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1. 

The free vibration of an n-degree-of-freedom linear second order system is
represented by

Mẍ(t)+Cẋ(t)+Kx(t)= un , x(0)= x0, ẋ(0)= ẋ0, (1)

for all te 0. In equation (1),

x(t)= [x1(t) x2(t) · · · xn (t)]T$Rn, (2)

denotes the vector of displacements (vT denotes the transpose of a vector v); the
mass matrix M and the stiffness matrix K belong to Rn× n and are symmetric and
positive definite; the damping matrix C belongs to Rn× n and is symmetric
and positive semi-definite; x0$Rn and ẋ0$Rn are the vectors of initial displacements
and velocities, respectively; un denotes the zero vector in Rn.

In this note, we plan to derive an a priori upper bound on the sizes (norms) of
the displacements of the system (1) without solving it (numerically). In recent
years, researchers have derived bounds on the sizes of displacements and velocities
of free or forced vibratory systems; see, e.g., references [1, 2, 3 (p. 136), 4–8, 9 (pp.
177–178), 10]. Such bounds can be used in the design and analysis of systems.

Bounds on the sizes of displacements of the system (1) are useful when (i) they
are easily computable; (ii) they are tight. If the bounds are not easily computable,
then one might as well solve the system (1) (numerically) in order to obtain the
exact (very accurate) values for the displacement peaks. If, on the other hand, the
bounds are easily computable, but are conservatively large, then they furnish no
useful information to be used in the system design and analysis. It appears that
the two requirements of ease-of-computation and tightness of the upper bounds
oppose each other: the less (more, respectively) computational effort, the more
(less) conservative bounds on the sizes of displacements. Despite this fact, one
should attempt to derive easy-to-compute and tight bounds.

Most available bounds in the literature are not easily computable, except those
in references [1–3, 7, 8]. In reference [7], upper bounds on the sizes of
displacements of the system (1) are computed as follows. Let

>xi>aMmax
te 0

=xi (t)=, (3)
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denote the La-norm of the displacement xi ( · ) for an i=1, 2, . . . , n. Let

E0M1
2x

T
0 Kx0 + 1

2ẋ
T
0 Mẋ0, (4)

denote the initial energy of the system (1). According to reference [7], the norm
>xi>a for an i=1, 2, . . . , n satisfies

>xi>a E [2(K−1)iiE0]1/2, (5)

where (K−1)ii q 0 denotes the ith diagonal elements of the matrix K−1.
The upper bounds in inequality (5) depend on the matrices M and K, where the

dependence on M is through E0. Computing K−1 in order to obtain (K−1)ii for an
i=1, 2, . . . , n requires some computational effort, because K is in general a full
matrix. An interesting feature of the bounds in inequality (5) is that they do not
depend on the damping matrix C.

In reference [8], a single upper bound on the norms of all displacements of the
system (1) is obtained, when the system is assumed to be classically damped, i.e.,
when CM−1K=KM−1C. The bound is given by

>xi>a E ([lmax (M)/lmin (M)](xT
0 x0 + ẋT

0 ẋ0/v2
1 ))1/2, (6)

for all i=1, 2, . . . , n, where lmax (M) and lmin (M) are the largest and smallest
eigenvalues of the mass matrix M, respectively, v1 is the lowest undamped natural
frequency of the system, and x0 and ẋ0 are the vectors of initial displacements and
velocities, respectively.

The bound in inequality (6) is a single upper bound on the norms of all
displacements of the system (1). Therefore, it is computed only once. Recall that
there are n upper bounds in inequality (5), and so are there n times of computation.
Computing the bound in inequality (6) is an easy task. In computing this bound
some computational effort is required to compute the square of the lowest
undamped natural frequency, v2

1 . It is straightforward to compute v2
1 , since there

are certain numerical methods by which v2
1 is readily computed. Some of such

numerical methods are the power method, Given’s method, QR method, inverse
iteration method, and Rayleigh’s quotient iteration method, which primarily
compute the smallest eigenvalue of an eigenvalue problem (see, e.g., references [11
(Chapter 6), 12]). It should be pointed out that the lowest natural frequency, v1,
is an important piece of information for vibratory systems. Therefore, computing
v1—to be used either in inequality (6) or in the system design and analysis—is well
worth the effort. Note that there is no need to compute v2

1 , when the initial
velocities are zero.

