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In this investigation a systematic analytic procedure for the dynamic analysis
and response of thin shallow shells with a rectangular layout is presented. The shell
types examined are the elliptic and hyperbolic paraboloid, the hypar, the conoidal
parabolic and the soap-bubble shell, although in principle any shell geometry
expressed by a continuous surface equation can be treated. The eigenvalue
problem solution is based on the one hand on the consideration of the shell as
a system of two interdependant plates whose boundary conditions comply with
the prevailing bending and membrane boundary conditions of the shell, and on
the other hand on the consistent use of beam eigenfunctions, in the context of a
Galerkin solution procedure. The series solution obtained in this way converges
rapidly and provides practically acceptable results even in cases with one or more
free edges, where the boundary conditions cannot be strictly satisfied. The whole
analysis is carried out on the basis of a few non-dimensionalized geometrical
parameters, which are the only input required for the computer program specially
written for that purpose.
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1. INTRODUCTION

It is a recognized fact that the development of analytical methods for the
evaluation of the dynamic behaviour of shallow shells for civil engineering
applications, as for example shell roofs, has fallen well behind in comparison to
their static analysis. The static analysis of shallow shells was originally initiated
by Marguerre [1] and then taken over mainly by Vlasov [2]. In reference [3] one
can find a brief layout of the main developments in this direction until the advent
of the finite element era. Vlasov [2] has condensed the two equations of equilibrium
of Marguerre, established in terms of the deflection function and a stress potential,
by introducing a mixed potential which enabled him to present a single differential
equation of eighth degree. On the basis of that equation he obtained also an exact
solution for the eigenfrequencies for simply supported shells of rectangular base
in the form of an elliptic, as well as of a hyperbolic paraboloid.

For the next two decades the analytical research on the dynamic problem of
shells was mainly confined to close structural forms for the needs of the aerospace
industry. It is well understandable that the development of the discretization
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methods together with the increased computer facilities has directed the main bulk
of the engineering research towards a refinement of those methods either in
discretizing the proper structural domain (finite elements, finite strips) or more
recently in discretizing the boundary itself (boundary elements).

However, for the direct insight into the physical behaviour of a structure the
analytical treatment has always been the most appropriate one. It was Leissa [4]
who first provided an invaluable report on analytical treatment of the dynamic
behaviour of shells. Moreover Leissa in reference [5] re-examined the dynamic
problem of doubly curved shallow shells with boundary conditions other than
simply supported. This is accomplished by using the Ritz method through
minimization of the maximum total energy and for the first time a practical
solution for cantilevered shallow shells of rectangular planform is given, with
obtained frequencies very close to the exact values. This method is also applied
by the same author in reference [6] to the investigation of the above type of shells
considered in completely free form.

Undoubtedly the most powerful formulation for the analytical investigation of
the dynamic behaviour of shallow shells has been the introduction by Lim and
Liew of the so called pb-2 method [7], which was initially introduced very
successfully by Liew, for the dynamic analysis of plates. This very efficient and
highly accurate method is carried through a Ritz procedure, as it was done by
Leissa, but with the special feature of the use of the so-called pb-2 shape function.
This function consists of the product of (1) a complete set of two-dimensional
orthogonal polynomial functions and (2) a basic function formed from the product
of the equations of the boundaries, each raised to an appropriate power.

It is exactly these characteristics which enable the application of the pb-2
method to a broad range of boundary conditions on the one hand, and to various
geometric configurations of the planform and of the shell itself on the other, as
demonstrated by Liew and Lim in a sequence of papers [8–11]. However the
majority of the listed papers deal with doubly curved shallow shells of rectangular
planform.

In this investigation a systematic procedure is presented for the evaluation of
the eigenvalues and eigenforms, as well as of the dynamic response of shallow
shells over a rectangular base with various boundary conditions. The shells may
have theoretically any geometry, but for practical purposes of civil engineering
interest the elliptical or hyperbolic paraboloid, hypar, conoidal and soap-bubble
forms are investigated. The analysis is based on the analytical treatment of the
Marguerre equations with the inertia term added, which leads to the concept of
two interconnected plate equations, each with its appropriate boundary
conditions. The two plates are treated simultaneously through a Galerkin
procedure on the basis of complete sets of beam eigenfunctions satisfying
accurately, wherever possible, the corresponding boundary conditions. The
procedure enables the evaluation of the dynamic characteristics of a shell on the
basis of only a few non-dimensionalized parameters concerning the geometry of
the structure, requiring at most 50 unknown coefficients, instead of the
significantly more required by the pb-2 method. The results of the proposed
method for some boundary conditions involving free edges can have an
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approximate character, but nevertheless they satisfy in a proper manner the
requirements of preliminary design purposes.

