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RECTANGULAR DUCT
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Finite amplitude acoustic waves (FAAWs) that propagate in a two-dimensional
rectangular duct of semi-infinite length as a result of periodic excitation are
determined by using second-order perturbation, based on the partial wave analysis
method. With second-harmonic boundary and initial conditions of excitation,
second-harmonic analytical expressions, which are applicable to quantitative
analysis, have been derived. In this manner, a physical mechanism of
second-harmonic generation and propagation in the process of propagation of
FAAWs is clearly displayed. Based on the formula, some numerical calculations
are performed. The numerical results clearly exhibit the distortion and symmetry
of second-harmonic field pattern for a given source of excitation.
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1. INTRODUCTION

Finite amplitude acoustic waves (FAAWs) that propagate in a duct have attracted
considerable attention due to their practical applications. For the problem of
FAAW propagation in a duct, in addition to plane wave solutions, some
multidimensional responses have already been examined theoretically by a number
of authors using a variety of approaches [1–6]. If the thickness of duct is much
less than the transverse width, for simplicity, the duct can be assumed to be
two-dimensional. Thus, the examination of FAAW propagation in a
two-dimensional rectangular duct can be of practical significance. The present
article is based on the fact that previous analyses lack the second-harmonic
analytical expressions, the physical models of second-harmonic generation and
propagation, and the second-harmonic field pattern that is required in practical
applications.

The main purpose of the present article is to study second-harmonic generation
and propagation in the process of propagation of FAAWs in a two-dimensional
rectangular duct, in which FAAWs are induced by a source of periodic excitation,
and to offer a straightforward physical model useful for the explanation of the
process of second-harmonic generation and propagation. To simplify the process
of analysis, we assume that second-harmonic generation is due to the bulk
nonlinearity of fluid in the duct, and that the fluid is irrotational, inviscid, and
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compressible, and that the waves propagate in a hard-walled uniform duct with
no mean flow. Here, we will be concerned only with second-order perturbation,
and will assume that the second-harmonic amplitude is much smaller than the
fundamental amplitude which we assume constant. Thus, the solution does not
take into account energy exchange between the fundamental and the higher
harmonics.

2. THEORETICAL FUNDAMENTALS

One of the three physical quantities, mechanical displacement vector u, particle
velocity v or scale potential f, may be employed to describe the process of acoustic
propagation in a fluid [5, 6]. There are relationships among u, v and f, i.e., v= u,t ,
v=9f. When we take second-order approximation, f can be expanded as
f=f(1) +f(2), and f(1), f(2) are scale potentials corresponding to the fundamental
and second harmonic, respectively. Two linear wave equations can be obtained
from the non-linear wave equation [5, 6],

c2
L9

2f(1) −f(1)
,tt =0 (1)

and

c2
L9

2f(2) −f(2)
,tt =F(f(1)), (2)

where F(f(1)) is the driving force caused by the fundamental f(1) due to the bulk
non-linearity of fluid, and cL is the longitudinal velocity of fluid.

A Cartesian coordinates system whose oz axis coincides with the center of a
two-dimensional rectangular duct, and its oy axis is normal to the walls of the duct
(see Figure 1) is established. According to the partial wave analysis method, each

Figure 1. Fundamental and second-harmonic acoustic fields of the nth fundamental mode in the
duct. w1 and w2 are longitudinal wave displacement vectors corresponding to f(1)

(n),1 and f(1)
(n),2; w3 , w4

and w5 driven second-harmonic displacement vectors corresponding to f(2D)
(n),L1−L1, f(2D)

(n),L1−L2 and
f(2D)

(n),L2−L2; w6 and w7 freely propagating second-harmonic displacement vectors corresponding to f(2F)
(n),1

and f(2F)
(n),2.
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acoustic propagation mode in the duct consists of two partial longitudinal waves,
which are reflected at the upper and lower walls of the duct [6, 7]. Based on the
phase matching of two partial longitudinal waves along the oz axis, two scale
potential solutions of the nth fundamental mode, which satisfy equation (1) and
correspond to two partial longitudinal waves, can be written as [1, 7]:

6f(1)
(n),1 =f(n),1 exp j(K(n),L1 · r1 −vt)

f(1)
(n),2 =f(n),2 exp j(K(n),L2 · r2 −vt)

, (3)

where the subscript (n) is used to identify a physical quantity associated with the
nth fundamental mode, K(n),L1 and K(n),L2 are wave vectors of two partial
longitudinal waves w1 and w2 (see Figure 1), and v is angular frequency associated
with excitation frequency f.

