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Cité Descartes, Champs-sur-Marne, 77455 Marne-La-Vallée Cedex 2, France

(Received 13 October 1997, and in final form 24 June 1998)

The main purpose of this article is to present a numerical method for calculating
the sound pressure around noise barriers of arbitrary geometry. Varying
impedance boundary conditions on the barrier and constant impedance on the
ground are assumed. Sound propagation over an infinite barrier with a constant
cross-section for an harmonic point source is determined by solving 2D problems
only, avoiding the computational complexity of the solution of a true 3D problem.
This can be done by using the solutions of a set of 2D models for a coherent line
source for real and imaginary wavenumbers. This extension to calculations for
imaginary wavenumbers is the main feature of the proposed method. A Fourier
transform of the 2D solutions allows a calculation of the 3D solution for a point
source. The 2D numerical solutions are obtained by a classical use of the
Boundary Element Method. Moreover, the 2D Green function for imaginary
wavenumbers in the case of a half-space bounded by a surface of uniform
impedance is developed. Finally, examples are given to estimate the accuracy of
the method and some practical cases of calculations around barriers are presented
and compared with experimental data.

1. INTRODUCTION

A usual practical problem found in outdoor noise propagation is the calculation
of the sound pressure around a noise barrier built over an absorbing ground.
Approximate values of the pressure can be given by analytical or geometrical
acoustic solutions for simple cases. However to get precise results, especially in the
case of complex geometrical shapes, one turns to numerical methods. For a
quiescent atmosphere under uniform temperature conditions, the sound
propagation is governed by the Helmholtz equation. This equation can be solved
by different means but, as the domain has an infinite extent, one of the most
popular approaches is the Boundary Element Method (BEM). For instance Seznec
[1] and Hothersall [2, 3] have solved two-dimensional diffraction problems by the
BEM for rigid barriers above a rigid plane in the former and absorbing barriers
above an impedance plane in the latter. In this case the sound pressure is supposed
to be created by a coherent line source and is calculated on a cross-section of the
barrier. These calculations give important insights into the physical phenomenon
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and allow a comparison of the efficiencies of different shapes of barriers. They do
not give, however, the full three-dimensional picture of the sound pressure around
a noise barrier.

Kawai and Terai [4] and Antes [5] have extended the calculations to
three-dimensional problems and sound pressures created by point sources above
a rigid plane. In their BEM code they discretise the two-dimensional surface of
a finite part of the barrier and solve the corresponding discrete problem. Because
of the large computational cost required by the solution of the 3D problem, the
pressure can only be reasonably calculated for low frequencies and for barriers of
small lengths. Otherwise the calculation cost becomes rapidly prohibitive. For
instance the practical case of a barrier of 20 m length diffracting the pressure
created by a point source at the frequency 1000 Hz would be very difficult to solve
with the previous methods.

To overcome this problem, a method was presented by Duhamel [6, 7] to
calculate the sound pressure created by a point source and diffracted by a barrier
of infinite length and uniform cross-section located over rigid ground. It is proved
that if the 2D spectrum for real and imaginary wavenumbers is calculated, a
Fourier transform can then provide the full three-dimensional pressure at every
point outside the barrier, not only in the plane containing the point source. The
model can be further extended to the calculation of incoherent line sources. The
purpose of this paper is to extend this method to the important practical case of
barriers built over flat ground with homogeneous impedance.

If discretisation of the ground is to be avoided for BEM calculations with
impedance grounds, the Green function must be determined. This formulation was
performed in the two-dimensional case by Hothersall et al. [2] who solved the
Helmholtz equation by the BEM for a sound pressure created by a coherent line
source above a plane with an admittance boundary condition. Contrary to a rigid
boundary condition where the Green function is simple and well known, the Green
function for an impedance boundary condition is much more difficult to calculate.

For a point source above a plane boundary with uniform impedance, an exact
solution has been given by Ingard [8], Wenzel [9] and Thomasson [10]. The solution
of Thomasson is an integral in a form suitable for numerical calculations.
Numerous approximate solutions with various degrees of accuracy were also
derived by Wenzel [9], Chien and Soroka [11, 12], Thomasson [13], Kawai et al.
[14], Nobile and Hayek [15] and Li et al. [16]. The Green function for a coherent
line source was obtained by Chandler-Wilde and Hotehersall [17] and in an
efficient form for numerical calculations in reference [18]. An approximate formula
was obtained by Li et al. [16].