2. GOVERNING EQUATIONS

A thin shallow shell of constant thickness h made of a homogeneous, isotropic,
linearly elastic material is considered. The projection of the shell on the xy plane
is a rectangle with dimensions a, b. The equation of the middle surface of the shell,
referred to a system of orthogonal axes (x, y, z) may be expressed as

z= z(x, y). (1)

The shell is subjected to distributed transverse forces p(x, y, t) varying with time.
It is assumed that its resulting deformation is within the limits of validity of the
theory of small deformation.

A shell is characterized as shallow if any infinitesimal line element of its middle
surface may be approximated by the length of its projection on the xy plane. This
implies that

01z
1x1

2

�1 01z
1y1

2

�1 01z
1z101z

1y1�1. (2)

Moreover, the lateral boundary of a shallow shell may be approximated by its
projection on the xy plane in regard with its boundary conditions.

According to Vlasov [2] the above conditions are practically satisfied for shells
with a rise-to-span ratio less than 1/5.

The equations of the Marguerre theory of thin shallow shells [1] after the
addition of the inertia term, may be expressed as

94w(x, y, t)=
12(1− n2)

Eh3 $L(f)− rh
12w
1t2 + p(x, y, t)% , (3)

94f(x, y, t)=−EhL(w), (4)

where w is the transverse component of displacement (deflection) of the middle
surface of the shell, f is the stress function, n is the Poisson’s ratio, r is the density
and h is the thickness of the shell. Moreover, the operators 94 and L are defined
as

94( )0
14( )
1x4 +2

14( )
1x2 1y2 +

14( )
1y4 , (5)

L( )0
12z
1y2

12( )
1x2 −2

12z
1x 1y

12( )
1x 1y

+
12z
1x2

12( )
1y2 . (6)
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The stress resultants per unit length of shell section, may be obtained from the
stress function f and the deflection w on the basis of the following relations:

Membrane stress resultants

Nx =
12f

1y2 Ny =
12f

1x2 Nxy =−
12f

1x 1y
. (7)

Bending stress resultants

Mx =
Eh3

12(1− n2) 012w
1x2 + n

12w
1y21 My =

Eh3

12(1− n2) 012w
1y2 + n

12w
1x21

Mxy =
Eh3

12(1+ n)
12w

1x 1y
, (8)

Qx =
Eh3

12(1− n2) 013w
1x3 +

13w
1x 1y21 Qy =

Eh3

12(1− n2) 013w
1y3 +

13w
1x2 1y1 . (9)

In the above expressions Nx , Ny and Nxy are the normal force in the x and y
directions and the tangential shear force, respectively, whereas Mx , My and Mxy

are the bending moments about the y and x axes and the twisting moment,
respectively. Qx and Qy are the respective shearing forces of the shell.

3. BOUNDARY CONDITIONS

The boundary conditions which have to be satisfied from the resulting stress
resultants and the components of displacement are the following [3]:

Membrane boundary conditions

(a) either Ns =−
12f

1s 1n
=0 or us =0 (10a)

and

(b) either Nn =
12f

1s2 =0 or un =0. (10b)

Bending boundary conditions

(a) either Ms =
Eh3

12(1− n2) 012w
1n2 + n

12w
1s21=0 or

1w
1n

=0 (11a)

and

(b) either Qeff =Q+
1Mn

1s
=

Eh3

12(1− n2) $13w
1n3 + (2− n)

13w
1n 1s2%=0

or w=0.

(11b)
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In the above relations u represents the horizontal components of displacement of
a point of the middle surface and the co-ordinates s and n as applied to stress
resultants or components of displacements, are tangential and normal to the
boundary of the shell, respectively. The boundary conditions of practical interest
are:

Membrane boundary condition

(SM ): us =0, Nn =0,

(CM ): us =0, un =0,

(FM ): Ns =0, Nn =0. (12)

Bending boundary conditions

(SB ): w=0, Ms =0

(CB ): w=0,
1w
1n

=0

(FB ): Ms =0, Qeff =Q+
1Mn

1s
=0. (13)

The above basic boundary conditions can be satisfied by the following boundary
conditions applied on w and f ([3]).
Membrane boundary conditions (conditions on f)

(SM ): f=0,
12f

1n2 =0, (14)

(CM ):
82f

1n2 =0,
13f

1n3 =0. (15)

The above conditions satisfy the membrane type of support (CM ) only on
boundaries for which the shell curvature normal to their direction is zero and also
by assuming the Poisson’s ratio equal to zero.

