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When a structure exhibits a damped dynamic behavior that does not conform
to the classical and well-known viscous or hysteretic models, a more general
approach must be sought. Several questions may then be raised, like (i) in which
theoretical background should one base the investigation?, or (ii) can one apply
common modal analysis tools to solve the problem? Recent works have shown
that some types of materials and therefore structures demand a more rigorous
behavior description and that it seems possible to address the problem by means
of the theory of fractional derivatives, leading to a model in terms of general
damping parameters. Such an approach reveals itself somewhat complicated to
implement in practice and some simplifications are necessary. The authors discuss
the use of a generalized damping concept for modeling the dynamic behavior of
linear systems and show how this concept allows for a clearer interpretation and
explanation of the behavior displayed by the common viscous and hysteretic
models.
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1. INTRODUCTION

Nowadays, it is known that the behavior of certain types of materials, namely
viscoelastic ones, are better described—in what damping characteristics are
concerned—by a model that takes into consideration terms that are non-integer
powers of the exciting frequency.

The theory that supports such models is based on fractional derivatives.
Fractional derivatives are part of the now called fractional calculus which is not
a new subject. The idea started in the 17th century when L’Hox pital wrote to
Leibnitz asking whether he thought that a non-integer derivative would make any
sense. Many other well-known scientists like Euler, Lacroix, Abel, Fourier,
Liouville, etc., have devoted some of their interest to the subject, along the years
[1]. Since then, the subject has evolved slowly and it is only in the last 20 years
that the theory of fractional calculus has become more known, particularly with
the advent of the theory of Fractals [2].

The articles by Bagley and Torvik [3, 4] and by Gaul [5–7] have shown the
importance that the application of fractional derivatives has in modelling in a more
accurate way the damping characteristics and consequently the complex Young
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modulus of some materials, leading to a more precise reconciliation between the
model response and the actual behavior of the structure under analysis.

Here, the authors address the problem with the objective of building a general
formulation for possible applications in modal analysis and show that the usual
damping models can be described as particular cases of a general one.

2. THEORETICAL DEVELOPMENT

The first order time-derivative of the displacement is the velocity, the second
order derivative the acceleration, etc. What can be the meaning of the derivative
of order 0·5, or −1·7, or even 1·2–i0·3 (the general case of complex order
derivatives has been particularly addressed in the works of Campos [8])?

The general definition of a fractional derivative, given by Riemann–Liouville as
the inverse operation of fractional integration, is [1, 9]:

Dn(x(t))=
dnx(t)
dtn =

1
G(1− n)

d
dt g

t

0

x(t)
(t− t)n dt (1)

where 0Q nQ 1 and G is the Gamma function, defined as G(1− n)= fa
0 x−n e−x

dx. When considering harmonic vibrations and harmonic waves in mechanical
systems, the lower limit of the integral in (1) is replaced by −a [9, 10]:

Dn(x(t))=
dnx(t)
dtn =

1
G(1− n)

d
dt g

t

−a

x(t)
(t− t)n dt. (2)

The possible applications to modal analysis, associated with some degree of
physical interpretation, are related to some particular and useful properties of
definition (2), concerning Laplace and Fourier transforms. For zero initial
conditions, the following relationships are verified:

L(Dn(x(t)))= snL(x(t)) (3)

and

F(Dn(x(t)))= (iv)nF(x(t)) (4)

Now concentrate on this last expression and take the case of harmonic motion:

x(t)=X eivt (5)

The nth order derivative of (5) when n is an integer, is

Dn(x(t))= (iv)nX eivt. (6)

Equation (4) allows for an immediate generalization to a non-integer derivative
of order n:

Dn(x(t))= (iv)nX eivt. (7)



X ei   t

Re (x)

2

Im (x)

t

X ei(   t +    /2)

2X ei(   t +2   /2)
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As i=eip/2 and, consequently, in =einp/2,

Dn(x(t))=vnX ei(vt+ np/2). (8)

It should be noted that although definition (2) is only valid for 0Q nQ 1, n may
have a bigger value, as it is true that Dn1(Dn2(x))=Dn1 + n2(x), for n1 integer. For
example, to calculate the derivative of order 2·3, it is enough to know how to
calculate the derivative of order 0·3, as D2(D0·3(x))=D2+0·3(x). So, definition (2)
does not restrict the application of (3) or (4) to just 0Q nQ 1.

