FEM (6e) scheme already reaches
0·000907%.
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5.1.5. Brief remarks

We briefly summarize some features of the c-DOF for the dynamic analysis of
a bending beam, according to the above numerical results.

W The ability of the c-DOF to improve accuracy is greatly superior to that
of the traditional node-DOF of FEM.

W The eigenvalues achieved by the c-DOF approximate very well the exact
solution within the scape of c-DOF number (e.g., from Table 4, in the case
of the same computational efforts used, the CEM (1×10c) scheme brings
about only the relative error of 0·03535% for l8, but the FEM (6e) scheme
produces that of 7·6085%)

W Increasing the number of the c-DOF and decreasing the number of element
(i.e., node-DOF) will efficiently improve the accuracy for dynamic analysis
of structure. The numerical examples also show that an increase of c-DOF
can lead to a superconvergence

W In the case of multi-discretization elements, the scheme with well-allocated
c-DOF for each element is superior to other schemes.

5.2.     

We will compare the CEM and FEM regarding their h-version and c-version.
Below all comparisons are symbolized by the computational effort (i.e.,
total-DOF).

5.2.1. h-version

The h-version of CEM is completely similar to that of FEM, i.e., improving the
accuracy by refining the element mesh. In the cases of using 1c-DOF CEM and
2c-DOF CEM, we present the detailed results of the h-version in Tables 5 and 6
respectively.

T 4

li of various schemes in case of total-DOF=12

CEM (1×10c) CEM (3×2c) CEM (4×1c) FEM (6e)
c-DOF:10 c-DOF:6 c-DOF:4 c-DOF:0

Order Exact Total-DOF:12 Total-DOF:12 Total-DOF:12 Total-DOF:12

l1 1·875104 1·875104 1·875104 1·875104 1·875087
l2 4·694091 4·694100 4·694145 4·694152 4·694673
l3 7·854757 7·854857 7·855258 7·856252 7·861944
l4 10·99554 10·99599 10·99649 11·01191 11·03092
l5 14·13717 14·13845 14·14494 14·15534 14·24302
l6 17·27876 17·28159 17·34325 17·40013 17·44219
l7 20·42035 20·42555 20·48156 20·73256 21·63393
l8 23·56195 23·57028 23·90490 23·93568 25·35466
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W 1 c element
In the case of using the 1c-DOF CEM, for a free-clamped beam shown in Figure

3, we consider the following schemes: when total-DOF is assigned as 6, two
1c-DOF elements (i.e., CEM (2×1c)) and 3 FEM elements (i.e. FEM (3e)) are
used respectively; when total-DOF is assigned as 12, four 1c-DOF elements (i.e.,
CEM (4×1c)) and 6 FEM elements (i.e., FEM (6e)) are used respectively; when
total-DOF is assigned as 18, six 1c-DOF elements (i.e., CEM (6×1c)) and 9 FEM
elements (i.e., FEM (9e)) are used respectively. All results are listed in Table 5.
Relative errors are shown in Figures 4 and 5.

W 2 c element
In the case of using the 2c-DOF CEM, for a free-clamped beam shown in Figure

3, we consider the following schemes: when total-DOF is assigned as 8, two
2c-DOF elements (i.e., CEM (2×2c)) and 4 FEM elements (i.e. FEM (4e)) are
used respectively; when total-DOF is assigned as 12, three 2c-DOF elements (i.e.,
CEM (3×2c)) and 6 FEM elements (i.e., FEM (6e)) are used respectively; when
total-DOF is assigned as 20, five 2c-DOF elements (i.e., CEM (5×2c)) and 10
FEM elements (i.e., FEM (10e)) are used respectively. All results are listed in Table
6. The relative errors are shown in Figures 4 and 5.