(FM ): f=0,
1f

1n
=0. (16)

Bending boundary conditions (conditions on w)

(SB ): w=0,
12w
1n2 =0, (17)

(CB ): w=0,
1w
1n

=0, (18)

(FB ):
12w
1n2 =0,

13w
1n3 =0. (19)

This case can be satisfied by the above conditions only approximately. It should
not be applied on two adjacent edges. The Poisson’s ratio is assumed equal to zero.
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However, the present investigation is limited to shells each of whose edges is
supported in one of the following ways: simply supported: (SB , SM ) or (SB , CM ) or
(SB , FM ); fixed against rotation: (CB , SM ) or (CB , CM ) or (CB , FM ); free: (FB , FM ).

4. THE EIGENVALUE PROBLEM

It is assumed that p(x, y, t)=0 and further, through separation of the time
variable, that:

w(x, y, t)=Wi (x, y) ( T(t), f(x, y, t)=Fi (x, y) ( T(t) (20, 21)

Substituting in equations (3) and (4) the following equations can be obtained

Eh3

12(1− n2)
94Wi −L(Fi )

rhWi
=

d2T/dt2

T
, (22)

94Fi +EhL(Wi )=0. (23)

From equation (22) it can be deduced that both its members must be equal to a
constant −v2

i . Then the following equations are obtained:

94Wi (x, y)= qw (x, y), 94Fi (x, y)= qf (x, y), (24, 25)

where

qw (x, y)=
12(1− n2)

Eh3 [L(Fi )+ rhv2
i Wi (x, y)] (26)

and

qf (x, y)=−EhL(Wi ). (27)

vi represents the ith eigenfrequency of the shell corresponding to the respective
eigenform Wi (x, y).

Equations (24) and (25) represent the bending of two plates with the same
dimensions as the shell base, each with its own boundary conditions, namely those
examined in the previous paragraph, which are called bending and membrane
plates, respectively.

It is seen that each solution v2
i , Wi (x, y), fi (x, y) of the eigenvalue problem has

to satisfy the following two conditions: (a) the deflections of the bending plate
under the loading qw (x, y) have to be identical with the eigenfunction Wi (x, y);
(b) the deflections of the membrane plate under the loading qf (x, y) have to be
identical with the eigenfunction Fi (x, y).

5. METHOD OF SOLUTION

Using the principle of the Galerkin method of procedure, an approximate
solution Wmn

i (j, h) and Fmn
i (j, h) of equations (24) and (25) of the following form

is postulated.

Wmn
i (j, h)= h s

m

r=1

s
n

s=1

CW(i)
rs Fr (j)Gs (h), (28)
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Fmn
i (j, h)=Eh3 s

m

r=1

s
n

s=1

CF(i)
rs fr (j)gs (h), (29)

where the non-dimensional co-ordinates j and h are defined as

j=
x
a

, h=
y
b
. (30)

In expressions (28) and (29), CW(i)
rs and CF(i)

rs (r=1, 2, 3, . . . , m), (s=1, 2, 3, . . . , n)
are unknown coefficients. The functions Fr (j), Gs (h) and fr (j), gs (h) are beam
eigenfunctions. Thus, if the beam functions Fr and Gs satisfy the bending boundary
conditions for the ‘‘bending plate’’ and the beam functions fr and gs satisfy the
membrane boundary conditions for the ‘‘membrane plate’’, then the approximate
solution (28) and (29) converges to the exact solution as the respective number m
and n of terms retained in the series expansions increases. The beam functions are
defined as follows:

Fr (j)= kjr sinh (arj)+ ljr cosh (arj)+mjr sin (arj)+ njr cos (arj),

Gs (h)= khs sinh (bsh)+ lhs cosh (bsh)+mhs sin (bsh)+ nhs cos (bsh) (31)

and

fr (j)= k�jr sinh (arj)+ l�jr cosh (arj)+ m̄jr sin (arj)+ n̄jr cos (arj),

gs (h)= k�hs sinh (bsh)+ l�hs cosh (bsh)+ m̄hs sin (bsh)+ n̄hs cos (bsh). (32)

For any given set of boundary conditions at two opposite edges of a shell, the
corresponding parameters in the above expressions can be established from Tables
1 and 2.

When the Galerkin method is applied to equations (24) and (25), the following
2mn equations are obtained

g
1

0 g
1

0

[9�4Wmn
i − q̄w (j, h)]Fp (j)Gq (h) dj dh=0, (33)

g
1

0 g
1

0

[9�4Fmn
i − q̄f (j, h)]fp (j)gq (h) dj dh=0, (34)

with

q̄w (j, h)=
12(1− n2)

Eh3 [L�(Fi )+ rhv2
i Wi ] (35)

and

q̄f (j, h)=−EhL�(Wi ), (36)
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where the modified operators 9�4 and L� are defined as:

9�4( )0
1
a4

14( )
1j4 +

2
a2b2

14( )
1j2 1h2 +

1
b4

14( )
1h4 (37)