These results will be used to obtain the two-dimensional solutions for coherent
line sources. Furthermore, they must be extended to obtain the solutions for
imaginary wavenumbers which are required in the proposed method. After
applying a Fourier transformation a real sound pressure in a 3D model is realized.
Thus, the sound pressure created by a point source around a barrier of constant
cross-section may be determined. This pressure can be calculated in the whole
domain outside the barrier, not only in the section containing the point source.



3

3

g

r0=(x0, y0, z0) r=(x, y, z)
z

y

x S3

Ground

     801

The paper is organized as follows. Section 2 presents the main features of the
method transforming the 2D solutions to get 3D results independently of the
numerical tool used to solve the Helmholtz equation. In section 3 a boundary
element method is formulated for solving the 2D problems. In section 4 the
two-dimensional Green function is calculated with a special emphasis on complex
wavenumbers which do not seem to have been studied before. In section 5 the 2D
to 3D transformation is tested for the case of a point source in a half-space, the
only case for which analytical results are available. Finally, in section 6 the
numerical results are compared to other computational methods and to
experimental data.

2. TRANSFORMATION FROM 2D TO 3D

The problem consists of solving the Helmholtz equation in a three-dimensional
domain exterior to a noise barrier above a ground surface with a locally reacting
homogeneous acoustic admittance. The present method is to be used for barriers
of constant cross-section, which means that the cross-section can be arbitrarily
chosen but we suppose that it does not change along its length. A typical example
is shown in Figure 1 where the T shape does not change in the y direction. Suppose
that the sound pressure is excited by a point source in the fluid domain which
generates, in free field, the pressure eiKr/(4pr) with the time dependence e−ivt

suppressed throughout, where v is the angular frequency, c the speed of sound
and K=v/c the wavenumber.

The principle of the transformation from 2D to 3D starts from the following
relation where the pressure of a 3D point source is calculated from the summation
of fields of two-dimensional sources by the Fourier transform (reference [19],
formula 6.616)

−2i
eiKzr2 + y2

zr2 + y2
=g

+a

−a

H(1)
0 (rzK2 − t2) eity dt, (1)

Figure 1. Noise barrier of constant cross-section with V3 the 3D fluid domain, G3 the barrier
surface, S3 the ground surface, bg the ground admittance, r0 the source point and r the observation
point.
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where 0E arg (zK2 − t2)Q p and r=zx2 + z2 q 0 is the radial distance in the
(x, z) plane between the observation point and the source. Multiplying both sides
of the equality by i/8p, the left hand side becomes eiKzr2 + y2/4pzr2 + y2 the
sound pressure due to a 3D point source while the right hand side appears as the
Fourier transform of i/4H(1)

0 (rzK2 − t2), the sound pressure due to a line source
with wavenumber zK2 − t2 which can take imaginary values. For imaginary
values of the variable and uq 0, i/4H(1)

0 (iu)=1/2pK0(u) where K0 is the modified
Bessel function of zero order. Relation (1) for point sources in free field will be
extended to solutions of diffraction problems and the solutions of 3D problems
will be calculated as Fourier transforms of solutions to 2D problems.

To take into account the diffraction by the barrier and the reflection on the
ground the pressure, p, is the solution to the following problem:

Dp+K2p=−d(r− r0) in V3, (2)

1p
1n

+iKbsp=0 on G3, (3)

1p
1z

+iKbgp=0 on S3, (4)

1p
1r

−iKp= o01r1, (5)

p= o01r1. (6)

Here p is the complex amplitude of the pressure, K=v/c is the wavenumber, r0

is the position of the point source of sound, r=(x, y, z) with zq 0 as the
observation point and V3 is the 3D domain outside the barrier. Relation (3) is the
boundary condition on the barrier of surface G3 with a surface admittance bs which
is a function of the boundary point, relation (4) is the boundary condition on the
ground of surface S3 with a constant admittance bg and relations (5) and (6) are
the Sommerfeld radiation conditions at infinity. According to the limiting
absorption principle [20], the solution is also the limit when n:0 of solutions of
problem (2–6) for complex wavenumbers K	 such that K	 2 =K2 + in.

As a consequence of the invariance of the geometry in the y direction one can
take the Fourier transform of the pressure in the y variable. With an explicit
dependence on the admittances bs and bg and noting ky the variable in the
wavenumber domain, this is given by

p̂(x, ky , z, bs , bg )=g
+a

−a

p(x, y, z, bs , bg ) eikyy dy. (7)
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Figure 2. 2D problem on a cross-section with V2 the 2D fluid domain, G2 the barrier surface, S2

the ground surface, bg the ground admittance, r0 the source point and r the observation point.