From (8), it is clear that for a harmonic motion, the fractional time derivative
simply means a new harmonic motion of amplitude vnX leading the original vector
by a phase angle equal n(p/2). It is easy to see that for the particular cases n=1
and n=2 one obtains the velocity and acceleration, respectively. Figure 1
illustrates the concept for 0Q nQ 1.

From (5) and (7), one can also write

Dn[x(t)]= (iv)nx(t) (9)

and so, one can say that a harmonic motion is characterized by

Dn[x(t)]− (iv)nx(t)=0. (10)

For the particular case where n=2, (10) becomes

ẍ+v2x=0 (11)

corresponding to the free vibration equation for a conservative single
degree-of-freedom system:

mẍ+ kx=0. (12)

As the inertia and stiffness terms correspond to well-known properties, the
fractional derivation seems of no interest for the case of equation (12). However

Figure 1. Physical interpretation of the fractional derivative of a harmonic motion.
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considering viscous and hysteretic damping, as well as an applied force
f(t)=F eivt:

mẍ+ cẋ+ kx+idx=F eivt. (13)

mẍ and kx are well-known forces; one cannot say the same about damping forces.
The viscous and hysteretic damping models are, many times, only coarse
approximations of reality. In most cases, materials and structures exhibit a more
complex behavior in terms of energy dissipation. It is here that fractional
derivatives have a role to play, as expressed in [3–5]. Thus, instead of (13), one
could write

mẍ+ kx+ s
l

j=1

gjDnjx=F eivt (14)

where gj are complex coefficients and l is the number of damping forces. Equation
(14) can even be written in a more compact form, by including the first two terms
in the summation. The dynamic equilibrium equation of a single degree-of-free-
dom system subjected to a harmonic force may therefore be written as:

s
l'

j=1

gjDnjx=F eivt (15)

where l'= l+2 and 0E nj E 2. The steady-state solution of this differential
equation is:

x(t)=X� eivt (16)

where X� is the complex amplitude of the motion.
Substituting (16) in (15) and taking into account (8), it follows that (making

gj = aj +ibj ):

s
l'

j=1

(aj +ibj )vnjX� ei(vt+ njp/2) =F eivt (17)

0s
l'

j=1

(aj +ibj )vnj ei(njp/2)1X�=F. (18)

The receptance FRF will therefore be given by:

H=
X�
F

=0s
l'

j=1

(aj +ibj )vnj ei(njp/2)1
−1

. (19)

For the particular case of a single degree-of-freedom system with both viscous
and hysteretic damping properties, (19) would be transformed into:

H=(k−v2m+i(d+vc))−1 (20)

corresponding to l'=3, n1 =0, n2 =1, n3 =2, a1 = k, b1 = h, a2 = c, b2 =0, a3 =m
and b3 =0.
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3. AN MDOF MODEL FOR MODAL ANALYSIS

In an identification problem, it may be assumed, a priori, as many terms as one
wishes, to estimate the values of the various parameters and thus know the nature
of damping in a structure. Using fractional derivatives, the final model for the
damping may be much closer to reality.

One of the most interesting applications in modal analysis is the possibility of
identifying the dynamic properties of a system in the more general case above
described. For the single degree-of-freedom case, the problem does not seem
extremely complicated. Recalling equations (14) and (19), it is clear that to identify
the unknown characteristics one has just to take into account, at least, as many
frequency data points as unknowns, for a chosen value of l. For example, for l=3.

mẍ+ kx+ g1Dn1x+ g2Dn2x+ gdDn3x=F eivt (21)

which means, as coefficients gj are complex, 11 unknowns. Generalizing, there will
be 3l+2 unknowns.