There is a boundary condition that requires that the normal components of
particle velocities at the two rigid walls, y=2d, should be zero. It follows that

[M(v)]0f(n),1

f(n),21=0. (4)

For a non-trivial solution the coefficient determinant of equation (4) must be zero,
i.e., =M(v)==0, which leads to a dispersion equation [6],

c(n) =
4cL · fd

z(4fd )2 − (ncL )2
, (5)

where c(n) is the phase velocity of the nth fundamental mode, fd is the product
between the excitation frequency and the half thickness of the duct. If the nth
fundamental mode with propagation characteristic is to be generated, the
condition of excitation frequency, fdq (ncL )/4, must be satisfied. Combining
equations (4) and (5) yields f(n),1 = (−1)nf(n),2 =f(n).

The driving force, F(f(1)
(n)), can be obtained by substituting the sum of f(1)

(n),1 and
f(1)

(n),2 into the right-hand side of equation (2) [6, 8–10]. It follows that

8F(f(1)
(n) )=F(n),L1−L1 exp[ j(K(n),L1−L1 · r1 −2vt)]

+F(n),L2−L2 exp[ j(K(n),L2−L2 · r2 −2vt)]
+F(n),L1−L2 exp[ j(K(n),L1−L2 · zẑ−2vt)]

(6)

with [5, 6]

F(n),Lp−Lp = j(g+1)vK2
Lf

2
(n),p

K(n),Lp−Lp =K(n),Lp +K(n),Lp , p=1, 2

g
G

G

G

G

G

G

F

f

F(n),L1−L2 =2jvK2
L$(g−1)+

K(n),L1 · K(n),L2

K2
L %f(n),1f(n),2

. (7)

K(n),L1−L2 =K(n),L1 +K(n),L2,
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In equations (6) and (7), ẑ is a unit vector along the oz axis, KL =v/cL the
magnitude of wave vector K(n),Lp , and g the ratio of specific heats for gas or
(1+B/A) for liquid. The driven second harmonics of the nth fundamental mode
(see Figure 1) are obtained from equations (2), (6) and (7) as [6, 10]

f(2D)
(n),Lp−Lp =

F(n),Lp−Lp

c2
L [(2KL )2 − =K(n),Lp−LP =2] exp[ j(K(n),Lp−Lp · rp −2vt)], p=1, 2 (8)

and

f(2D)
(n),L1−L2 =

F(n),L1−L2

c2
L [(2KL )2 − =K(n),L1−L2=2]

exp[ j(K(n),L1−L2 · zẑ−2vt)]. (9)

In equations (8) and (9) the superscript (2D) is used to identify the scale potentials
associated with the driving force F(f(1)

(n) ), and the subscript Lp−Lq ( p, q=1, 2)
means that a physical quantity relates to the non-linear interaction between partial
longitudinal waves p and q.

Because of the absence of dispersion of the fluid in the duct, there is a
relationship, i.e., =K(n),Lp−Lp =:2KL ( p=1, 2). From the expression of equation (8),
we obtain a conclusion, f(2D)

(n),Lp−Lp:a ( p=1, 2). There also exists the relationship
=K(n),L1−L2=:2KL as n=0. Thus, f(2D)

(0),L1−L2:a. But n=0 corresponds to plane wave
solution which has been the subject of intensive study. Therefore, in the present
article only the case ne 1 will be discussed. The amplitude of the driven second
harmonic f(2D)

(n),L1−L2 can be neglected when compared with that of f(2D)
(n),L1−L1 and

f(2D)
(n),L2−L2.
There is a boundary condition that requires that the normal components of

second-harmonic particle velocities equal zero at the two rigid walls, y=2d.
However, the boundary condition, in general, cannot be satisfied when f(2D)