From the 3D problem satisfied by the pressure p it can easily be shown that the
Fourier transform p̂ is the solution of the following problem:

Dp̂+(K2 − k2
y )p̂=−eikyy0d(x− x0)d(z− z0) in V2, (8)

1p̂
1n

+iKbsp̂=0 on G2, (9)

1p̂
1z

+iKbgp̂=0 on S2. (10)

The problem is now posed on a 2D cross-section only with the corresponding
boundaries and boundary conditions on the solution (see Figure 2). This 2D
problem consists of finding the pressure at (x, z) created by a line source at the
position (x0, z0) around a cross-section of the barrier. The only difference with the
usual problem is that the wavenumber k=zK2 − k2

y can take imaginary values
when K2 − k2

y Q 0.
This problem will be related to the solution of the following set of classical 2D

problems.

Dq+ k2q=−d(x− x0)d(x− z0) in V2, (11)

1q
1n

+ikbsq=0 on G2, (12)

1q
1z

+ikbgq=0 on S2, (13)

1q
1r

−ikq= o0 1

zr1, (14)

q= o0 1

zr1. (15)

where k is a real number or a purely imaginary number with a positive imaginary
part. For real wavenumbers k this is a classical problem with impedance boundary
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conditions. For complex wavenumbers k such that Im (k)q 0 the problem has a
unique solution because the frequencies for which the problem (11–15) does not
possess a unique solution are known to belong to the lower part of the complex
plane where Im (k)Q 0 [20]. When k is complex with Im (k)q 0 the solution is
in fact exponentially decreasing for large r. In the following section a numerical
method based on the Boundary Element Method will be extended for imaginary
wavenumbers. The solution of the problem (11–15) at the observation point (x, z)
for the complex wavenumber k and the normalized admittances bs and bg on the
barrier and on the ground, respectively, will be noted by q(x, k, z, bs , bg ) in the
following.

The comparison of formulae (8–10) with (11–15) shows that the Fourier
transform solution p̂ of the 3D problem can be expressed with respect to the
previous 2D problem. We are now in a position to formulate the solution of the
original 3D problem, equations (2–6). Suppose that the previous problem (11–15)
has been solved for k in the interval [0, K] and along the imaginary axis, the
solution of the 3D problem, equations (2–6), may be recovered by the following
formula which is essentially an inverse Fourier transform,

p(x, y, z)=
1
2p g

+a

−a

q(x, zK2 − k2
y , z, bs /z1− k2

y /K2, bg /z1− k2
y /K2)

×e−iky (y− y0) dky . (16)

where the square root is taken with the conditions

Re (z1− k2
y /K2)e 0, Im (z1− k2

y /K2)e 0.

When K2 − k2
y is positive the 2D solution is calculated for the real wavenumber

k=zK2 − k2
y , whereas when K2 − k2

y is negative the solution is calculated for the
imaginary wavenumber k=izk2

y −K2. More precisely one must calculate for real
wavenumbers in the interval [0, K] and on the imaginary axis. In the latter case
the solution is exponentially decreasing as a function of ky , so only a limited range
is needed.

To estimate the number of calculations, observe that the 2D solution for real
wavenumbers oscillates approximately like eikr where r is the distance between the
source and the receiver. This fact can be explained by calculating the incident
pressure i/4H(1)

0 (kr) or the scattered pressure in far field. Le rmax be the maximum
distance of interest. The oscillations of the function are well estimated by taking
five points per period. This means that the sound pressure must be calculated for
wavenumbers in the interval [0, K] with a spacing between two successive
wavenumbers of order

Dk=
2p

5rmax
. (17)
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Here the maximum number of calculations required for a 3D solution at a
frequency v is, in the real frequency domain

n=
v

Dv
=

k
Dk

=5
rmax

l
. (18)

With approximately an equal number of points for the imaginary wavenumbers,
the number of frequency points is approximately

nf =10
rmax

l
. (19)

So a calculation for a larger distance requires a denser frequency sampling.
One must notice another point concerning the number of 2D solutions required

to calculated the 3D sound pressure for several frequencies. When the boundaries
are rigid, we calculate the 2D solutions for real and imaginary wavenumbers and
from this set of solutions it is possible to obtain the 3D sound pressure for different
frequencies [6, 7]. For the admittance boundary condition, the number of
calculations is larger. To obtain the sound pressure for the wavenumber K, the
2D solutions q(x, zK2 − k2

y , z, bs /z1− k2
y /K2, bg /z1− k2

y /K2) are required. But
this set of solutions cannot be used for another wavenumber K'$K. On the
contrary another full set of 2D solutions q(x, zK'2 − k2

y , z, bs /z1− k2
y /K'2, bg /

z1− k2
y /K'2) is necessary.