If things are not too complicated for a single DOF system, they can become
really difficult for a multiple DOF system. To be aware of the difficulty, it is
enough to think that while with viscously damped N DOF systems the matrix
equilibrium equation in the state-space has 2N×2N matrices and complex
conjugate eigenvalues and eigenvectors, now each differential equation is of
non-integer order and it is not known a priori which order one is going to have.
A simplifying possibility is to restrict the values of the non-integer order n to a
rational form, i.e., n= p/q. Then, equation (21) becomes:

mD2x+ kD0x+ g1Dp1/q1x+ g2Dp2/q2x+ g3Dp3/q3x= f. (22)

Let q* be the least common multiple of q1, q2, q3. Thus,

mD2(q*/q*)x+ kD0/q*x+ g1D[p1(q*/q1)/q*]x+ g2D[p2(q*/q2)/q*]x+ g3D[p3(q*/q3)/q*]x= f.

(23)

In the Laplace domain, if f=F est, x=X est and so,

0ms2 + ks0 + g1s[p1(q*/q1)/q*] + g2s[p2(q*/q2)/q*] + g3s[p3(q*/q3)/q*]1X=F. (24)

However, once q* has been chosen, it is more convenient to generalize (23) by
writing:

X s
2q*

k=0

aksk/q* =F (25)
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which gives many more terms for the exponent n. For instance, when q*=5,
k/q*=0, 1/5, 2/5, 3/5, . . . up to 10/5(=2). All the non-playing exponents will have
a zero coefficient ak . In the time domain, it would be:

s
2q*

k=0

akyk = f with yk =Dk/q*x. (26)

Normally, for a viscously damped second order system with N DOFs,

[M]{ẍ}+[C]{ẋ}+[K]{x}= {f} (27)

leading to a state-space problem of order 2N:

$ [0]
[M]

[M]
[C]%6{ẍ}

{ẋ}7+$−[M]
[0]

[0]
[K]%6{ẋ}

{x}7=6{0}
{f}7 (28)

or

{ẏ}+[B]{y}= {f'} (29)

with

[B]=$ [0]
[M]

[M]
[C]%

−1

$−[M]
[0]

[0]
[K]% and {f'}=$ [0]

[M]
[M]
[C]%

−1

6{0}
{f}7.

The corresponding eigenvalue problem (of order 2N), is:

[[B]+ l[I]]{Y}= {0}. (30)

Now, one has instead:

{y2q*−1} D2q*−1/q*{x}
{y2q*−2} D2q*−2/q*{x}

{y}= ··· = ··· . (31)g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j
{y1} D1/q*{x}
{y0} D0/q*{x}

One can also write

{y2q*}=D2q*/q*{x}=D1/q*(D2q*−1/q*{x})=D1/q*{y2q*−1}
···
{yk}=Dk/q*{x}=D1/q*(Dk−1/q*{x})=D1/q*{yk−1}
···
{y1}=D1/q*{x}=D1/q*(D0/q*{x})=D1/q*{y0}. (32)

Thus, the generalization of equation (29) is:

D1/q*{x}+[B]{y}= {f'} (33)

where now the order is 2Nq*, instead of 2N.
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Taking into account relation (3), the eigenvalue problem can also be written as

[[B]+ l[I]]{Y}= {0} (34)

but with l= s1/q*.
For instance, let n1 = p1/q1 =1/3 and n2 = p2/q2 =1/1. Thus, q*=3, and we

have, for an N DOF system:

s
6

k=0

[ak ]{yk}= {f} (35)

or

s
6

k=0

[ak ]Dk/3{x}= {f}. (36)

Developing (36) and pre-multiplying by [a6]−1,

{ẍ}+[a'5]D5/3{x}+[a'4]D4/3{x}+[a'3]{ẋ}

+[a'2]D2/3{x}+[a'1]D1/3{x}+[a'0]{ẋ}= {f'} (37)

Therefore, the state vectors {y} and D1/3{y} are:

D5/3{x} {ẍ}
D4/3{x} D5/3{x}

{ẋ} D4/3{x}g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

{y}=
D2/3{x} D1/3{y}= {ẋ} . (38)

D1/3{x} D2/3{x}
{x} D1/3{x}

The state-space equation is:

D1/3{y}+[B]{y}= {F} (39)

where

{f'}
{0}

g
G

G

F

f

h
G

G

J

j

{F}= ···
.