5.2.2. c-version

The c-version of CEM is to increase c-DOF terms when choosing the trial
function of displacement field in order to improve the accuracy. Previously, many
numerical results of increasing c-DOF have shown the high efficiency and good
approximation on eigenvalues, especially for higher-order eigenvalues (see Tables
1–4). Now, also for a free-clamped beam shown in Figure 3, we present a more
detailed comparison of the c-version of CEM with the conventional FEM. The
numerical results listed in Table 7 and the relative error curves shown in Figures
4 and 5 indicate that by the c-version of CEM we can obtain a superconvergence
for eigenvalues of structure, especially for higher-order eigenvalues. For instance,
as to l1, the result of the c-version of CEM (total-DOF=6) will nearly correspond
to that of FEM (total-DOF=18); as to l4, the result of the c-version of CEM
(total-DOF=6) will be better than that of FEM (total-DOF=12); as to
higher-order eigenvalue l16, the relative error of c-version (total-DOF=18) is only
0·03576%, but the relative error by using FEM (total-DOF=18) already reaches
18·2475%.

5.2.3. Comments

From the detailed numerical results above, we can sum up some features of the
h-version and c-version of beam element in the Composite Element Method as
follows.

(1) The convergence of the h-version and c-version of the beam element is
obviously superior to that of conventional FEM. With less computation effort,
both the h-version and c-version of CEM can approximate the desired solution.
Usually, against the same computational effort, the error of CEM is one order of
magnitude less than that of the conventional FEM.
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Figure 4. The relative errors of the 4th-order eigenvalue for a free-clamped beam.

(2) For low order of eigenvalues, both the h-version and c-version of the beam
element can arrive at a superconvergence, although the c-version of CEM is
superior to the h-version of CEM. It means that, with only few c-DOF, the CEM
can obtain highly-accurate results. For higher-order of eigenvalues, only the
c-version of CEM can continue to arrive at a superconvergence.

6. APPLICATIONS

6.1.     

As an example, consider a simple lathe shown in Figure 6 [5].

Figure 5. The relative errors of the 8th-order eigenvalue for a free-clamped beam.
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Figure 6. Components of a lathe.

Figure 7. Rigid model of a lathe.

Figure 8. CEM model of a lathe.
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6.1.1. Rigid model

For a simplified vibration analysis, the lathe bed can be considered as a rigid
body having mass and inertia, and the headstock and tailstock can each be
replaced by lumped masses. The bed can be assumed to be supported on springs
at the ends. Thus the final model will be a rigid body of total mass m and mass
moment of inertia J0 and its C.G., resting on springs of stiffnesses k1 and k2, as
shown in Figure 7(a).

We assume that the parameters of the lathe in Figure 7 are chosen as: the mass
of headstock mA =1000 kg, the mass of tailstock mB =500 kg, the mass of bed
m3 =2500 kg, the length of lathe l=2·4 m, the height of bed h=0·4 m, the
support springs k1 =1×107 N/m, k2 =8×106 N/m. So one can calculate the
position of C.G. point as: l1 =0·8 m, l2 =1·6 m, the total mass m=4000 kg, the
total mass moment of inertia J0 =3553·33 kg · m2.

For this system with two degree of freedom shown in Figure 7, any of the
following sets of co-ordinates may be used to describe the motion:

(a) Deflections x(t) of the C.G. and rotation u(t).
(b) Deflection x1(t) and x2(t) of the two ends of the lathe AB.

W Equations of motion using x(t) and u(t)
From the free-body diagram shown in Figure 7(b), with the positive values of

the motion variables as indicated, the force equilibrium equation in the vertical
direction can be written as

mẍ=−k1(x− l1u)− k2(x+ l2u) (34)

and the moment equation about the C.G. can be expressed as

J0u� = k1(x− l1u)l1 − k2(x+ l2u)l2. (35)

Equations (34) and (35) can be rearranged and written in the matrix form as

$m0 0
J0%$ẍu� %+$ (k1 + k2)

−(k1l1 − k2l2)
−(k1l1 − k2l2)
(k1l 2

1 + k2l 2
2 ) %$xu%=$00%. (36)

From equation (36), one get the natural circular frequencies: v1 =63·56171 rad/s,
v2 =89·58034 rad/s.