This method makes possible three-dimensional calculations for medium and
high frequencies. Notice that the previous expressions do not make assumptions
on the method for solving the boundary value problem. Hence, analytical
techniques may be used. The following section describes a numerical method for
solving the Helmholtz equation.

3. NUMERICAL SOLUTION OF 2D PROBLEMS

To complete the analysis we need a numerical method to solve the 2D problem
(11–15) for any cross-section. The classical boundary element method is used here.
The sound pressure satisfies the following boundary integral equation

c(x)q(x)= qinc (x)+g1V

q(y)
1G
1ny

(y, x) dy−g1V

1q
1ny

(y)G(y, x) dy (20)

and taking account of the boundary condition on the barrier this yields

c(x)q(x)= qinc (x)+g1V

q(y) 01G
1ny

(y, x)+ ikbs (y)G(y, x)1 dy, (21)

where c(x)= u(x)/2p on the boundary and u is the angle inside the fluid domain
of the two tangents at point x (see Figure 3). This coefficient can also be calculated
by the formula

c(x)=1+g1V

1g0

1ny
(y, x) dy, (22)
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where g0 is the Green function solution of Dyg0(y, x)=−d(y− x) in the upper
half-space with a rigid boundary condition on the ground and is given by

g0(y, x)=−
1
2p

log (R)−
1
2p

log (R'). (23)

The distances are defined as R= =x− y= and R'= =x− y'= where y is the source
point, y' is the image source with respect to the ground and x is the observation
point.

The Green function with admittance boundary condition G is given in the next
section. qinc is the incident pressure created by sources in the half-space without
barrier. In case of a unit point source at point x0, its value is given by

qinc (x)=G(x, x0). (24)

For the numerical solution of equation (20) we divide the boundary into a
number of quadratic elements (with three nodes) for better precision. The integral
on the boundary is divided into N elements by

c(x)q(x)= qinc (x)+ s
N

i=1 gGi

q(y)01G
1ny

(y, x)+ ikbs (y)G(y, x)1 dy. (25)

In each element the pressure is interpolated by

q(j)= q1N1(j)+ q2N2(j)+ q3N3(j), (26)

where the qi are the nodal values of the pressure inside the element, j is the local
variable defined on the interval [−1, 1] and Ni are the interpolation functions given
below

N1(j)=
j

2
(j−1), N2(j)=1− j2, N3(j)=

j

2
(1+ j). (27)

Figure 3. 2D domain of arbitrary section with x the collocation point, y the source point, n the
normal at y and u the angle in the fluid domain at point x.
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Then the following integrals

g
1

−1 01G
1ny

(y(j), x)+ ikbs (y(j))G(y(j), x)1=y'(j)=Nj (j) dj (28)

are evaluated numerically by Gauss integration with three points for elements far
from the collocation point and seven points on the singular element. In this latter
case a change of variable j:j2 in the vicinity of the collocation point is used to
cancel the logarithmic singularity.

Writing relation (25) for the nodal points, one obtains a linear system. The
solution of this system gives the pressure at the nodal points. For other boundary
points the pressure is calculated by formula (26) and for points inside the fluid
domain by formula (20).

4. 2D GREEN FUNCTIONS

Now the expression for the Green function in a half-space with an admittance
boundary condition must be determined. This function G(r, r0) gives the pressure
at point r created by a line source at point r0. For real wavenumbers it is the
solution of the following mathematical problem

DG(r, r0)+ k2G(r, r0)=−d(r− r0), (29)

1G
1z

(r, r0)+ ikbgG(r, r0)=0 on S2, (30)

1G
1n

(r, r0)− ikG(r, r0)= o0 1

zr1, (31)

G(r, r0)= o0 1

zr1. (32)

It is traditional to write this Green function as

G(r, r0)=G0(r, r0)+P(r, r0), (33)

where G0 is the solution for a rigid boundary condition given by

G0(r, r0)=
i
4

H(1)
0 (kR)+

i
4

H(1)
0 (kR'), (34)

where H(1)
0 is the Hankel function. The function P(r, r0) is the corrective term

coming from the admittance boundary condition. Some comments on the
evaluation of this function can be found in Appendix A.