{0}
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In the eigenvalue problem [equation (34)], l= s1/3 and [B] is the companion
matrix, given by:

[a'5] [a'4] [a'3] [a'2] [a'1] [a'0]

−[I] [0] [0] [0] [0] [0]

[0] −[I] [0] [0] [0] [0]
G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

[B]=
[0] [0] −[I] [0] [0] [0]

(40)

[0] [0] [0] −[I] [0] [0]

[0] [0] [0] [0] −[I] [0]

As each matrix [a'k ] is N×N, [B] is (2q*N)× (2q*N). The eigenvalue problem
is of order 2q*N, in this case, 6N. So, there will be 6N eigenvalues and
eigenvectors, but the original system still has only N DOFs.

Therefore, the receptance FRF, in terms of rational fractional polynomials (see
reference [12]) will be given by

H=

s
2q*N−1

k=0

bk (iv)k/q*

s
2q*N

k=0

ck (iv)k/q*

(41)

where bk and ck are, generally, complex quantities. Alternatively, it can be
expressed in factorized form, as:

H=

t
2q*N−1

k=1

((iv)1/q* − zk )

t
2q*N

k=1

((iv)1/q* − pk )

(42)

or in terms of mode superposition, as

H= s
N

r=1

0 s
2q*−1

k=0

bk (iv)k/q*1r

0 s
2q*

k=0

ck (iv)k/q*1r

. (43)

It is therefore possible to obtain a generalization of the receptance expression
for the case of general damping and consequently to apply modal analysis tools
to identify such systems.
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However, the use of expressions (41) or (43) for practical applications leads to
numerical problems, as the dimension of the matrices to solve increases very easily.
This problem has already been pointed out in [11]. Let n1 =0·5 and n2 =0·7, i.e.,
n1 =5/10 and n2 =7/10. This means q*=10. For a 3 DOF system, the order of
the matrices would be 60, instead of 6 in the normal case. Moreover, coefficients
b and c are complex and that brings extra complications. Ill-conditioning is also
a problem and no easy way could be found to avoid it. So, how to deal with such
a problem?

4. SIMPLIFYING APPROACHES

Instead of trying to identify the modal properties using a MDOF method, it is
worthwhile beginning with a simpler approach, with a SDOF analysis. Let us start
by writing expression (43) for each DOF, for an example with q*=3:

H=
b0 + b1(iv)1/3 + b2(iv)2/3 + b3(iv)3/3 + b4(iv)4/3 + b5(iv)5/3

c0 + c1(iv)1/3 + c2(iv)2/3 + c3(iv)3/3 + c4(iv)4/3 + c5(iv)5/3 + c6(iv)6/3 . (44)

The objective is to evaluate coefficients b and c. If, for instance, the damping
exponents associated with this DOF were around 1/3 and 5/3, it is expected that
b2, b3 and b4 are close to zero, as well as c2, c3 and c4. It is also expected that b0,
c0 and c6, related to the modal stiffness and mass always exist. If a higher value
for q* is chosen, the expression is longer and more accurate results are naturally
foreseeable.

However, things can be simplified further, to reduce the total number of
unknowns. While the damping exponents were taken as rationals due to the
theoretical development followed before, with the advantage that they were not
unknowns in the MDOF approach, it seems unnecessary to keep them as rationals
in a SDOF approach. Furthermore, it can be postulated that around each mode
there is only one damping term. In such circumstances, the receptance FRF
simplifies to:

H= s
N

r=1

b0 + b1(iv)nr

c0 + c1(iv)nr + c2(iv)2 (45)

where nr is now an unknown too.
Now, do the coefficients really need to be considered as complex? b0, c0 and c2

are naturally real quantities. What about b1 and c1? They are associated with
damping and for purely dissipative systems, one can reason as follows: let c1 be
complex, equal to u+iz. Hence, the term c1(iv)nr becomes:

c1(iv)nr =(u+iz)(cos nrp/2+ i sin nrp/2)vnr

=(u cos nrp/2− z sin nrp/2)vnr +i(u sin nrp/2+ z cos nrp/2)vnr. (46)

For purely dissipative systems,

(u cos nrp/2− z sin nrp/2)vnr =0 (47)
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and thus,

u cos nrp/2= z sin nrp/2cz= u
cos nrp/2
sin nrp/2

(48)

and c1(iv)nr will simply be given by

c1(iv)nr =i(u sin nrp/2+ z cos nrp/2)vnr

= i0u sin nrp/2+ u
cos nrp/2
sin nrp/2

cos nrp/21vnr

=i0 u
sin nrp/21vnr =ic'1vnr. (49)