Our goal in this note is to relax the assumption in reference [8] that the
system (1) is classically damped, and to obtain an easy-to-compute bound on
the norms of displacements of the system (1). It turns out that inequality
(6) provides such an upper bound, even when the system is not classically
damped.
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2.     

We first obtain the normalized representation of the system (1). Such
representation is obtained via a linear change of co-ordinates applied to the system
(1). The change of co-ordinates is

x(t)=Uq(t), (7)

for all te 0, where U$Rn× n is the (non-singular) modal matrix corresponding to
the system (1) (see, e.g., references [9 (pp. 173–175), 11 (pp. 178–181)]) and

q(t)= [q1(t) q2(t) · · · qn (t)]T $ Rn, (8)

is the vector of normalized displacements. The columns of the modal matrix are
the eigenvectors of the symmetric generalized eigenvalue problem

Ku(i) =v2
i Mu(i), (9)

where v2
i q 0 and u(i)$Rn are an eigenvalue (undamped natural frequency squared)

and the corresponding eigenvector for an i=1, 2, . . . , n, respectively. The modal
matrix is commonly orthonormalized according to

UTMU= In , (10)

where UT denotes the transpose of the matrix U and In denotes the n× n identity
matrix. Since equation (10) holds, the matrix K satisfies

UTKU=diag [v2
1 , v2

2 , . . . , v2
n ]= .V2, (11)

where, without the loss of generality, the natural frequencies are ordered as
v1 Ev2 E , . . . ,Evn .

Using equations (10) and (11), the system (1) under the change of co-ordinates
in equation (7) is represented as

Inq̈(t)+C	 q̇(t)+V2q(t)= un , (12a)

for all te 0, with the initial conditions

q0Mq(0)=U−1x0 =UTMx0, q̇0Mq̇(0)=U−1ẋ0 =UTMẋ0. (12b)

In equation (12a),

C	 MUTCU$Rn× n, (13)

is known as the normalized damping matrix. The system (1) is not classically
damped in general. That is, CM−1K$KM−1C (see, e.g., references [3 (pp.
144–145), 13]). Therefore, the matrix C	 is not necessarily diagonal, due to which
the system (12a) is a set of coupled differential equations and not a set of n scalar
second order linear systems.

We rewrite the system (12a) as

V−2q̈(t)+V−2C	 q̇(t)+ q(t)= un , (14)

for all te 0, with the initial conditions in equation (12b). We will use equation
(14) to obtain an upper bound on the norms of displacements of the system (1).
We first establish a preliminary result.
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Lemma 2.1. Consider the coefficient matrices M, C, and K of the system (1),
the matrix V2 in equation (11), and the normalized damping matrix C	 in equation
(13). The matrix V−2C	 +C	 V−2 is positive semi-definite if and only if the matrix
CM−1K+KM−1C is positive semi-definite.

Proof. Let v$Rn be a non-zero vector. We can write

vT(V−2C	 +C	 V−2)v= vTV−2(C	 V2 +V2C	 )V−2v=wT(C	 V2 +V2C	 )w, (15)

where wMV−2v$Rn and the last identity follows due to the symmetry of V−2.
From equations (10) and (11), we obtain

UUT =M−1, V2 =U−1M−1KU. (16a, b)

Using equations (13) and (16b) in C	 V2 and equations (11) and (13) in VC	 , we
obtain

wT(C	 V2 +V2C	 )w=wT(UTCM−1KU+UTKUUTCU)w. (17)

Using equation (16a) in the right-hand side of equation (17), we obtain

wT(C	 V2 +V2C	 )w=(Uw)T(CM−1K+KM−1C)(Uw). (18)

Comparing equations (15) and (18), we conclude the equivalence of the positive
semi-definiteness of V−2C	 +C	 V−2, C	 V2 +V2C	 , and CM−1K+KM−1C. q

We now present an upper bound on the displacements of the system (1).

Theorem 2.2. Consider the system (1) and let the matrix CM−1K+KM−1C be
positive semi-definite. The La-norm of the displacement xi ( · ) satisfies

>xi>a E ([lmax (M)/lmin (M)](xT
0 x0 + ẋT

0 ẋ0/v2
1 ))1/2, (19)

for all i=1, 2, . . . , n, where lmax (M) and lmin (M) are the largest and smallest
eigenvalues of the mass matrix M, respectively, v1 is the lowest undamped natural
frequency of the system, and x0 and ẋ0 are the vectors of initial displacements and
velocities, respectively.