L�( )0
1

a2b2 $12z
1h2

12( )
1j2 −2

12z
1j 1h

12( )
1j 1h

+
12z
1j2

12( )
1h2 % (38)

Substitution of the expressions (28) and (29) into the first part of equations (33)
and (34) respectively, yields:

h s
m

r=1

s
n

s=1

Cw
rs W$a4

r0ba1
2

+ b4
s0ab1

2

%dF
rpd

G
sq +2F(r, p)G(s, q)w

=
12(1− n2)

Eh3 a2b2 g
1

0 g
1

0

L�(Fi )Fp (j)Gq (h) dj dh+
12(1− n2)

Eh3 a2b2

×g
1

0 g
1

0

rhv2
i Wi (j, h)Fp (j)Gq (h) dj dh, (39)

Eh3 s
m

r=1

s
n

s=1

CF
rsW$ā4

r0ba1
2

+ b�4
s0ab1

2

%df
rpd

g
sq +2f(r, p)g(s, q)w

=−Eh3a2b2 g
1

0 g
1

0

L�(Wi )fp (j)gq (h) dj dh, (40)

where

dF
rp =g

1

0

Fr (j)Fp (j) dj dG
sq =g

1

0

Gs (h)Gq (h) dh, (41)

and

F(r, p)=g
1

0

F0r (j)Fp (j) dj G(s, q)=g
1

0

G0s (h)Gq (h) dh. (42)

The expressions df
rp , dg

sq and f(r, p), g(s, q) in equation (40) are defined from the
expressions (41) and (42) by interchanging F and G with f and g, respectively.

The right hand side of equations (39) and (40) depends on the geometry of the
shell, on account of the operator L�.
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A fairly general coverage of shell geometries is possible when it is assumed that

12z
1j2 =X1(j)+Y1(h)+X� 1(j) · Y� 1(h)+K11,

12z
1j 1h

=X2(j)+Y2(h)+X� 2(j) · Y� 2(h)+K12,

12z
1h2 =X3(j)+Y3(h)+X� 3(j) · Y� 3(h)+K22. (43)

The analytical treatment of this geometrical formulation can be followed in
reference [3].

Figure 1. Types of shells. j= x/a; h= y/b.
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However, in this investigation only five types of shells which are common in the
civil engineering applications are considered, as Figure 1 shows. In this respect it
is convenient to introduce the following non-dimensionalized parameters.

g=
a
b
, e=

ab
h2 , l1 =

f1

a
, l2 =

f2

b
, l=

Df
a

. (44)

The parameters g and e are referred to as the aspect ratio and ‘‘thinness
parameter’’, respectively, while the parameters l1, l2, and l are referred to as the
‘‘shallowness parameters’’ of the shell.

The above parameters have to comply with the geometric restrictions introduced
for shallow shells, so they are limited by the ‘‘shallowness’’ and ‘‘thinness’’
requirements i.e., the ratio of maximum rise to span length on the one side and
the ratio of the thickness to the minimum radius of curvature on the other side,
must be less than 1/5 and 1/20, respectively. The permissible ranges of these
parameters appear in Table 3.

Substitution of the expressions (28) and (29), as well as the respective curvatures
and twist 12z/1x2, 12z/1y2, 12z/1x 1y for the shells considered in terms of the above
non-dimensionalized geometric parameters into the right hand side of equations
(39) and (40), leads to the following matrix formulation:

$[TW]− kv2
i [I]

[TW
0 ]

[TF
0 ]

[TF]%6{CW}(i)

{CF}(i)7=6{0}
{0}7 . (45)

In the above relations, {CW}(i) and {CF}(i) are (mn×1) matrices whose elements are
the coefficients CW,(i)

rs and CF,(i)
rs , respectively. The subscripts r and s of the coefficient

of the jth row of these matrices are equal to the elements of the jth row of the
(mn×2) matrix [z] defined as

1 1

1 2

( (
1 n

2 1
2 2

( (
[z]=

2 n
. (46)

( (
( (
m 1

m 2

( (
m n

Matrix [I] is the unit diagonal matrix of order mn×mn.