Therefore, expression (45) may be rewritten as:

H= s
N

r=1

b0 + ib'1vnr

c0 + ic'1vnr − c2v
2 (50)

where all coefficients are real quantities.
As c0 is related to the modal stiffness and c2 with the modal mass, the numerator

and denominator of (50) may be divided by c2, giving (c0/c2 = kr /mr =v2
r ):

H= s
N

r=1

Ar +iBrv
nr

v2
r −v2 + iGrv

nr
. (51)

This expression must include the usual hysteretic and viscous models, for n=0
and n=1, respectively:

H= s
N

r=1

Ar +iBr

v2
r −v2 + ihrv

2
r

(52)

H= s
N

r=1

Ar +iBrv

v2
r −v2 + i2jrvvr

. (53)

Thus, we must have:

Grv
nr = hrv

2
rcGr =

hrv
2
r

vnr
(54a)

Grv
nr =2jrvvrcGr =

2jrvvr

vnr
. (54b)

Giving a common designation for hr and 2jr as gr , expressions (54a) and (54b)
are equal when v=vr , leading to

Gr =
grv

2
r

vnr
r

. (55)
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Substituting back in (51), gives

H= s
N

r=1

Ar +iBrv
nr

v2
r −v2 + igrv

2− nr
r vnr

. (56)

This is a much simpler expression for the receptance FRF of a system with N
DOFs with general damping: in each mode there is a damping coefficient gr and a
nr th power dependence on frequency. A mode by mode identification procedure
means the analysis of the following expression:

H=
Ar +iBrv

nr

v2
r −v2 + igrv

2− nr
r vnr

+Residual term. (57)

5. DISCUSSION

It is worthwhile to explore more deeply the nature of the first term on the
right-hand side of (57), to get more insight on the physical interpretation of that
expression.

5.1. N 

Start with the representation in the Nyquist plot. Probably, this is not very
important on its own, but helps understanding and framing the FRF for general
damping with reference to the usual hysteretic and viscous models. It is known
that for hysteretic damping, the Nyquist representation of the receptance (the
derivative of zero order) H=1/(v2

r −v2 + ihrv
2
r ) is a circle (assuming unit mass,

without loss of generality). Ar +iBr , which reflects the influence of the modal mass
and of other modes, increases or reduces the radius of the circle and rotates it.
In the viscous damping case, the mobility (the derivative of first order)
ivH=iv/(v2

r −v2 + i2jrvvr ) is also a circle. In that case, Ar +iBrv is no longer
a constant, but around resonance the frequency does not change too much and
so it can still be assumed as such, having therefore the same effect of increasing
or reducing the radius of the circle and rotating it. Thus, it is logical to expect that
for the general damping case, the derivative of order nr , given by
DnrH=(iv)nr /(v2

r −v2 + igrv
2− nr
r vnr), is a circle too. About the term Ar +iBrv

nr,
it may be assumed that it is a constant provided that nr stays smaller than 1, an
intermediate situation between the hysteretic and viscous cases. If nr is higher than
1, nothing can be said a priori.

Proposition 1

Let the receptance of a SDOF system with general damping and unit mass be
given by

H=
1

v2
r −v2 + igrv

2− nr
r vnr

. (58)

Then, the derivative of order nr will be a circle in the Argand plane (Nyquist
plot).
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Figure 2. Nyquist plot for nr =0, nr =1 and nr =0·5.

Proof

DnrH=
(iv)nr

v2
r −v2 + igrv

2− nr
r vnr

(59)

Re=
(v2

r −v2)vnr cos nrp/2+ grv
2− nr
r v2nr sin nrp/2

(v2
r −v2)2 + (grv

2− nr
r vnr)2 (60)

Im=
(v2

r −v2)vnr sin nrp/2− grv
2− nr
r v2nr cos nrp/2

(v2
r −v2)2 + (grv

2− nr
r vnr)2 . (61)