The case of finding P for an imaginary wavenumber (ik) can be found by
analytic continuation of P in (56). Writing the Green function as the Green



.   . 808

function with rigid boundary condition plus a correction term as in relation (33),
this term is the solution of

DP(r, r0)− k2P(r, r0)=0, (35)

1P
1z

(r, r0)− kbgP(r, r0)=
kbg

p
K0(k=r− r0=) on S2, (36)

P(r, r0)= o0 1

zr1. (37)

where K0 is the modified Bessel function of order zero through the relation
i/4H(1)

0 (iku)=1/2pK0(ku).
Taking the Fourier transform of P in the variable x, this yields

P
 (kx , z, x0, z0)=g
+a

−a

P(x, z, x0, z0) eikxx dx. (38)

This function is the solution of

d2P
dz2 − (k2 + k2

x )P
 =0,

dP

dz

(kx , 0, x0, z0)− kbgP
 (kx , 0, x0, z0)=
kbg

p g
+a

−a

K0(kz(x− x0)2 + z2
0 ) eikxx dx,

=
kbg

zk2 + k2
x

eikxx0 e−z0zk2 + k2
x. (39)

The last relation comes from Gradshteyn formula (6.677) (reference [19], number
5, p. 736). Taking the inverse Fourier transform and making the change of
variable kx = ks one gets

P(x, z, x0, z0)=−
bg

2p g
+a

−a

ek[−(z+ z0)z1+ s2 + is(x0 − x)]

z1+ s2(bg +z1+ s2)
ds. (40)

For a better computational efficiency this expression is transformed by

P(x, z, x0, z0)=−
bg

p g
+a

0

e−k(z+ z0)z1+ s2 cos (ks(x− x0))

z1+ s2(bg +z1+ s2)
ds

=−
bg

p g
+a

1

e−k(z+ z0)t cos (k(x− x0)zt2 −1)

zt2 −1(bg + t)
dt

=−
bg

p
e−k(z+ z0) g

+a

0

e−k(z+ z0)u
h(u)

zu
du, (41)
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with

h(u)=
cos (k(x− x0)zu(u+2))

zu+2(bg +1+ u)
. (42)

When a= k(z+ z0)q 0, the expression (41) can be calculated by Gauss–
Laguerre numerical integration which is especially adapted to the weight 1/zu.
The implemented formula is

P(x, z, x0, z0)=−
bg

p

e−a

za g
+a

0

e−vh(v/a)

zv
dv, (43)

with 10 points of integration. When k(x+ z0) equals zero or takes a small value,
one can still integrate numerically the formula (41) but with less efficiency by
subdividing the integral over [0, 1] and [1, a]. The latter is calculated by the
change of variable u:1/u and a Gauss-formula on [0, 1].

In the BEM method one also needs the derivative of the Green function.
Taking the formula (40) and differentiating under the integral, this yields

1P
1x

(x, z, x0, z0)=
ikbg

2p g
+a

−a

s
ek[−(z+ z0)z1+ s2 + is(x0 − x)]

z1+ s2(bg +z1+ s2)
ds. (44)

Transformations similar to (41) yield

1P
1x

(x, z, x0, z0)= sign (x− x0)
kbg

p

e−a

a g
+a

0

e−vg(v/a) dv, (45)

with

g(v)=
sin (kvx− x0vzv(v+2))

bg +1+ v
. (46)

The exponential term allows a numerical integration by techniques similar to that
used for formula (43). The derivative with respect to z is given by

1P
1z

(x, z, x0, z0)=−
bg

2p g
+a

−a

− kz1+ s2 ek[−(z+ z0)z1+ s2 + is(x0 − x)]

z1+ s2(bg +z1+ s2)
ds

=
bgk
2p g

+a

−a

ek[−(z+ z0)z1+ s2 + is(x0 − x)]

z1+ s2
ds

+kbg6−bg

2p g
+a

−a

ek[−(z+ z0)z1+ s2 + is(x0 − x)]

z1+ s2(bg +z1+ s2)7 ds

=
bgk
p

K0(r)+ kbgP(x, z, x0, z0), (47)

with r= kR'.
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It is to be noticed that the values of P and its derivatives are exponentially
decreasing with k(z+ z0). So the corrective term P is essentially limited to a surface
wave near the ground.

