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An Integral Representation Formulation (IRF) has been developed to solve
some one-dimensional problems: acoustic problems in pipes, longitudinal and
transverse vibrations of pipes, including mean flow effects. The fluid–structure
interaction is analyzed in the case of a straight pipe. The fundamental solutions
and the set of equations governing problems are determined in each case. To
demonstrate the efficiency and the simplicity of the use of the IRF method for
one-dimensional problems, examples are presented.
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1. INTRODUCTION

Various methods have been used for dynamic analysis. Such methods are: the
Modal Method (MM) using the Finite Element Method (FEM), the Transfer
Matrix Method (TMM), the Integral Representation Formulation (IRF).

When the frequency domain analysis contains a large number of modes, the use
of the FEM is not appropriate and the numerical determination of modes contains
many errors.

The Transfer Matrix Method (TMM) is often used for one-dimensional acoustic
problems. For one-dimensional problems of beam structures, the TMM is not
frequently used; since the analytical solutions are complicated.

The IRF is very often used for three-dimensional problems dealing with an
infinite space or half-space: acoustic problems, seismic analysis of underground
structures. In this case, the method requires only the discretization of the surface
of the domain under consideration.

The IRF method is easily used for one-dimensional problems due to the
existence of the fundamental solutions and the fact that the boundary of a domain
is a point and so no discretization is required. In fact the IRF only requires the
discretization of the one-dimensional element under consideration, regardless of
the frequency range of analysis.

In this present work, an integral representation formulation for some
one-dimensional problems is proposed: , an acoustic problem: a comparison will
be made with the transfer matrix method; , a beam structure problem: a
comparison will be made with the modal method; , a fluid–structure interaction
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problem: considered here is the fluid–structure interaction taking into account the
mean flow effects. Two cases are analysed: the longitudinal motion of a pipe with
a restriction of the flow area and the transverse motion of a pipe with a fluid
characterised by the mean flow velocity and the mean pressure.

For each problem, the system is modelled by using a frequency-domain integral
representation formulation based on the fundamental solutions for each
one-dimensional problem. In such a way, the set of equations governing each
problem is determined. In order to show the simplicity and the efficiency of the
IRF method for one-dimensional problems, examples are carried out and
compared with other available methods.

2. GOVERNING EQUATIONS

2.1.  ,    

In the case of zero mean flow, continuity across the interface between fluid and
structure requires that the positive normal velocity of the fluid equals the
displacement rate of the solid in that same direction. Similarly, equilibrium
necessitates that the fluid pressure is balanced by the normal surface traction on
the contact surface. For flexible pipeline systems the junction coupling (restriction
of the fluid area or elbow . . .) is mostly the predominant type of coupling [1–3].
Only the restriction of the fluid area case is considered here.

For harmonic analysis, the governing lateral and longitudinal vibration
equations of a straight elastic pipe can be written, for localised forces as follows
[1, 2, 4]:

for harmonic analysis and longitudinal motion of the pipe:

EAt
12Ux

1x2 + rtAtv
2Ux −Fx (v)d(x− x1)− p(DAf )d(x− x3)=0; (1a)

for harmonic analysis and lateral motion of the pipe:

EIy
14Uz

1x4 +Af (DP+ rfV�)
12Uz

1x2 +2rfAfV�iv
1Uz

1x

−v2(rtAt + rfAf )Uz +Fz (v)d(x− x2)=0, (1b)

or

14Uz

1x4 + b2 12Uz

1x2 +2ivg2 1Uz

1x
− l4

0Uz +
Fz

EIy
d(x− x2)=0,

with

b2 =
Af (DP+ rfV�)

EIy
; g2 =

rfAfV�
EIy

; l4
0 =v2 (rtAt + rfAf )

EIy
,

where Ux (v) and Uz (v) are respectively the Fourier transforms of longitudinal and
lateral displacement of the pipe, x is the longitudinal co-ordinate, ( y, z) are the
lateral co-ordinates, v is the frequency, Af is the cross-sectional discharge area,
At is the cross-sectional pipe wall area, DAf is the local restriction of the
cross-sectional discharge area, E is the Young’s modulus, Iy is the y-moment of
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inertia, DP is the pressure drop in the pipe, V� is the fluid velocity, rf is the fluid
density, rt is the pipe wall density, x1 and x2 are respectively the position of the
localised forces Fx and Fz and finally x3 is the position of the restriction of the
cross-sectional discharge area.