Proof. For the system (14) consider the function

E(t)= 1
2q

T(t)q(t)+ 1
2q̇

T(t)V−2q̇(t), (20)

for all te 0, where at t=0,

E0ME(0)= 1
2q

T
0 q0 + 1

2q̇
T
0 V

−2q̇0. (21)

The derivative of E( · ) along the solution of the system (14) satisfies

E� (t)=−q̇T(t)V−2C	 q̇(t), (22)

for all te 0. Writing

V−2C	 =(V−2C	 +C	 V−2)/2+ (V−2C	 −C	 V−2)/2, (23)

in equation (22), we obtain

E� (t)=−1
2q̇

T(t)(V−2C	 +C	 V−2)q̇(t), (24)
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for all te 0. Since CM−1K+KM−1C is positive semi-definite, by Lemma 2.1, the
matrix V−2C	 +C	 V−2 in equation (24) is positive semi-definite. Thus, E� (t)E 0 for
all te 0. Therefore, the function E( · ) is non-increasing. That is, E(t)EE0 for all
te 0, which can be written as

qT(t)q(t)+ q̇T(t)V−2q̇(t)E qT
0 q0 + q̇T

0 V
−2q̇0, (25)

for all te 0. From inequality (25), we obtain

qT(t)q(t)E qT
0 q0 + q̇T

0 V
−2q̇0, (26)

for all te 0. Using equations (7) and (12b) in inequality (26), we obtain

xT(t)U−TU−1x(t)E xT
0 U−TU−1x0 + ẋT

0 U−TV−2U−1ẋ0

E xT
0 U−TU−1x0 + lmax (V−2)ẋT

0 U−TU−1ẋ0, (27)

for all te 0, where the last inequality follows from the definition of Rayleigh’s
quotient (see, e.g., references [11 (pp. 237–243), 14 (pp. 176–181)]). From equation
(10), we have U−T U−1 =M. Using this fact and that lmax (V−2)=1/v2

1 , we can
write inequality (27) as

xT(t)Mx(t)E xT
0 Mx0 + ẋT

0 Mẋ0/v2
1 , (28)

for all te 0. Using the definition of Rayleigh’s quotient on both sides of inequality
(28), we obtain

lmin (M)xT(t)x(t)E lmax (M)(xT
0 x0 + ẋT

0 ẋ0/v2
1 ), (29)

for all te 0. Finally, using xT( · )x( · ) from inequality (29) in

>xi>a =max
te 0

=xi (t)=Emax
te 0

[xT(t)x(t)]1/2, (30)

we establish the bound in inequality (19). q

Remarks. (1) In reference [8], it is shown that if the system (1) is classically
damped, i.e., if CM−1K=KM−1C, then the norms of all displacements of the
system satisfy inequality (6). In this note, it is not assumed that the system (1) is
classically damped. However, in Theorem 2.2, it is assumed that
C M−1K+K M−1C is positive semi-definite. Under this assumption, it is shown
that the norms of all displacements of the system (1) satisfy inequality (19), which
is the same as inequality (6).

It should be remarked that the identity CM−1K=KM−1C implies that
CM−1K+KM−1C is positive semi-definite. The reason is as follows. If
CM−1K=KM−1C, then the normalized damping matrix is diagonal (see, e.g.,
references [3 (pp. 144–145), 13]). That is,

C	 =UTCU=diag [c̃11, c	 22, . . . , c̃nn ], (31)
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where the diagonal elements of C	 are non-negative real numbers due to the positive
semi-definiteness of C. Let y$Rn be a non-zero vector. Then,

yTCM−1Ky= yT(U−TUT)C(UU−1)M−1K(UU−1)y

=(U−1y)T(UTCU)(U−1M−1KU)(U−1y)

= (U−1y)T diag [c̃11, c̃22, . . . , c̃nn ]V2(U−1y), (32)

where equations (16b) and (31) were used in deriving the last identity in equation
(32). The positive semi-definiteness of CM−1K follows from equation (32). Thus,
CM−1K+KM−1C=2CM−1K is positive semi-definite. Note, however, that when
CM−1K+KM−1C is positive semi-definite, it is not necessarily true that
CM−1K=KM−1C. Consider, for instance, the following matrices:

M= &100 0
1
0

0
0
1', C= & 0·175

−0·075
0

−0·075
0·125

−0·05

0
−0·05

0·05', K= & 2
−1

0

−1
2

−1

0
−1

1'.
(33)

It can be easily verified that the matrices M, C, and K are positive definite. The
matrix

CM−1K+KM−1C= & 0·85
−0·6

0·125

−0·6
0·75

�−0·325

0·125
−0·325

0·2 ', (34)

has eigenvalues 0·0059, 0·3148, 1·4793, and hence is positive definite. However, it
can be easily verified that CM−1K$KM−1C.