W Equations of motion using x1(t) and x2(x)
Consider the transformation relation between (x, u) and (x1, x2) [see

Figure 7(b)].

x=0x2 − x1

l1 + l2 1l1 + x1 (37)

u=
x2 − x1

l1 + l2
(38)
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i.e.,

$xu%=
1

(l1 + l2) $ l2
−1

l1
1%$x1

x2%=T$x1

x2% (39)

where T is the transformation matrix, i.e.,

T=
1

(l1 + l2) $ l2
−1

l1
1%.

So, equation (39) can be transformed by T

1
(l1 + l2) $ l 2

2m+ J0

l1l2m− J0

l1l2m− J0

l 2
1m+ J0 %$ẍ1

ẍ2%+$k1

0
0
k2%$x1

x2%=$00%. (40)

From equation (40), one also get the natural circular frequencies:
v1 =63·56171 rad/s, v2 =89·58034 rad/s.

6.1.2. Composite Element Model

An accurate model of this machine tool would involve the consideration of
the lathe bed as an elastic beam with lumped masses attached to it as shown in
Figure 8.

Now we apply the Composite Element Method to deal with it. For each element,
first we write the stiffness and mass matrices as follows:

For bar element (1) (i.e., left support spring), we take a CEM bar element with
2c-DOF CEM, i.e.,

q1 q3 c11 c12

1 −1 0 0 q1

k(1) = k1 ·
−1 1 0 0 q3 (41)
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where k1 = (E1A1)/L1 is the stiffness coefficient, m1 = r1A1L1 is the mass of bar
element. Note that only two c-DOF is taken for this bar element.

For bar element (2) (i.e., right support spring), we take a CEM bar element with
2c-DOF CEM, i.e.,

q2 q4 c21 c22

1 −1 0 0 q2

k(2) = k2 ·
−1 1 0 0 q4 (43)

G
G

G

G

G

K

k

G
G

G

G

G

L

l

0 0
p2

2
0 c21

0 0 0
4p2

2
c22

q2 q4 c21 c22

1
3

1
6

1
p

1
2p

q2

m(2) =m2 ·

1
6

1
3

1
p

−
1
2p

q4 (44)
G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

1
p

1
p

1
2

0 c21

1
2p

−
1
2p

0
1
2

c22

where k2 = (E2A2)/L2 is the stiffness coefficient, m2 = r2A2L2 is the mass of bar
element.

For the element (3) (i.e., lathe body), we use a CEM beam element with 2c-DOF,
i.e.,

q1 u1 q2 u2 c31 c32

12 0 0 q1

6l 4l2 sym. 0 0 u1

k(3) =
EI
l3

· −12 −6l 12 0 0 q2

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

6l 2l 2 −6l 4l 2 0 0 u2

0 0 0 0 1·035936l*4
1 0 c31

0 0 0 0 0 0·998447l*4
2 c32

(45)

where l*1 =4·730041, l*2 =7·853205.
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m(3) =m3 ·

q1 u1 q2 u2 c31 c32

13
35

11
210

l
1

105
l 2 sym. sym.

9
70

13
420

l
13
35

−
13
420

l −
1

140
l 2 −

11
210

l
1

105
l2

0·42282930 0·09098435l 0·42282930 −0·09098435l 1·035936 0

0·25467310 0·03240400l −0·25467310 0·03240400l 0 0·998447

(46)

For the element (4) (i.e., headstock), it is considered as a rigid lump, i.e.,

k(4) = [0] (47)

m(4) = [mA ] (48)

For the element (5) (i.e., tailstock), also it is considered as a rigid lump, i.e..,

k(5) = [0] (49)

m(5) = [mB ] (50)

The assembled mass and stiffness matrices are given by

K= s
5

e=1

k(e) (51)