2.2.  ,    

For one-dimensional flow, with velocity V� in the x direction, and by introducing
small perturbations into the governing equations (momentum and mass equations
for inviscid and isotropic flow) and by combining the total time derivative of the
momentum equation and the divergence of the mass equation, one obtains the
following Fourier transformed equation [2, 5]:

0 12

1x 1x
+ k2

p +2iv
V�
c2

1

1x
−

V�2

c2

12

1x 1x1p−
v2rf

Af
(DAf )Uxd(x− x3)=0, (1c)

where kp =v/c is the acoustic wave number. In equation (1c), it is assumed that
the fluid has attained a steady flow characterised by the mean velocity V� and speed
of sound squared c2 along with zero body forces. The field quantities V� and c2 are
assumed to be constant within a given region of the fluid domain. If one permits
the mean flow velocity to vary within a region of space, then an equation formally
similar to (1c) is obtained. However, the expression becomes more cumbersome
[4]. Note that for zero mean flow velocity and in the absence of body forces, this
becomes the classical Helmholtz equation.

3. INTEGRAL REPRESENTATION

The use of the integral formulation for periodic processes in acoustics have a
long history beginning with the work of Helmholtz [6]. For three-dimensional
domain problems, the fundamental solution can be derived by utilising a triple
exponential Fourier transform [7]. For an elastic solid, an integral formulation can
be derived in a manner similar to that utilized for an acoustical fluid (see for
example reference [8]).

For one-dimensional fluid–structure interaction problems, the following
development is proposed.

3.1.   ,    

For equation (1c), an integral representation can be developed in a
straightforward manner. First multiply (1c) by an arbitrary function G	 p and
integrate over the length of the pipe. For zero body forces, one obtains:

g
L

0

Af0 12

1x 1x
+ k2

p +2iv
V�
c2

1

1x
−M2 12

1x 1x1pG	 p dx

−g
L

0

v2rf

Af
(DAf )Uxd(x− x3)G	 p dx=0, (2)
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where M is the Mach number; M=V�/c.
Then after using integration by parts on the various terms in equation (2) to

transfer derivatives from p to G	 p , the following integral equation is produced:

g
L

0 0(1−M2)
12G	 p

1x2 + k2
pG	 p −2iv

V�
c2

1G	 p

1x 1p dx

+$(1−M2)01p
1x

G	 p −
1G	 p

1x
p1+2iv

V�
c2 G	 pp%

L

0

−
v2rf

Af
(DAf )Ux (x3)G	 p (x3)=0. (3)

By selecting G	 p to be related to the fundamental solution of the adjoint
convective Helmholtz operator:

(1−M2)
12G	 p

1x2 + k2
pG	 p −2iv

V�
c2

1G	 p

1x
=−d(x− x0), (4)

equation (3) simplifies to the form:

$(1−M2)01p
1x

G	 p −
1G	 p

1x
p1+2iv

V�
c2 G	 pp%

L

0

−
v2rf

Af
(DAf )Ux (x3)G	 p (x3)= p(x0),

(5)

where x0 represents a point on [0, L] and p(x0) is the fluctuated pressure at x= x0.
Equation (5) is applied for x0 =0 (then G	 p 0G	 0

p ) and x0 =L (then G	 p 0G	 L
p ), one

obtains:

−Fp (G	 0
p (0)); {−(1−M2)(G	 0

p (0))}; Fp (G	 0
p (L)); {(1−M2)(G	 0

p (L))}G
K

k
G
L

l−Fp (G	 0
p (0)); {−(1−M2)(G	 0

p (0))}; Fp (G	 0
p (L)); {(1−M2)(G	 0

p (L))}

p(0)

1p(0)
1x

v2rf

Af
(DAf )Ux (x3)G	 0

p (x3) p(0)

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

×
p(L)

−
v2rf

Af
(DAf )Ux (x3)G	 L

p (x3)
=

p(L)
, (6)

1p(L)
1x

where

Fp (G	 p )=6−(1−M2)01G	 p

1x 1+2iv
V�
c2 G	 p7 . (7)
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Using the development of Appendix A, the fundamental function G	 p is written as:

G	 x0
p (x)=

el1(x− x0)

2k0
for (x− x0)e 0,

G	 x0
p (x)=

el2(x− x0)

2kp
for (x− x0)E 0, (8)

where

l1 =−i(kp /1+M); l2 = i(kp /1−M).