K
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
k

L
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
l



        873

T 3

Ranges of geometric parameters

Type Shallowness restriction Thinness restriction

Elliptic paraboloid l1 + (l2/g)Q 0·20 zogq 160l1

and
zo/gq 160l2

Hyperbolic paraboloid max (l1, l2)Q 0·20 zogq 160l1

and
zo/gq 160l2

Hypar lQ 0·20 zo/gq 20/l
Conoidal parabolic l1 + l2 Q 0·20 zogq 160(l1 + l)
Soap-bubble lQ 0·20 zogq 160l

The matrices [Tw] and [TF] are obtained from the left side of equations (39) and
(40), respectively, and are independant of the shell type. Their elements of the ith
row and jth column are:

TW(i, j)=
1

12(1− n2) 6$a4
r0ba1

2

+ b4
s0ab1

2

% dF
rpd

G
sq +2F(r, p)G(s, q)7 , (47)

TF(i, j)=6$ā4
r0ba1

2

+ b�4
s0ab1

2

% df
rpd

g
sq +2f(r, p)g(s, q)7 , (48)

where

r= z(j, 1), s= z(j, 2), p= z(i, 1), q= z(i, 2). (49)

The matrices [Tw
0 ] and [TF

0 ] are obtained from the right side of equations (33)
and (34) and they depend on the shell geometry. Their elements of the ith row and
jth column are:

(1) Elliptic/hyperbolic paraboloid

TW
0 (i, j)=−8$20l2Xo

g1F2(r, p)G0(s, q)+ (l1zog)F0(r, p)G2(s, q)% , (50)

TF
0 (i, j)=8$20l2Xo

g1f2(r, p)g0(s, q)+ (l1zog)f0(r, p)g2(s, q)% . (51)

(2) Hypar

TW
0 (i, j)=−2(l1zog)F1(r, p)G1(s, q), (52)

TF
0 (i, j)=2(l1zog)f1(r, p)g1(s, q). (53)



. . 874
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1
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T
F 0
(i
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−

32
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f 0

(r
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)g
22
(s

,q
)−

f 0
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f 2
2
(r

,p
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0
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,q
)−

f 1
2
(r

,p
)g

0
(s

,q
)

−
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−
f 1

1
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,p
)g

1
(s

,q
)−

f 1
(r

,p
)g

11
(s

,q
)+

2f
11
(r

,p
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11
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,q
)+

1 2
f 1

(r
,p

)g
1
(s
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7.
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In the above expressions:

Fi (r, p)=g
1

0

d(i)Fr

dj(i) fp (j) dj, Fjk (r, p)=g
1

0

jj d
(k)Fr

dj(k) fp (j) dj (58, 59)

and

Gi (s, q)=g
1

0

d(i)Gs

dh(i) gq (h) dh, Gjk (s, q)=g
1

0

hj d
(k)Gs

dh(k) gq (h) dh. (60, 61)

The matrices [fi ], [gi ], [f11] and [g12] (i=0, 1, 2) are obtained from the expressions
(58)–(61) by interchanging F, G with f, g, respectively. All the above integrals are
evaluated in their algebraic form in reference [3].

Moreover in equation (45)

k=0ab
h21

2
rh2

E
l0, (62)

where
l0 = dF

rrd
G
ss (63)

From equations (41) it can be deduced that l0 equals 1 or 0·5 or 0·25, according
to whether the shell has none, one or both of its opposite boundaries of the
bending type [SB–SB ].

The matrix formulation (45) leads to the following typical eigenvalue equation

[[S]− kv2
i [I]]{CW}(i) = {0} (64)

where

[S]= [TW]− [TF
0 ][TF]−1[TW

0 ]. (65)

Also the following expression for {CF}(i) is accordingly derived

{CF}(i) =−[TF]−1[TW
0 ]{CW}(i). (66)

The matrix [S] is a mn×mn non-singular and non-symmetric matrix which
depends on the geometry and the material of the shell, as well as on its boundary
conditions. It plays the role of a ‘‘stiffness matrix’’ of the shell.

Equation (64) is the typical form of the eigenvalue equation in finite elements
techniques and in spite of the absence of symmetry, the matrix [S] yields always
(mn) real and positive eigenvalues V2

i with their respective eigenvectors {CW}(i) from
which the eigenforms Wi (j, h) are obtained through equation (28).

The eigenvalues V2
i of the matrix [S] lead to the non-dimensionalized

eigenfrequencies of the shell, according to the relation

v2
i
rh2

E
=

V2
i

l0o
2 . (67)
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The eigenfunctions Fi (j, h) are also obtained through equation (29), after the
determination of the respective eigenvectors {CF}(i) from equation (66).

All the above eigenvalue analysis results converge to the accurate ones, for
sufficiently large values of m and n. In this respect, one should always keep in mind
the approximate character of shallow shell theory as such, regarding the
identification of the geometry of a shell element with its projection in the xy plane,
an assumption which also applies inevitably to the vibrating masses too.

6. ANALYSIS OF FORCED VIBRATIONS

It is assumed that the vertical loading acting on the shallow shell can be
expressed in the form

p(x, y, t)= p0q1(j)q2(h)V(t), (68)

where V(t) is the forcing function.
The unknown functions of the problem w(x, y, t) and f(x, y, t), are expressed

as

w(x, y, t)= s
(mn)

i=1

Wi (x, y)Ti (t), f(x, y, t)= s
(mn)

i=1

Fi (x, y)Ti (t), (69, 70)

where Wi (x, y) and Fi (x, y) are already known from the eigenvalue analysis and
Ti (t) are the (mn) unknown time functions of the problem.