M= s
5

e=1

m(e). (52)

Since the bottoms of the bar elements 1 and 2 are fixed, i.e., q3 = q4 =0, and
these two degree of freedoms have to be eliminated from the global stiffness and
mass matrices. The parameters of lathe bed (as a beam element) are assumed as:
the modulus E=2·1×1011 N/m2, the area moment of inertia of cross section
I=0·005333 m4. Others take the same parameters as the rigid model. Now we
analyze the effects of different masses of supports on the natural circular
frequencies of the lathe by the CEM model proposed above. The results are
presented in Table 8, which are compared with those of the rigid model.

From Table 8, one can summarize that the masses of supports will give an
obvious impact on vibration of the total lathe, especially on a higher order of

K L
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
k l
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vibration. The CEM is a good means to analyze these influences with less
computational effort.

If fix the support masses as m1 =500 kg, m2 =300 kg, we study the effects of
stiffness of the lathe bed (i.e., take different Young’s modulus) by the CEM model
proposed above. The results are presented in Table 9, which are compared with
those of the rigid model.

From Table 9, one can find that the stiffness of the lathe bed will make less
impact on the lower order of vibration, but an obvious impact on the higher order
of vibration.

In order to investigate the ability of CEM, we discuss several simplified
below.

6.1.3. Case 1

Consider the supports with masses and take the lathe bed as a rigid body. So,
we let u1 = u2 = c31 = c32 =0. One has the following expressions of the mass and
stiffness matrices from the globe mass and stiffness matrices.

q1 q2 c11 c12 c21 c22

k1 +
12EI

l 3 −
12EI

l 3 0 q1

−
12EI

l 3 k2 +
12EI

l 3 q2

K=
p2

2
k1 c11 (53)

4p2

2
k1 0 c12

0
p2

2
k2 c21

0
4p2

2
k2 c22

K L
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
G G
k l

Figure 9. Components of an automobile.
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Figure 10. Rigid model of an automobile.

Figure 11. CEM model of an automobile.

Figure 12. Vibration analysis of a frame by CEM.
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M=

mA +
1
3

m1 +
13
35

m3 sym. q1

9
70

m3 mB +
1
3

m2 +
13
35

m3 q2

1
p

m1 0
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2

m1 c11

−
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2p

m1 0
1
2

m1 0 c12

0
1
p

m2
1
2

m2 c21

0 −
1
2p

m2 0
1
2

m2 c22

(54)

6.1.4. Case 2

Also consider the supports with masses and take the lathe bed as a rigid body.
But we let u1 = u2 $ 0, and c31 = c32 =0. This simplified case can more reasonably
reflect the property of the rigid body of the lathe bed.

6.1.5. Case 3

Consider the lathe bed as a rigid body and neglect the masses of the two support
bars. So, we let u1 = u2 = c31 = c32 =0, c11 = c12 = c21 = c22 =0, m1 =m2 =0. One
has the following mass and stiffness matrices

q1 q2

K=
k1 +

12EI
l 3 −

12EI
l 3 q1 (55)G

G

G

K

k
G
G

G

L

l−
12EI

l 3 k2 +
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l 3 q2

q1 q2

M=
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13
35

m3
9
70

m3 q1 (56)
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m3 q2
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Consider the lathe bed as an elastic beam and neglect the masses of the two
support bars. So, we let c11 = c12 = c21 = c22 =0, as well as m1 =m2 =0. One has
the following mass and stiffness matrices.

K=
EI
l 3 ·

q1 u1 q2 u2 c31 c32

k1l 3

EI
+12 0 0 q1

6l 4l 2 sym. 0 0 u1

−12 −6l
k2l 3

EI
+12 0 0 q2

6l 2l 2 −6l 4l 2 0 0 u2

0 0 0 0 1·035936l*4
1 0 c31

0 0 0 0 0 0·998447l*4
2 c32

(57)

where l*1 =4·730041, l*2 =7·853205.