3.2.   ,    

For elastic pipes, an integral formulation can be derived in a manner similar
to that utilized for fluid domain. First multiply equation (1a) by an arbitrary
function G	 x , multiply (1b) by an arbitrary function G	 z and integrate over the length
of the pipe, one obtains:

g
L

0 $EAt
12Ux

1x2 + rtAtv
2Ux −Fx (v)d(x− x1)− p(DAf )d(x− x3)%G	 x dx=0, (9a)

g
L

0 $1
4Uz

1x4 + b2 12Uz

1x2 +2ivg2 1Uz

1x
− l4

0Uz +
Fz

EIy
d(x− x2)%G	 z dx=0. (9b)

Then after using integration by parts on the various terms in equations (9) to
transfer derivatives from displacements to fundamental functions, the following
integral equations are produced:

g
L

0 $EAt
12G	 x

1x2 + rtAtv
2G	 x%Ux dx+$EAt01Ux

1x
G	 x −

1G	 x

1x
Ux1%

L

0

−Fx (v)G	 x (x1)− p(x3)(DAf )G	 x (x3)=0, (10a)

g
L

0 $1
4G	 z

1x4 + b2 12G	 z

1x2 −2ivg2 1G	 z

1x
− l4

0G	 z%Uz dx

+$013Uz

1x3 G	 z −
13G	 z

1x3 Uz −
12Uz

1x2

1G	 z

1x
+

12G	 z

1x2

1Uz

1x 1%
L

0

+$b201Uz

1x
G	 z −

1G	 z

1x
Uz1%

L

0

+
Fz

EIy
G	 z (x2)=0. (10b)

By selecting G	 x and G	 z to be related to the fundamental solutions of the
corresponding adjoint operator (see Appendix A), equations (10) simplify to the
form:

$EAt01Ux

1x
G	 x −

1G	 x

1x
Ux1%

L

0

−Fx (v)G	 x (x1)− p(x3)(DAf )G	 x (x3)=Ux (x0), (11a)
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$013Uz

1x3 G	 z −
13G	 z

1x3 Uz −
12Uz

1x2

1G	 z

1x
+

12G	 z

1x2

1Uz

1x 1%
L

0

+$b201Uz

1x
G	 z −

1G	 z

1x
Uz1%

L

0

+
Fz

EIy
G	 z (x2)=−

Uz (x0)
EIy

, (11b)

where x0 represents a point on [0, L]. By taking the x0 derivative of equation (11b)
(1(eq. (11b)/1x0), one obtains:

$0−
13Uz

1x3

1G	 z

1x
+

14G	 z

1x4 Uz +
12Uz

1x2

12G	 z

1x2 −
13G	 z

1x3

1Uz

1x 1%
L

0

+$b20−
1Uz

1x
1G	 z

1x
+

12G	 z

1x2 Uz1%
L

0

−
Fz

EIy

1G	 z

1x
(x2)=−

1
EIy

1Uz

1x
(x0). (12)

Note:

1G	 z

1x0
=−

1G	 z

1x
;

1[Uz (x0)]
1x0

=
1[Uz (x)]

1x
(x0).

Equations (11) and (12) are applied for x0 =0 (then G	 x 0G	 0
x and G	 z 0G	 0

z ) and
x0 =L (then G	 x 0G	 L

x and G	 x 0G	 L
z ), giving

EAt
1G	 0

x

1x
(0)−1; −EAt (G	 0

x (0); −EAt
1G	 0

x

1x
(L); EAtG	 0

x (L) L

G
G

G

K

k
G
G

G

L

lEAt
1G	 L

x

1x
(0); −EAtG	 L

x (0); −EAt
1G	 L

x

1x
(L)−1; EAtG	 L

x (L) 0

Ux (0)

1Ux

1x
(0) p(x3)DAfG	 0

x (x3) Fx (v)G	 0
x (x1)

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
K

k
G
L

l
G
K

k
G
L

l
×

Ux (L)
−

p(x3)DAfG	 L
x (x3)

=
Fx (v)G	 L

x (x1)
,

(13a)

1Ux

1x
(L)

{[M1]+ b2[M2} · [q]= [F]. (13b)

Matrices [M1], [M2] and vectors [q], [F] are defined in Appendix B.
Using the development of Appendix A, the fundamental solution G	 x for

longitudinal motion is written as

G	 x =
elx =x− x0=

2EA1lx
; lx =ivXr

E
(14)
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and the fundamental solution G	 z for transverse motion is written as:

G	 z =
1

2EIy $ elz1(x− x0)

lz1(l2
1 − l2

z3)
−

elz3(x− x0)

lz3(l2
z1 − l2

z3)% for x− x0 E 0,

G	 z =
1

2EIy $ e−lz1(x− x0)

lz1(l2
z1 − l2

z3)
−

e−lz3(x− x0)

lz3(l2
z1 − l2

z3)% for x− x0 e 0, (15)

where

lz1 = i
z2
2

z2zb4 + l4
0 + b2; lz2 =−lz1,

lz3 =
z2
2

z2zb4 + l4
0 − b2; lz4 =−lz3.