Substitution of the expressions (69) and (70) into equation (3) and taking into
account equation (24), yields:

s
(mn)

i=1

Wi (x, y)
d2Ti (t)

dt2 + s
(mn)

i=1

v2
i Wi (x, y)Ti (t)=

1
rh

p(x, y, t). (71)

As equation (25) is already valid, equation (4) is automatically satisfied.
Multiplying both sides of equation (69) by Wk (x, y) and integrating over the

domain of the entire orthogonal base of the shell gives:

[C]{{T� (t)}+[v2]{T(t)}}=
p0

rh2 {P}V(t), (72)

where

[C]= [CW]T[CW]. (73)

[CW] is a (mn×mn) square matrix assembled as:

[CW]= [{CW}(1) {CW}(2) ( ( {CW}(mn)]. (74)

Moreover, {P} is a (mn×1) column matrix according to the expression:

{P}=[CW]T{B}, (75)
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with {B}, a (mn×1) column matrix whose ith element B(i) is obtained from:

B(i)=0g
1

0

Fr (j)q1(j) dj10g
1

0

Gs (h)q2(h) dh1 , (76)

where

r= z(i, 1), s= z(i, 2). (77)

Further, [v2] is the (mn×mn) diagonal matrix of v2
i and {T(t)} is the (mn×1)

column matrix of the unknown time functions Ti (t).
From the linear differential system (72) is finally obtained:

{T(t)}= p0

ozl0

hzrE
[Y(t)]{D}, (78)

where [Y(t)] is a (mn×mn) diagonal matrix consisting of the functions

Yi (t)=
1
Vi g

t

0

sin vi (t− t)V(t) dt, (79)

and {D} is a (mn×1) column matrix according to the expression

{D}=[CW]−1{B}. (80)

Introducing now the (mn×1) column matrix time function

{T*(t)}=[Y(t)]{D}, (81)

and after substitution of equations (28) and (29) into the expressions (69) and (70),
respectively, the final expressions of the functions w(j, h, t) and f(j, h, t) are
derived:

w(j, h, t)=
p0

zrE
s
(mn)

i=1 $s
m

r=1

s
n

s=1

CW(i)
rs Fr (j)Gs (h)% · T* i (t), (82)

f(j, h, t)= p0h2XE
r

s
(mn)

i=1 $s
m

r=1

s
n

s=1

CF(i)
rs fr (j)gs (h)% · T* i (t). (83)

The stress resultants of the shell can be deduced through substitution into the
expressions (7), (8) and (9).

7. COMPUTATIONAL PROCEDURE

According to the above analytical procedure a computer program has been
compiled for the dynamic analysis of shallow shells having the geometry defined
in Figure 1. The input data given are the type of shell geometry, the boundary
conditions of the shell, the values of the parameters g, o and l1, l2 or l, the
Poisson’s ratio n, the load intensity p0 with its functions q1(j) and q2(h), the forcing



. . 878

T 4

Frequency coefficients (vi (ab/h)zr/E) for the elliptic paraboloid shells (o=10 000,
n=0·15)

SBSM–SBSM /SBSM–SBSM CBSM–CBSM /CBSM–CBSM

a/b 0·5 1·0 0·5 1·0
f1/a= f2/b 0·05 0·10 0·05 0·10 0·05 0·10 0·05 0·10

1 34·697 64·711 40·413 80·207 36·840 69·176 41·355 80·682
2 38·689 68·263 42·516 81·287 46·235 70·541 45·365 82·786
3 43·964 73·746 46·168 83·255 47·885 79·357 50·953 85·943
4 44·525 78·851 49·299 85·032 53·605 86·000 55·442 88·689

function V(t) and the selected numbers of beam functions in each direction m
and n.

For a set of values m and n, the program adheres to the following steps: (1)
Establishes the parameters and coefficients of the beam functions according to
Tables 1 and 2. (2) Computes the quantities F(r, p), Fi (r, p), F11(r, p), G(s, q),
Gi (s, q), G12(s, q) (i=0, 1, 2), as well as their ‘‘f’’ and ‘‘g’’ counterparts defined
by equations (42) and (58)–(61). (3) Computes the matrices [TW], [TF] on the basis
of equations (46), (47) and the matrices [TW

0 ] and [TF
0 ] on the basis of the

appropriate set of equations (50)–(57). (4) Computes the matrix [S] from equation
(65). (5) Computes the eigenvalues V2

i , the eigenvectors {CW}(i) of the matrix [S]
and the non-dimensionalized eigenfrequencies according to equation (67). (6)
Computes the eigenvectors {CF}(i) from equation (66). (7) Computes the eigenforms
Wi (j, h), Fi (j, h) according to equations (28), (29). (8) Computes the matrices
[CW], {B}, [Y(t)] and {D} according to equations (74), (76), (79) and (80),
respectively. (9) Computes the matrix {T*(t)} from equation (81). (10) Computes
the deflection w(j, h, t) and the function f(j, h, t) from equations (82), (83) and
finally the stress resultants according to equations (7)–(9).