M=m3 ·

q1 u1 q2 u2 c11 c12
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105
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+
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420
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140
l 2 −
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210
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105
l 2

0·42282930 0·09098435l 0·42282930 −0·09098435l 1·035936

0·25467310 0·03240400l −0·25467310 0·03240400l 0 0·998447

(58)
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Similarly, the parameters of the lathe bed (as a beam element) are:
E=2·1×1011 N/m2, I=0·005333 m4, the parameters of supports are:
m1 =500 kg, m2 =300 kg, k1 =1×107 N/m, k2 =8×106 N/m. Other parameters
are the same as rigid model. Now we calculate the natural frequencies of the lathe
by the four simplified models of CEM which are proposed above. The results are
presented in Table 10, which are compared with those of the rigid model.

From Table 10, we can conclude:
(1) Since we have assumed that u1 = u2 $ 0 in model 2 (case 2), the results

are fully close to those of the rigid model.
(2) In simplified model 4 (case 4), we have assumed that m1 =m2 =0. The

results also agree with those of the rigid model.
(3) Simplified models 1 and 3 give poor results. It is very likely that due to

the fact that the assumption u1 = u2 =0 is not appropriate.

6.2.     

As an example, consider the automobile shown in Figure 9 [5].

6.2.1. Rigid model

For a simplified vibration analysis, the automobile body and driver can be
considered as a rigid body having mass and inertia, and it can be assumed to be
supported on springs at the ends. Thus the final model will be a rigid body of total
mass m and mass moment of inertia J0 and its C.G., resting on springs of stiffnesses
k1 and k2, as shown in Figure 10.

We assume that the parameters in Figure 10 are: the mass of driver m0 =80 kg,
the mass of automobile body m3 =1200 kg, the length of automobile l=3·5 m,
the height of frame beam h=0·2 m, the stiffness of support wheels
k1 = k2 =2×105 N/m, the position of C.G. point l1 =1·5 m, l2 =2 m. So one can
calculate the total mass m=1280 kg, the total mass moment of inertia
J0 =1304 kg · m2.

Similar to the last example, we use the [x(t), u(t)] coordinate system and the
[x1(t), x2(t)] coordinate system to describe the equation of motion.

W Equations of motion using x(t) and u(t)
Similar to the lathe problem, the equation of motion can be written as

$m0 0
J0%$ẍu� %+$ (k1 + k2)

−(k1l1 − k2l2)
−(k1l1 − k2l2)
(k1l 2

1 + k2l 2
2 ) %$xu%=$00% (59)

From equation (59), one obtains the natural circular frequencies:
v1 =17·41713 rad/s, v2 =31·1084 rad/s.
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W Equations of motion using x1(t) and x2(x)
Using the transformation relationship T between (x, u) and (x1, x2), i.e.,

$xu%=
1

(l1 + l2) $ l2
−1

l1
1%$x1

x2%=T$x1

x2% (60)

we have

1
(l1 + l2)2 $ l 2

2m+ J0

l1l2m− J0

l1l2m− J0

l 2
1m+ J0 %$ẍ1

ẍ2%+$k1

0
0
k2%$x1

x2%=$00%. (61)

From equation (61), one obtains the natural circular frequencies:
v1 =17·41713 rad/s, v2 =31·1084 rad/s.

6.2.2. Composite element model

An accurate model of this automobile should consider the automobile body as
an elastic beam with the lumped mass (driver) and the mass-coupled spring
elements attached to it as shown in Figure 11. Now we apply the CEM to analyze
it. First of all, for each element we write the stiffness and mass matrices as follows:

For element (1) (i.e., the left wheel, we use a CEM bar element with 2c-DOF
CEM), one has

q1 q4 c11 c12

1 −1 0 0 q1

k(1) = k1 ·
−1 1 0 0 q4 (62)
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c12

where k1 = (E1A1)/L1 is the stiffness coefficient, m1 = r1A1L1 is the mass of bar
element. Note that we take only two c-DOF is taken for this bar element.
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For element (2) (i.e., the right wheel, we also use a CEM bar element with
2c-DOF CEM) one has

q2 q5 c21 c22

1 −1 0 0 q2

k(2) = k2 ·
−1 1 0 0 q5 (64)
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where k2 = (E2A2)/L2 is the stiffness coefficient, m2 = r2A2L2 is the mass of bar
element.