4. NUMERICAL IMPLEMENTATION

The numerical implementation is classical, it uses a multi-pipe part approach.
It consists of writing the difference equations that arise from the assembly of the
elements of the pipe and the natural imposition of the boundary conditions. The
IRF discretization results in matrices that are non-symmetric and complex valued.
To solve efficiently the coupled system of equations arising from the IRF, the
Gauss elimination with partial pivoting can be used without any problem. The
numerical implementation of the IRF is similar to that used by the Transfer Matrix
Method.

5. NUMERICAL APPLICATIONS

The following numerical applications will be used only to demonstrate the high
accuracy, efficiency and the easy use of the IRF for the one-dimensional problems,
especially the fluid–structure problem in pipes.

Three numerical examples are presented in this section to illustrate the use of
the IRF.

5.1. -   

Consider as a first example, a uniform pipe of length L with pressure nodes at
each end, as shown in Figure 1. The pipe is submitted to a Dirac pressure applied
at the pipe’s middle.

Using the IRF method, the modulus of the response function 1p/1x(0) versus
the wave number kp is plotted in Figure 2(a), for a Dirac pressure localised at
x=L/2 and for various values of Mach number M. The IRF and the Transfer
Matrix Method (TMM) response are plotted in Figure 2(b). The frequency range
considered contains the first three natural frequencies.
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Figure 1. Pipe submitted to Dirac pressure.

The IRF Solution is written as follows:

1p
1x

(0)=
G	 L

p (L)G	 0
p (L/2)−G	 0

p (L)G	 L
p (L/2)

(1−M2)[−G	 0
p (0)G	 L

p (L)+G	 0
p (L)G	 L

p (0)]
.

Figure 2(a) shows the effect of the Mach number on the natural frequencies and
on the response of the pipe. When the Mach number increases the natural
frequencies decrease. The comparison between the IRF and the TMM in
Figure 2(b) shows a very good agreement between the two methods.

Figure 2. (a) 1p/1x(0), for localised Dirac pressure in x=L/2, for various values of Mach number:
——, M=0·0; ---, M=0·1; –––, M=0·5. (b) Comparison of the IRF and the Transfer Matrix
Method (TTM): ----, IRF; –––, TMM.
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Figure 3. (a) Longitudinal vibration of the pipe. (b) Comparison of the IRF and the Model
Methods (MM): ----, IRF; –––, Modal.

5.2.     

Consider a pipe of length L and uniform cross-section At , as shown in
Figure 3(a). The pipe is stretched by a Dirac longitudinal force applied at x=L/2.
Both ends of the pipe are fixed. Figure 3(b) gives the normal stress resultant N(0),
at x=0, as a function of longitudinal wave number kx =vzrt /E.

The modal solution for N(0) is:

N(0)= s
a

p=0

2(2p+1)p

L2$0(2p+1)p
L 1

2

− k2
x%

.

The IRF Solution is:

N(0)=

G	 0
x0L21

G	 0
x (L)+G	 0

x (0)
.

The comparison of the IRF and the modal method (MM) in Figure 3(b) shows
a very good agreement between the two methods.
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Figure 4. (a) Transverse vibration of a pipe. (b) Comparison of the IRF and the model methods;
b=0: ----, Modal; –––, IRF. (c) Effects of permanent velocity on the pipe response: b=0·00; ----,
IRF; b=0·20; –––, IRF. (d) Effects of permanent velocity on the pipe response: ----, b=0·00;
· · ·, b=0·10; -–-, b=0·15; –––, b=0·20.
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5.3.         

Let a pipe of length L and uniform cross-section At be as shown in Figure 4(a).
The pipe is stretched by a Dirac transverse force applied at x=L/2. The flow in
the pipe is characterised by a permanent flow parameter b. Both ends of the pipe
are fixed.