5. TEST FOR A POINT SOURCE IN A HALF-SPACE

The method is tested for a point source in a half-space without barrier because
the 3D sound pressure can be calculated analytically. The 2D pressure is obtained
for real and imaginary wavenumbers from the formulae (33), (56) and (40). Then
the 3D pressure obtained by formula (16) is compared to the analytical solution
for a point source over an impedance plane. An expression for the solution was
obtained Thomasson [10] who derived the formula given in Appendix B. The
purpose of this example is to test the accuracy of the method in this simple case.
It is not intended to be competitive to the Thomasson solution in calculation cost
for the half-space without barrier.

Figure 4. Source and reception points.

T 1

Source and reception points

x(m) y(m) z(m)

r0 0 0 0·5
R1 0·1 0 0·5
R2 10 10 2
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Figure 5. ––, 3D solution point 1; +++, 2D to 3D transform point 1; - - - , 3D solution point
2; ×××, 2D to 3D transform point 2.

The source and reception points are shown in Figure 4. The source position has
been chosen at 50 cm high with the co-ordinates given in Table 1. Two reception
points were chosen where the pressure has been calculated over the frequency band
[0, 2000 Hz]. The co-ordinates of these points are given in Table 1. The point R1

Figure 6. Phase of the presure at point 2. ––, 3D solution; +++, 2D to 3D transform
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Figure 7. Transformation of 2D solutions calculated for F=500 Hz (sound level). ––, 3D
solution; +++, 2D to 3D transform.

is very close to the source while the point R2 is further and not in the x–z plan.
The normalized admittance bg is given by the Delany and Bazley [21] formula

1
bg

=1+9·0801000f
s 1

−0·75

+11·9i01000f
s 1

−0·73

, (48)

Figure 8. Transformation of 2D solutions calculated for F=500 Hz (phase of the pressure). ––,
3D solution; +++, 2D to 3D transform.
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Figure 9. Scale model geometry.

Figure 10. Comparison with reference [12] (Figure 5c) results. ––, Ray method; - - - ,
measurement; . . . , BEM result.

Figure 11. Source and receiver points.

where f is the frequency in Hertz and s the flow resistance in SI unit. For these
examples the flow resistance s is equal to 300×103 Ns/m4 which is a usual value
for a grass surface. The sound speed is c=345 m/s.
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For every 3D frequency F the two-dimensional solutions q have been calculated
for discrete 2D frequencies f in the interval [0, F] and in the imaginary interval
[0, 2000 ( i] with a 5-Hz step between two frequency points. Then the 2D to 3D
transformation was calculated by formula (16). The 2D solution was constructed
by quadratic interpolation from the precedent discrete values. Further details on
numerical aspects can be found in references [6, 7].

In Figures 5 and 6 are presented the sound level and the phase of the pressure
for the points R1 and R2 calculated by the 2D to 3D transformation and the
pressure obtained from the 3D solution (59). In each case the two solutions are
very close. At point R1 the pressure is high and the phase has low oscillations
because of the proximity of the sound source. At point R2 the large distance
creates strong oscillations in the phase but the comparison is still very good. To
avoid an overcomplicated figure at this point the phase is only presented in the
frequency range [1000 Hz, 1500 Hz]. It was observed that the modulus and the
phase of the pressure are calculated accurately.

The main difference between a rigid and an impedance boundary is the need for
a new set of 2D calculations for each 3D frequency. One can ask however if a 2D
solution set calculated for a 3D frequency can be used for neighbouring 3D
frequencies. To test this hypothesis a calculation of the 2D solutions set
corresponding to the 3D frequency 500 Hz was made, then this set was used to
build the 3D pressure over the frequency band [300 Hz, 700 Hz]. The results are
presented in Figures 7 and 8 for the point R2. The phase of the pressure seems
correctly evaluated over a large frequency range. On the contrary the modulus is
well estimated on a small frequency range. Consequently it seems better to
recalculate the 2D solution set for each 3D frequency.

Figure 12. Angle 45°. ––, Ray method; - - - , measurement; . . . , BEM result.
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Figure 13. Cross-section of the barrier.

6. EXPERIMENTAL AND NUMERICAL RESULTS

6.1.  

First, the results are compared to the numerical and scale model experiments
presented by Isei et al. [22]. The geometry is shown in Figure 9 and consists of
a rigid barrier on an impedance ground with ss =300 000 Ns/m4. The excess
attenuation, defined as the sound level with barrier relative to the sound level in
free space, is presented in Figure 10. Our results are similar to both the
measurements and the anlytical results obtained by a ray method.