Hence,

Re2 + Im2 =
v2nr

(v2
r −v2)2 + (grv

2− nr
r vnr)2 (62)

and

Re · sin nrp/2− Im · cos nrp/2=
grv

2− nr
r v2nr

(v2
r −v2)2 + (grv

2− nr
r vnr)2 . (63)

From (62) and (63),

(Re2 + Im2)grv
2− nr
r =Re · sin nrp/2− Im · cos nrp/2 (64)

from which,

0Re−
sin nrp/2
2grv

2− nr
r 1

2

+0Im+
cos nrp/2
2grv

2− nr
r 1

2

=0 1
2grv

2− nr
r 1

2

(65)

which is the equation of a circle, with center coordinates x0 = (sin nrp/2)/(2gr

v2− nr
r ) and y0 =−(cos nrp/2)/(2grv

2− nr
r ) and radius r0 =1/(2grv

2− nr
r ). q

A plot of this circle for nr =0 (hysteretic damping), nr =1 (viscous damping)
and nr =0·5 is given in Figure 2.
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5.2.   

The inverse of the receptance may also be analyzed:

1
H

=v2
r −v2 + igrv

2− nr
r vnr. (66)

Thus,

Re 0 1
H1=v2

r −v2 (67)

Im 0 1
H1= grv

2− nr
r vnr. (68)

Taking logarithms, it follows that

log Re 0 1
H1=log (v2

r )−2 log v (69)

log Im 0 1
H1=log (grv

2− nr
r )+ nr log v. (70)

These expressions are straight lines in log v and the slope of the imaginary part
is the order of the existing damping. In Figure 3, the three cases presented in Figure
2 are illustrated.

Whereas in the Nyquist plot one cannot, in practice, represent the nr th order
derivative of the measured data because nr is unknown, in the inverse method the
slope of the imaginary part can indicate the type of existing damping.
Unfortunately, in real cases, the influence of neighboring modes can distort those
graphs and therefore give a false indication about the damping. It would be
necessary to remove that influence before identifying the order of damping
affecting a particular mode.

Figure 3. Plots of the inverse of the receptance for nr =0, nr =1 and nr =0·5.
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5.3.    FRE

Another valuable discussion concerns the interpretation of the representation
of the absolute value of the FRF. Writing the absolute value of receptance for
hysteretic damping as

=H== 1

z[v2
r (1− b2)]2 + (hrv

2
r )2

=
1/v2

r

z(1− b2)2 + h2
r

(71)

where b is the frequency ratio (=v/vr ).
For viscous damping,

=H== 1

z[v2
r (1− b2)]2 + (2jrbv2

r )2
=

1/v2
r

z(1− b2)2 + (2jrb)2
. (72)

For general damping,

=H== 1

z[v2
r (1− b2)]2 + (grb

nrv2
r )2

=
1/v2

r

z(1− b2)2 + (grb
nr)2

. (73)

The graphical representation of =H= versus b for the three cases is illustrated in
Figure 4.

As it is known, for hysteretic damping, the maxima always occur at b=1
(v=vr ) and for viscous damping they occur on the left of vr , at b=z1−2j2

r .
It is natural that the maxima for the general case also happen on the left of vr ,
more or less, according to the value of nr .

It is also natural to expect that such a deviation results from the fact that one
is always representing the receptance, for the various types of damping. If one
represents, instead of =H=, the modulus of the nr th order derivative, the maxima
should always happen at b=1 (v=vr ).

Proposition 2

Let the nr th order derivative of the receptance for a SDOF system with general
damping be given by

DnrH=
(iv)nr

v2
r −v2 + igrv

2− nr
r vnr

. (74)

Then, the absolute value of DnrH will have a maximum at v=vr , for every level
of damping gr .

Proof

=DnrH== vnr

z(v2
r −v2)2 + (grv

2− nr
r vnr)2

=
bnrv2− nr

r

z(1− b2)2 + (grb
nr)2

(75)

1=DnrH=
1b

=0c [(2− nr)b2 + nr](1− b2)=0c b=1 for 0E vnr Q 2. (76)

q



0.015
Hysteretic damping

Viscous damping

General damping

0.010

=0

0.005

0.000

H

0.015

0.010

0.005

0.000

H

0.015

0.010

0.005

0.000
1.0 1.50.50.0 2.0

H

=1

=0.5

      763

Figure 4. =H= versus b for nr =0, nr =1 and nr =0·5 and different values of the damping ratio.
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It should be remembered that nr =2 is the order of the derivative affecting the
mass, so 0E nr Q 2 is the range one may be dealing with. Hence, it can be said
that, for general damping, the maxima always occur at b=1 when the absolute
value of the nr th order derivative of the receptance is represented. Figure 5
illustrates the result just given, for nr =0·5 and nr =1.