For the element (3) (i.e., the left part of the automobile body), we can take a
CEM beam element with 2c-DOF, i.e.,

q1 u1 q3 u3 c31 c32

12 0 0 q1

6l1 4l 2
1 sym. 0 0 u1

k(3) =
EI
l 3

1
· −12 −6l1 12 0 0 q3
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2 c32

(66)

where l*1 =4·730041, l*2 =7·853205.
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For the element (5) (i.e., the driver), it is considered as a rigid lump, i.e.,

k(5) = [0] (70)

m(5) = [m0] (71)

The assembled mass and stiffness matrices are given as

K= s
5

e=1

k(e) (72)

M= s
5

e=1

m(e). (73)

Since the bottoms of two bar elements are fixed, one has q4 = q5 =0, and these
two degrees of freedom have to be eliminated from the global stiffness and mass
matrices. The parameters of the automobile body (as a beam element) are:
E=2·1×1011 N/m2, the area moment of inertia of cross section I=0·0006667 m4.
Other parameters are the same as the rigid model. Now we analyze the effects of
different masses of support wheels and driver on the natural circular frequencies
of the lathe by the CEM model proposed above. The results are presented in Table
11, which are compared with those of the rigid model.

From Table 11, one can summarize that the masses of wheels and drivers will
give an obvious impact on vibration properties of the total automobile, especially
on the higher order of vibration.

The masses of wheels and drivers are fixed as m1 =m2 =60 kg, m0 =80 kg. We
study the effects of stiffness of the automobile body (i.e., consider different
Young’s modulus) on the vibration properties of the total automobile by the CEM
model proposed above. The results are presented in Table 12, which are compared
with those of the rigid model.

From Table 12, one can find that the stiffness of the automobile body will make
less impact on the lower order of vibration of the total automobile, but an obvious
impact on the higher order of vibration.

Below we discuss several simplified cases.

6.2.3. Case 1

Consider the automobile body as a rigid body. So, we take
u1 = u2 = u3 = c31 = c32 = c41 = c42 =0. One can obtain the corresponding ex-
pressions of the mass and stiffness matrices from the globe mass and stiffness
matrices.

6.2.4. Case 2

Consider the automobile body as a rigid body, and neglect the masses of
two support springs. So, we take u1 = u2 = u3 = c31 = c32 = c41 = c42 =0,
c11 = c12 = c21 = c22 =0, m1 =m2 =0. One can obtain the corresponding
expressions of the mass and stiffness matrices from the globe mass and stiffness
matrices.
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6.2.5. Case 3

Consider the automobile body as a elastic beam, and neglect the masses of two
support bars. So, we take c11 = c12 = c21 = c22 =0, as well as m1 =m2 =0. Also one
can obtain the corresponding mass and stiffness matrices.

From Table 13, we can find that the simplified model 3 (case 3) gives a good
result to the rigid model since we have neglected the masses of support wheels (i.e.,
m1 =m2 =0), but the simplified models 1 and 2 give poor appropriate results since
we have let u1 = u2 =0 which is not suitable for the rigid case.

6.3.     

Consider a frame made of 4 beams shown in Figure 12, and find the natural
frequencies. The related data are: L=6 m, cross-sectional area A=0·1 m2, area
moment of inertia of the cross section I=1×10−2 m4, density r=7800 kg/m3,
Young’s modulus E=103 MPa. We idealize the frame into 4 beam elements by
the CEM. The resultant natural frequencies are listed in Table 14.
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