Using the symmetry of the structure:

EIy
d2Uz (0)

dx2 =EIy
d2Uz (L)

dx2 ; EIy
d3Uz (0)

dx3 =−EIy
d3Uz (L)

dx3

and the boundary conditions:

Uz (0)=Uz (L)=0;
dUz (0)

dx
=

dUz (L)
dx

the moment Mf (0) can be determined.
Figure 4(b) gives the flexural moment Mf (0), at x=0, as a function of the

‘‘transverse wave number’’ kz =vz(rtAt + rfAf )/EIy.
The comparison of the IRF and the MM in Figure 4(b) for b=0 shows a very

good agreement between the two methods. Figures 4(c) and (d) show the effect
of the mean flow parameter b on the natural frequencies and on the response of
the pipe. When the parameter b increases the natural frequencies decrease.

6. CONCLUSIONS

The set of equations governing the vibration of the fluid–pipe system was
formulated. An integral formulation was derived and the fundamental solutions
were determined for: an acoustic medium in a pipe, including mean flow effects;
a longitudinal vibration of a bar; a transverse vibration of a pipe, including mean
flow effects; a longitudinal fluid–structure interaction in pipes with a severe
restriction.

The numerical implementation is classical. It uses a multi-pipe approach.
However, with a proper numerical calculation, very precise solutions can be
obtained, as demonstrated in the numerical examples of section 5.

The use of the IRF to solve fluid–pipe problems is characterized by high
accuracy and efficiency and can easily take into account interaction phenomena.

This can be used as the appropriate tool for studying the dynamic behavior of
mechanical systems for one-dimensional problems.
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APPENDIX A: FUNDAMENTAL SOLUTIONS

A.1.  

For the acoustic problem, the fundamental function G	 p is the solution of the
following equation:

(1−M2)
12G	 p

1x2 + k2
pG	 p −2iv

V�
c2

1G	 p

1x
=−d(x− x0).

The function G	 p can be written as:

G	 p +A elp1(x− x0) +B elp2(x− x0).

l1 and l2 are solutions of:

(1−M2)l2 + k2
p −2iv

V�
c2 l=0.

One finds:

lp1 =−i
kp

1+M
; lp2 = i

kp

1−M
.

Using the continuity of G	 p and the discontinuity of (1−M2) dG	 p /dx at x= x0,
the fundamental function G	 p is written as:

G	 x0
p (x)=

elp1(x− x0)

2kp
for (x− x0)e 0

G	 x0
p (x)=

elp2(x− x0)

2kp
for (x− x0)E 0

A.2.     

For equation (1a) and for zero localized forces, the characteristic polynomial
is written:

EAtl
2 + rAtv

2 =0.
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One finds:

2lx =2ivXr

E
.

The fundamental function G	 x is the solution of the following equation:

EAt
12G	 x

1x2 + rfAtv
2G	 x =−d(x− x0).

The fundamental solution G	 x is written:

6G	 x =A1 elx (x− x0)

G	 x =A2 e−lx (x− x0)

for x− x0 E 0
for x− x0 e 0

.

Using the continuity of G	 x and the discontinuity of EAt (1G	 x /1x) at x= x0, the
function G	 x is written as:

G	 x =
elx =x− x0=

2EAtlx
.

A.3.     

For equation (1b), for zero force fz and by neglecting the damping term, the
characteristic polynomial is written:

l4 + b2l2 − l4
0 =0

where:

b2 =
Af (DP+ rfV�2)

EIy
; l4

0 =
v2(rtAt + rfAf )

EIy
.

One finds:

lz1 = i
z2
2

z2zb4 + l4
0 + b2; lz2 =−lz1,

lz3 =
z2
2

z2zb4 + l4
0 − b2; lz4 =−lz3.

The fundamental function G	 z is the solution of the following equation:

14G	 z

1x4 + b2 12G	 z

1x2 +2ivg2 1G	 z

1x
− l4

0G	 z =
1

EIy
d(x− x0).

The transverse fundamental solution G	 z is:

6G	 z =A1 elz1(x− x0) +A3 elz3(x− x0)

G	 z =A2 elz2(x− x0) +A4 elz4(x− x0)

for x− x0 E 0
for x− x0 e 0
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Using the continuity of (G	 z , (1G	 z/1x)(12G	 z /1x2)) and the discontinuity of
13G	 z /1x3 at x= x0, the function G	 z is written as:

G	 z =
1

2EIy $ elz1(x− x0)

lz1(l2
1 − l2

z3)
−

elz3(x− x0)

lz3(l2
z1 − l2

z3)% for x− x0 E 0,

G	 z =
1

2EIy $ e−lz1(x− x0)

lz1(l2
z1 − l2

z3)
−

e−lz3(x− x0)

lz3(l2
z1 − l2

z3)% for x− x0 e 0.