For b=1, the maximum values are

=DnrH=max =
v2− nr

r

gr
. (77)

5.4.    FRF  v=0

Recalling equation (73),

=H== 1/v2
r

z(1− b2)2 + (grb
nr)2

. (73)

Figure 5. =DnrH= versus b for nr =0·5 and nr =1.
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For any nr $ 0, the response at v=0, i.e., b=0, is the static response (it is
recalled that m=1 for simplicity):

=H==1/v2
r . (78)

For the hysteretic case nr =0 and if the usual expression [equation (71)] is taken
directly, it follows that

=H==b=0 =
1/v2

r

z(1− b2)2 + h2
r
bb=0

=
1/v2

r

z1+ h2
r

(79)

which is the commonly known result, although quite a strange one, as it states that
the static response depends on the value of the damping itself! As a consequence
[see Figure 4(a)], the curves do not start at the same point. This is commonly
disregarded by simply stating that the hysteretic damping model is only valid if
there is harmonic motion. However, the present approach allows for an
explanation to this apparent physical incoherence. In fact, from equation (73), it
can be observed that nr =0 and b=0 leads to the indetermination 00. This means
that the common result as in equation (79) corresponds to arbitrarily have set
00 =1, while it should be made zero to comply with the physical result that the
static response should always be the same [as in equation (78)], no matter which
value of damping there is.

It is therefore concluded that the hysteretic damping is a limit case, since for
b=0 the quantity bnr is always zero except exactly for nr =0, where an
indetermination exists, but where one can now state that it should also be zero.

It should be noted that from a pure mathematical point of view things are a
bit more complex. One is looking for a double limit, when both b and n approach
zero, limb:0,nr:0 bnr. As b and n are independent from each other, the limit is
directional, and according to the direction taken the result is different. This means
that in fact the limit does not exist. The classical approach corresponds to evaluate
limnr:0 bnr , which gives 1, and from the above discussion it is concluded that for
a meaningful physical explanation the limit should be taken as limb:0 bnr, giving
zero.

6. CONCLUSIONS

The behavior of some types of materials with respect to energy dissipation is,
sometimes, not entirely satisfied by the use of the common hysteretic or viscous
models. In this paper the authors propose a generalization of the FRF receptance
of a system, when damping terms dependent on non-integer powers of frequency
are present. The theory for the MDOF case is developed in detail, but the final
result is difficult to implement in practice. The single degree-of-freedom approach
seems to be the one with more possibilities for practical applications.

The main developments in this work concern the proof that the general FRF
expression obtained makes sense, as the Nyquist diagram, the inverse FRF
representation and the plot of the modulus of the FRF constitute natural
extensions of the typical hysteretic and viscous models, as these are just particular
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cases. The general model also allows one to explain the particular behavior of
those current damping models in a clearer fashion. It is believed that this article
may contribute to a more accurate identification of systems where damping forces
are functions of non-integer powers of the exciting frequency, although a specific
efficient identification procedure still has to be further investigated.
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APPENDIX: NOTATION

[ak ], [a'k ] system matrices
bk , ck coefficients
[B] system matrix, companion matrix
c, d viscous and hysteretic damping coefficient
gj complex coefficients
Dn derivative of order n

{f}, {f'} force vectors
{F} state space force vector
i imaginary unit
[M], [K], [C] mass, stiffness and viscous damping matrices
p, q numerator and denominator of n, in its rational form
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q* least common multiple of the several q
Re, Im real and imaginary parts
s Laplace variable
x displacement
X� complex amplitude
yk derivative of x, of order k/q*
{y} state vector
zk , pk zeros and poles
H receptance FRF
b frequency ratio
n order of fractional derivative
g general damping ratio
G Gamma function
l eigenvalue
v circular frequency
L, F Laplace and Fourier transforms