8. PARAMETRIC INVESTIGATION

On the basis of the above established non-dimensionalised geometric parameters
of the shallow shells examined, namely the aspect ratio g, the thinness parameter

T 5

Frequency coefficients (vi (ab/h)zr/E) for the hyperbolic paraboloid shells
(o=10 000, n=0·15)

SBSM–SBSM /SBSM–SBSM CBSM–CBSM /CBSM–CBSM

a/b 0·5 1·0 0·5 1·0
f1/a= f2/b 0·05 0·10 0·05 0·10 0·05 0·10 0·05 0·10

1 13·413 23·747 5·763 5·763 18·838 27·854 11·928 13·509
2 18·245 30·543 23·054 23·054 23·984 34·731 32·194 33·453
3 30·959 36·305 27·993 48·479 40·316 48·065 32·459 52·576
4 33·802 36·639 40·498 50·116 43·277 49·756 49·815 58·522
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Frequency coefficients (vi (ab/h)zr/E) for the soap-bubble shells (o=10 000,
n=0·15)

SBSM–SBSM /SBSM–SBSM CBSM–CBSM /CBSM–CBSM

a/b 0·5 1·0 0·5 1·0
Df/a 0·10 0·20 0·10 0·20 0·10 0·20 0·10 0·20

1 23·510 34·841 29·230 39·787 33·776 53·372 45·433 66·249
2 32·654 46·288 41·804 58·981 45·534 61·942 57·716 86·360
3 35·489 53·859 49·358 68·673 47·963 74·921 63·880 92·170
4 40·408 57·154 58·579 78·279 53·780 75·624 65·104 97·860

o and the shallowness parameters l, a parametric study for each type of shell is
made, in order to have an assessment of their dynamic characteristics and to also
show the possibilities of the procedure presented. The results are presented in the
form of tables concerning the five shell types examined before, namely the elliptic
and hyperbolic parabolid, the soap-bubble, the hypar and the conoid shell.

In each case the four lowest non-dimensional frequency coefficients
(vi (ab/h)zr/E) are presented, under certain boundary conditions. The above
shells are used mainly as concrete roofs in civil engineering applications. Especially
the last two have the essential constructional advantage that their formwork
consists only of rectilinear elements (Figure 1).

A. Elliptic and hyperbolic paraboloids (Tables 4 and 5)

These shells are considered resting on vertical walls along their boundaries
which restrain the displacements of the shell boundaries in their respective plane
(i.e., vertically and tangentially), but are very flexible against transverse (i.e.,
horizontal) displacements. The aspect ratio g takes the values 0·5 and 1·0,
respectively and the thinness parameter o is considered equal to 10 000, a rather
representative value for concrete shell roofs. The shallowness parameters l1, l2 are
considered to be equal to 0·05 and 0·10. Two cases are taken into account,
according to whether all the boundaries are allowed to rotate freely or not. The
Poissons’ ratio is taken equal to 0·15.

In the case of free rotation of the boundaries the results obtained are in complete
agreement with those obtained by the exact formula given in reference [1], which
in the present paper according to the notations that were introduced, takes the
following form.

v2
mn

r

E
=

h2p4

12(1− n2) $0ma1
2

+0nb1
2

%
2

+

64 · $f2

b2 0ma1
2

+
f1

a2 0nb1
2

%
2

$0ma1
2

+0nb1
2

%
2

.
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T 7

Frequency coefficients (vi (ab/h)zr/E) for hypar shells [SBSM–SBSM /SBSM–SBSM ]
(a/b=1·0, n=0·15)

ab/h2 10 000 20 000

Df/a 0·05 0·10 0·15 0·20 0·05 0·10 0·15 0·20
1 14·518 14·833 15·316 15·921 14·625 15·223 16·080 17·065
2 23·447 24·588 26·380 28·692 23·835 26·031 29·269 29·602
3 28·843 28·919 29·043 29·218 28·867 29·020 29·316 31·474
4 28·918 29·212 29·676 30·278 29·017 29·586 30·440 33·364