It is thus concluded that the class of systems, for which CM−1K=KM−1C
(classically damped systems), is a subclass of the systems for which
CM−1K+KM−1C is positive semi-definite. It happens that for systems
encountered in practice, the matrix CM−1K+KM−1C is usually positive
semi-definite, where as the identity CM−1K=KM−1C rarely holds.

Figure 1. A system with three degrees of freedom, where mi =1 and ki =1 for all i=1, 2, 3, and
c1 =0·1, c2 =0·075, c3 =0·05.
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Figure 2. The time history of x1( · ) of the system (36).

(2) Let the mass matrix be M=diag [m1, m2, . . . , mn ], where, without the loss
of generality, the diagonal elements are ordered as m1 Em2 E · · · Emn . In this
case, inequality (19) simplifies to

>xi>a E [(mn /m1)(xT
0 x0 + ẋT

0 ẋ0/v2
1 )]1/2, (35)

for all i=1, 2, . . . , n.
(3) The bound in inequality (19) (respectively, inequality (35)) is tighter when

the ratio lmax (M)/lmin (M)(mn /m1 for a diagonal M) is not much larger than one.
q

3. 

In this section, we give an example to study the bounds presented in this note.
Consider the system in Figure 1 and let mi =1 and ki =1 for all i=1, 2, 3, and
c1 =0·1, c2 =0·075, c3 =0·05. The free vibration of this system is represented by

&100 0
1
0

0
0
1'&ẍ1(t)

ẍ2(t)
ẍ3(t)'+ & 0·175

−0·075
0

−0·075
0·125

−0·05

0
−0·05

0·05'&ẋ1(t)
ẋ2(t)
ẋ3(t)'+ & 2

−1
0

−1
2

−1

0
−1

1'&x1(t)
x2(t)
x3(t)'= u3,

(36a)

for all te 0, with the initial conditions

x0 = [1 0 0]T, ẋ0 = u3. (36b)

Identifying the matrices M and K in equation (36a), we can obtain

E0 = 1
2x

T
0 Kx0 + 1

2ẋ
T
0 Mẋ0 =1, K−1 = &111 1

2
2

1
2
3'. (37a, b)
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Figure 3. The time history of x2( · ) of the system (36).

Therefore, by inequality (5), we obtain

>x1>a E 1·4142, >x2>a E 2, >x3>a E 2·4495. (38)

The coefficient matrices of the system (36a) are those in equatin (33). Therefore,
the system (36) is not classically damped. The matrix CM−1K+KM−1C, however,
is positive definite. Therefore, the upper bound in inequality (19) can be used, by
which

>x1>a E 1, >x2>a E 1, >x3>a E 1. (39)

By the numerical integration, we obtain responses of the system (36) as depicted
in Figures 2, 3, and 4, From these figures, we obtain

>x1>a =1, >x2>a =0·516, >x3>a =0·575. (40)

Comparing the exact values of >xi>a for all i=1, 2, 3 in equation (40) and their
corresponding upper bounds in inequalities (38) and (39), we conclude that the
bounds in inequalities (39) are tighter than those in inequalities (38). We,

Figure 4. The time history of x3( · ) of the system (36).
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however, point out that inequality (19) does not always result in bounds tighter
than those obtained by inequality (5). There can be systems and initial conditions
for which the bounds obtained by inequality (19) are more conservative than the
corresponding bounds obtained by inequality (5).

4. 

In this note, the free vibration of n-degree-of-freedom linear non-classically
damped second order systems is considered. A single and easy-to-compute upper
bound on the norms of displacements of such systems is derived. The upper bound
depends on the ratio of the largest eigenvalue to the smallest eigenvalue of the mass
matrix of the system, the lowest undamped natural frequency of the system, and
the vectors of initial displacements and velocities. The upper bound is independent
of the lowest natural frequency when the initial velocities are zero.
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