(n),L1−L1

and f(2D)
(n),L2−L2 are only considered [8–10]. To satisfy this boundary condition, the

second harmonics accompanying the nth fundamental mode, i.e., the general
solution of equation (2) when the driving force F(f(1)

(n) ) is zero, must be introduced
in the duct. We call the second harmonics freely propagating since there is no
driving force. Because of the absence of dispersion of the fluid and phase matching,
along the oz axis, between the driven and freely propagating second harmonics,
we can describe freely propagating second harmonics by (see Figure 1) [9, 10]

f(2F)
(n) =f(2F)

(n),1 exp[ j(2K(n),L1 · r1 −2vt)]+f(2F)
(n),2 exp[ j(2K(n),L2 · r2 −2vt)], (10)

where the superscript (2F) is used to denote the freely propagating second
harmonic without the driving force. In fact, f(2F)

(n) occurs synchronously along with
f(2D)

(n),Lp−Lp (p=1, 2), and f(2F)
(n) · f(2D)

(n),Lp−Lp are dependent of the non-linear interaction
of partial longitudinal waves of the nth fundamental mode.

The ultimate second harmonics (including the driven and freely propagating
second harmonics) in the process of propagation of FAAWs, described by scale
potential f(2v)

(n) , are determined as a sum of f(2D)
(n) (including f(2D)

(n),L1−L1 and f(2D)
(n),L2−L2)
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and f(2F)
(n) (including f(2F)

(n),1 and f(2F)
(n),2), i.e., f(2v)

(n) =f(2D)
(n) +f(2F)

(n) . We define the variables
f(2v)

(n),p as follows (neglecting the factor exp[ j(2K(n),Lp · rp −2vt)]):

f(2v)
(n),p =f(2D)

(n),Lp−Lp +f(2F)
(n),p exp[ j(2K(n),Lp · rp −2vt)]

=6 F(n),Lp−Lp

C2
L [(2KL )2 − =K(n),Lp−Lp =2]

exp[ j(K(n),Lp−Lp −2K(n),Lp ) · rp ]+f(2F)
(n),p7

×exp[ j(2K(n),Lp · rp −2vt)], p=1, 2. (11)

On the basis of the fact that the fluid in the duct lacks dispersion, the value in
{ } of equation (11) can be considered as a constant. For simplicity we still use
f(2v)

(n),p to denote the value in { } of equation (11). From second-harmonic boundary
condition [6], we have

1[f(2v)
(n),1 +f(2v)

(n),2]
1y by=2d

=0. (12)

It follows that

[M(2v)]0f(2v)
(n),1

f(2v)
(n),21=0. (13)

Usually, the propagation mode in a duct is dispersive, i.e., there is phase
mismatch between the fundamental and second-order modes, denoted by v- and
2v-modes. For convenience we still let [M(v)] and [M(2v)] be the coefficient
matrixes of v- and 2v-modes, respectively, which are determined by the
corresponding boundary conditions. The relationship, =M(v)=0= or =M(2v)==0
determines the phase velocity of v- or 2v-mode. Although =M(v)==0, in general,
=M(2v)=$ 0. Conversely, =M(v)==0 cannot be deduced from =M(2v)==0.

However, there is an exception for the nth fundamental mode in a
two-dimensional rectangular duct. Although =M(v)==0 cannot be obtained from
=M(2v)==0, it is easy to show that =M(v)==0 can lead to =M(2v)==0. Thus
equation (13) has non-trivial solution, i.e., there does exist the solution of the
ultimate second harmonics accompanying the nth fundamental mode.

With the relationship among mechanical displacement vector, scale potential
and particle velocity, we can obtain the corresponding ultimate second-harmonic
mechanical displacement vector u(2v)

(n),p ( p=1, 2),

u(2v)
(n),p =−

1
2jv

9f(2v)
(n),p . (14)
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The second-harmonic analytical expressions in the duct can be obtained by
using the following method [9, 10]. Firstly, let us substitute equation (11) into
equation (14),

$ −F(n),Lp−Lp

(2KL + =K(n),Lp−Lp =)c2
L
+

2KLF(n),Lp−Lp

c2
L [(2KL )2 − =K(n),Lp−Lp =2]%

g
G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

J

j

u(2v)
(n),p =−

1
2v

×exp[ j(K(n),Lp−Lp −2K(n),Lp ) · rp ]