Then, another comparison is made in the case of a rigid ground for the angle
of incidence 45°. The source and the receiver are now separated by a distance of
2 m with the barrier symmetrically located between them (see Figure 11). Figure
12 gives the excess attenuation and comparisons are made with measurement
results and ray calculations taken from Figure 9 of reference [22]. The present
results compare favourably with those of reference [22]. However, the present
results are not as accurate as the ray method in this case since for simple geometry
the ray method does provide very accurate results. For practical applications the
method presented here should be used for complex shapes where multiple
reflections occurs. In such cases the ray method may be less accurate [23].

Figure 14. Measurement points.
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Figure 15. Difference between measurement and calculus at 125 Hz.

Figure 16. Difference between measurement and calculus at 250 Hz.

Figure 17. Difference between measurement and calculus at 500 Hz.

Figure 18. Difference between measurement and calculus at 1000 Hz.

6.2.   

To estimate the ability of these calculations to evaluate real sound pressures,
an experiment was also conducted outdoors in the vicinity of a noise barrier. The
barrier had uniform cross-section and was located between two fields in a quiet
zone. The ground was of the same type on both sides of the barrier and consisted
of earth without vegetation. The wall was made of stones binded with mortar and
considered as rigid in the calculation. Although this is only an approximation,
some calculations with impedance boundary conditions have shown that this effect
was much less important than the ground properties. The cross-section is shown
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T 2

Average error e in dB

125 Hz 250 Hz 500 Hz 1000 Hz

Rigid ground 1·0 4·8 3·7 4·5
s=100 000 Ns/m4 0·7 1·3 1·4 1·2

in Figure 13 and the origin of the co-ordinates is placed at the right bottom of
the barrier.

The signal created by a signal generator, is then amplified by a 350-W power
amplifier and finally sent to the sound source which is a loudspeaker located at
point (−7·12, 0, 0·3). It is approximated by a point source with no directivity.
Measurements were made for harmonic noise at octave center frequencies.

The sound pressure is measured at 30 points in the shadow zone. These points
are shown in Figure 14. The furthest point is 42 m from the barrier and the nearest
is 2 m. All points are at the same level z=1·65 m above the ground. The sound
level is measured with a Larson Davis microphone linked to a spectral analyzer.
The sound level at the frequencies of interest was obtained in dB for each
measurement point.

Sound pressure measurements in a half-space far from the barrier allowed a
calculation for s=100 000 Ns/m4 as the best estimate for the ground parameter
of the Delany and Bazley model. The numerical results are calculated using the
2D BEM with this value for s and with an inter-node spacing of l/10 to all precise
solutions. Then the 2D to 3D transformation gives the three-dimensional sound

Figure 19. Sound level along x. ––, s=100×103; – – – , s=500×103; - - - , s=1000×103; . . . ,
s=1000×103; – · –, s=a.
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Figure 20. As Figure 19 but along y.

pressure. As the source amplitude is not known, the numerical results were first
calculated for a unit point source only allowing an estimate of the relative sound
level between two points. To be able to compare the calculated and measurement
results, one has to shift the calculated values by a global sound level constant for
each point. This constant, denoted Lg , is selected to minimize the error between
the BEM model and the experimental results which is defined by

E= s
i=30

i=1

[Lcal (i)+Lg −Lmes (i)]2, (49)

where Lmes (i) is the measured sound level at point i and Lcal (i) is the value
calculated for a unit source. As there is only a single degree of freedom through
the parameter Lg to estimate the sound level at 30 points, it is expected that the
different errors will lead to Eq 0. The minimal value of E after selection of the
optimal Lg can provide an estimate of the quality of the model and of the
experimental errors.

Measurements were made for harmonic sound pressures at frequencies 125, 250,
500 and 1000 Hz and at the points shown in Figure 14. Results are presented in
Figures 15–18 where the difference between calculated and measured sound
pressure are given at every point for the four frequencies. The measurement errors
are of the order of 1 dB except at a few points where errors increase slightly. These
errors come from atmospheric effects, errors in source and measurement point
positions, the insufficiencies in the Delany and Bazley model, the non-homogenei-
ties in the ground and the directivity of the source, amongst others.
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To estimate the improvement brought by the impedance model over the rigid
boundary condition, the averaged is calculated by the formula

e=
1
30

s
i=30

i=1

\ Lcal(i)+Lg −Lmes(i) \ . (50)

Here Lcal (i)+Lg is the calculated value after shifting of the global level by Lg and
Lmes is the measured sound level. Two series of calculations are made. The first one
is for s=100 000 Ns/m4 and the second one for a rigid ground. In each case a
different value of Lg is selected as the one which minimizes the value of E given by
formula (49). The results are presented in Table 2. The model with a rigid ground
leads to an error of about 4 dB while taking into account the impedance boundary
condition reduces this error to less than 1·5 dB.