APPENDIX B

K L
G G013G	 0

z

1x3 (0)−
1

EIy
; −

12G	 0
z

1x2 (0);
1G	 2

z

1x
(0); −G	 0

z (0);
G G
G G
G G

−
13G	 0

z

1x3 (L);
12G	 0

z

1x2 (L); −
1G	 0

z

1x
(L); G	 0

z (L)1G G
G G
G G
G G013G	 L

z

1x3 (0); −
12G	 L

z

1x2 (0);
1G	 L

z

1x
(0); −G	 L

z (0); −
13G	 L

z

1x3 (L)−
1

EIy
;

G G
G G
G G12G	 L

z

1x2 (L); −
1G	 L

z

1x
(L); G	 L

z (L)1G G
G G
G G
G G

[M1]=

0−14G	 0
z

1x4 (0);
13G	 0

z

1x3 (0)−
1

EIy
; −

12G	 0
z

1x2 (0);
1G	 0

z

1x
(0);

14G	 0
z

1x4 (L);

,

G G
G G
G G

−
13G	 0

z

1x3 (L);
12G	 0

z

1x2 (L); −
1G	 0

z

1x
(L)1G G

G G
G G
G G0−14G	 L

z

1x4 (0);
13G	 L

z

1x3 (0); −
12G	 L

z

1x2 (0);
1G	 L

z

1x
(0);

14GL
z

1x4 (L);
G G
G G
G G

−
13G	 L

z

1x3 (L)−
1

EIy
;
12G	 L

z

1x2 (L); −
1G	 L

z

1x
(L)1G G

k l
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K L
G G01G	 0

z

1x
(0)−1; −G	 0

z (0); 0; 0; −
1G	 0

z

1x
(L); G	 0

z (L); 0; 0;1G G
G G
G G01G	 L

z

1x
(0); −G	 L

z (0); 0; 0; −
1G	 L

z

1x
(L)−1; G	 L

z (L); 0; 0;1G G
G G
G G
G G

[M2]=

0−12G	 0
z

1x2 (0);
1G	 0

z

1x
(0)−1; 0; 0;

12G	 0
z

1x2 (L); −
1G	 0

z

1x
(L); 0; 0;1

,

G G
G G
G G0−12G	 L

z

1x2 (0);
1G	 L

z

1x
(0); 0; 0;

12G	 L
z

1x2 (L); −
1G	 L

z

1x
(L)−1; 0; 0;1G G

k l

[q]T =$Uz (0);
1Uz

1x
(0);

12Uz

1x2 (0);
13Uz

1x3 (0); Uz (L);
1Uz

1x
(L);

12Uz

1x2 (L);
13Uz

1x3 (L)% ,

[F]T =$F	 (v)G	 0
z (x2)

EIy
;
F	 (v)G	 L

z (x2)
EIy

; −
F	 (v)
EIy

1G	 0
z (x2)
1x

; −
F	 (v)
EIy

1G	 L
z (x2)
1x % .

APPENDIX C: NOMENCLATURE

Af cross-sectional discharge area
c speed of sound in the fluid
G	 p fundamental solution of the adjoint convective Helmholtz operator
G	 z fundamental solution of the transverse motion operator
kp =v/c acoustic wave number
kz transverse wave number
Mf flexural moment
N normal stress resultant
Ux (v) the Fourier transform of the pipe’s longitudinal displacement
V� mean velocity of fluid
x1 position of the localised force Fx

x3 position of the restriction of the cross-sectional discharge area
DP pressure drop in the pipe
rf fluid density
DAf local restriction of the cross-sectional discharge area
At cross-sectional pipe wall area
E Young’s modulus
G	 x fundamental solution of the longitudinal motion operator
Iy the y-moment of inertia
kx longitudinal wave number
L length of the pipe
M=V�/c Mach number
p(x0) fluctuated pressure at x0

Uz (v) the Fourier transform of the pipe’s transverse displacement
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x0 a point on [0, L]
x2 position of the localised force Fz

(x, y, z) the longitudinal and the two lateral co-ordinates
v frequency
rt pipe wall density