+2K(n),Lpf
(2F)
(n),p

×
K(n),Lp

KL
exp[ j(2K(n),Lp · rp −2vt)]. (15)

Further, equation (15) can be rewritten as

u(2v)
(n),p =

1
2v 8F(n),Lp−Lp

4KLc2
L $1+

2K(n),Lp

(=K(n),Lp−Lp =−2KL )%
×[1+ j(K(n),LP−Lp −2K(n),Lp ) · rp +· · · ]−2K(n),Lpf

(2F)
(n),p9

×
K(n),Lp

KL
exp[ j(2K(n),Lp · rp −2vt)]. (16)

Consider the initial condition of excitation [9, 10], i.e., the second-harmonic
amplitude equals zero at the initial position z=0. From equation (16), it is easy
to see that this condition is satisfied if we set

f(2F)
(n),p =

F(n),Lp−Lp

8K2
Lc2

L $1+
2KL

(=K(n),Lp−Lp =−2KL )%. (17)

Hence, combining equations (16) and (17) yields

u(2v)
(n),p =−

(g+1)K2
L

4c2
L

f2
(n),p [z sin u(n) + (−1)p−1y cos u(n)]

×
K(n),Lp

KL
exp[ j(2K(n),Lp · rp −2vt)]. (18)

Equation (18) shows that the ultimate second harmonic u(2v)
(n),p (p=1, 2) due to both

the bulk non-linearity of the fluid and the restriction of boundary of the duct grows
linearly with propagation distance. Because of f(n),1 =2f(n),2, there exists the
relationship =u(2v)

(n),1== =u(2v)
(n),2= at the duct walls y=2d. From equation (18), the

ultimate second harmonics (including u(2v)
(n),1 and u(2v)

(n),2) associated with the nth
fundamental mode in the duct possess the characteristic of symmetry.
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Figure 2. Second-harmonic field pattern for a given source of excitation.

3. NUMERICAL ANALYSIS

We use quantitative computation to illustrate the previous results. For
simplicity, we assume that the fluid in the duct is an ideal gas, and have the
constant values as: cL =334 m s−1, g=1·4. We assume that fd=0·3 MHz · mm
and the vibration distribution function of the source is given by f(y)=f0 cos (py/
d ), −dE yE d, z=0, so that we have f(2) =f0. From equation (5) it is easy to
find c(2) = 419·9 m s−1. We obtain the second-harmonic field pattern (relative to
f2

0c−2
L d−1) shown in Figure 2. The characteristics of distortion and symmetry in the

field pattern are clearly exhibited.

4. CONCLUSION

As described above, we have studied the propagation of FAAWs in a
two-dimensional rectangular duct with two rigid walls by applying second-order
perturbation and partial wave analysis method. The results show that the second
harmonics in the process of propagation of FAAWs arise from the bulk
non-linearity of fluid of the duct and the non-linear self-interaction of partial
longitudinal wave of fundamental mode, and that the cross-interaction between
two partial longitudinal waves does not retain second-order non-linearity (i.e., this
cross-interaction cannot induce second-harmonic growth effect). Moreover, a
second-harmonic field pattern associated with an arbitrary fundamental mode
displays characteristics of symmetry. The process of analysis of FAAW
propagation involved in this article exhibits a clearly physical mechanism, based
on the partial wave method and second-order perturbation. Furthermore, the
present results permit quantitative discussion of the physical process involved in
FAAW propagation, and lay a foundation for further study of propagation of
FAAWs in a duct.
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APPENDIX: COEFFICIENT MATRICES IN EQUATIONS (4) AND (13)

[M(v)] and [M(2v)] in equations (4) and (13) are given by

[M(v)]=0exp[ jzC−2
L −C−2 · vd]

exp[−jzC−2
L −C−2 · vd]

−exp[−jzC−2
L −C−2 · vd]

−exp[ jzC−2
L −C−2 · vd] 1

and

[M(2v)]=0exp[ jzC−2
L −C−2 · 2vd]

exp[−jzC−2
L −C−2 · 2vd]

−exp[−jzC−2
L −C−2 · 2vd]

−exp[ jzC−2
L −C−2 · 2vd] 1.