Finally, to compare the rigid and impedance grounds, the soundpressure has been
calculated for the frequency 500 Hz along the x-axis for the points (x, 0, 1·65) with
1E xE 200 and along y for the points (22, y, 1·65) with 0E yE 200. The sound
level at point (2, 0, 1·65) is taken equal to the measured value for s=100×103.
Figures 19 and 20 show the results along x and y, respectively. The impedance of
the ground has a limited effect near the barrier but is very important for long range
propagation. This is mainly true in the y direction where the sound pressure
decreases very slowly for rigid ground.

7. CONCLUSION

A method is presented for calculating the sound pressure around noise barriers
with uniform cross-section. The calculations give modulus and phase of the
pressure solution of the three-dimensional Helmholtz equation with a point source
excitation. It is able to take into account an impedance boundary condition on
the groun and on the barrier. Comparisons with experimental data have shown
an agreement with calculated values with an error of order 1·5 dB. Comparisons
with ray methods for simple geometries show that the ray method gives accurate
results in such cases. The method presented here should be used for complex
shapes for which the ray method may be less accurate.
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APPENDIX A: CORRECTIVE TERM IN THE GREEN FUNCTION

The Green function with an admittance boundary condition on the ground is
written as

G(r, r0)=G0(r, r0)+P(r, r0). (A1)
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The corrective term P(r, r0) is the solution

DP(r, r0)+ k2P(r, r0)=0, (A2)

1P
1z

(r, r0)+ ikbgP(r, r0)=
kbg

2
H(1)

0 (kR) on S2, (A3)

1P
1n

(r, r0)− ikP(r, r0)= o0 1

zr1, (A4)

P(r, r0)= o0 1

zr1. (A5)

P can be calculated by taking a Fourier transform along x, solving the
differential equation in the variable z satisfied by the Fourier transform and then
taking the inverse Fourier transform. Details can be found in reference [18] and
only the final expressions are given here. P is calculated by

P(r, r0)=−
ibg

2p g
+a

−a

eik((z+ z0)z1− s2 − (x− x0)s)

z1− s2(z1− s2 + bg )
ds. (A6)

The precedent formula is not well adapted to numerical integrations because of
the rapid oscillations in the integrand. Chandler-Wilde and Hothersall [18] proved
that P can be more efficiently calculated by the following formula

P(r, r0)=−
bg eir

p g
+a

0

e−rt

zt
g(t) dt−

bg eir(1− a+)

2z1− b2
g

erfc (e−ip/4zrza+), (A7)

where

g(t)= f(t)− e−ip/4za+/{2z1− b2
g(t−ia+)},

f(t)=−
(bg + g(1+ it))

zt−2i(t2 −2i(1+ bgg)t−(bg + g)2)
,

a+ =1+ bgg−z1− b2
g z1− g2,

g=(z+ z0)/R',

r= kR',

Re{za+}, Re{z1− b2
g }, Re{zt−2i}e 0, (A8)
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and erfc is the complementary error function. It is proved that g(t) is regular in
Im (t)Q 1 so the integration of g can be evaluated numerically.

APPENDIX B: POINT SOURCE ABOVE AN IMPEDANCE PLANE

Thomasson [10] obtained the following formulae for the sound pressure of a
point source above an impedance plane

G(r, r0)=
eiKR

4pR
+

eiKR'

4pR'
−P, (B1)

P=6PSD +PB
PSD

when
else

Re (a+)Q 0 and Im (bg )Q 0
, (B2)

where

PB =
Kbg

2
H(1)

0 [KR(1− b2
g )1/2] e−iK(z+ z0)bg , (B3)

PSD =
Kbg

2p
eiKR'I, (B4)

I=g
+a

0

e−KR't

W1/2(t)
dt, (B5)

and

W(t)= [cos (u0)+ bg ]2 +2it[1+cos (u0)bg ]− t2,

t1 =−Im (bg )[Re (bg )+ cos (u0)]/[1+cos (u0) Re (bg )],

a+ =1+ bg cos (u0)− (1− b2
g )1/2 sin (u0),

cos (u0)= (z+ z0)/R',
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sin (u0)= ((x− x0)2 + (y− y0)2)1/2/R',

Re {(1− b2
g )1/2}q 0,

Re (W1/2)6Q0
q0

when
else

Re (a+)Q 0, Im (bg )Q 0 and tq t1. (B6)