T 8

Frequency coefficients (vi (ab/h)zr/E) for hypar shells [CBSM–CBSM /CBSM–CBSM ]
(a/b=1·0, n=0·15)

ab/h2 10 000 20 000

Df/a 0·05 0·10 0·15 0·20 0·05 0·10 0·15 0·20
1 21·552 21·903 22·461 23·193 21·671 22·352 23·392 24·683
2 31·882 32·675 33·954 35·667 32·147 33·702 36·141 39·298
3 38·460 38·565 38·737 38·976 38·495 38·703 39·044 39·512
4 38·689 38·935 39·336 39·877 38·772 39·256 40·029 41·041

l0

T 9

Frequency coefficients (vi (ab/h)zr/E) for conoidal parabolic shells (o=10 000,
f1/a=0·10)

SBSM–SBSM /SBSM–SBSM (n=0·15) FBFM–FBFM /SBSM–SBSM (n=0)

a/b 0·2 0·5 0·8 0·2 0·5
Df/a 0·00 0·10 0·00 0·10 0·00 0·10 0·00 0·10 0·00 0·10

1 16·489 18·026 23·747 26·340 20·774 24·430 2·678 4·027 5·803 9·192
2 29·802 39·486 25·383 32·751 35·229 35·752 3·620 4·810 8·898 10·643
3 51·247 58·277 36·639 43·744 42·151 43·206 7·895 9·961 15·543 16·833
4 58·238 60·818 53·399 53·308 46·112 53·716 10·178 14·707 16·974 18·935

From Tables 4 and 5 it is seen that by restraining the boundary rotation, the
eigenfrequencies in the case of the elliptic paraboloid are hardly increased.
Moreover an increase in the shallowness parameter causes a significantly greater
increase in the eigenfrequencies in the elliptic rather than in the hyperbolic
paraboloid shell. It is also seen that for square planforms in simply supported
hyperbolic shells the eigenfrequencies are independant of the shallowness
parameters.

B. Soap-bubble (Table 6)

The geometry of this doubly curved shell can be depicted with a good
approximation by the deformed shape which assumes a rectangular simply
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Frequency coefficients (vi (ab/h)zr/E) for conoidal parabolic shells (o=10 000,
f1/a=0·0, n=0·15)

SBSM–SBSM /SBSM–SBSM CBSM–CBSM /CBSM–SBSM

a/b 0·5 1·0 0·5 1·0
Df/a 0·10 0·20 0·10 0·20 0·10 0·20 0·10 0·20

1 10·870 14·990 13·659 18·590 13·453 13·750 7·925 9·046
2 24·424 25·460 16·441 19·363 20·761 28·250 18·786 19·553
3 24·811 35·075 28·713 30·231 34·992 36·318 24·451 33·035
4 31·063 35·632 30·418 38·564 36·176 40·110 26·894 33·617

supported membrane if subjected to a uniformly distributed load. The shell is
considered either simply supported or clamped all around. The aspect ratio takes
the values 0·5 and 1·0, whereas the shallowness parameter Df/a takes the values
0·10 and 0·20. The thinness parameter o is constant and equal to 10 000.

C. Hypar shells (Tables 7 and 8)

These shells are also considered resting on vertical walls or appropriate
structural elements which restrain the displacements of the straight boundaries in
the plane of the wall. Moreover the edge rotation may be restrained or not. The
aspect ratio is considered constant to 1·0 and the thinness parameter o takes the
values 10 000 and 20 000, respectively. The shallowness parameter Df/a lies within
the range of 0·05 to 0·20.

It is seen that the respective eigenfrequencies are hardly influenced by a change
in the shell thickness.

D. Conoidal parabolic (Tables 9 and 10)

In this investigation two types of shells are examined according to whether the
more shallow curved edge is actually curved or not.

In the first case the shallowness parameter f1/a is equal to 0·10 and the
supplementary shallowness parameter Df/a takes the values 0·00 (i.e., cylindrical
panel) and 0·10 (Figure 1). The shell is either simply supported all around or
simply supported on each curved edge and free on each straight edge. Although
in this last case the boundary conditions are not exactly satisfied, a comparison
with a finite element solution according to reference [12] shows that also for this
‘‘approximately approached’’ case the results are practically always valuable.
However, as it is found, the accuracy of the results is significantly decreased if the
aspect ratio g exceeds the value 0·5.

In the second case the shallowness parameter f1/a is equal to zero and the
parameter Df/a takes the values 0·10 and 0·20. In this case the shell is considered
either simply supported all around or clamped along its three straight edges and
free along its curved edge.
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9. CONCLUSIONS

According to the described procedure, the evaluation of a dynamic analysis for
various types of shallow shells over a rectangular layout is made possible by
considering, apart from the appropriate boundary conditions, only a few
non-dimensionalized variables regarding the geometry of the shell. In some cases
the prevailing boundary conditions may not be exactly satisfied but even in those
cases the discrepancy of the results obtained by the procedure presented is held
into practically admissible limits.
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