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In this paper, transverse mode localization in a dual-span rotating shaft is
studied. The shaft is elastically supported by transverse and rotational springs at
an intermediate point and at both ends. A Timoshenko beam model including the
effects of axial loads is employed, and a small disorder in the span length is
introduced in the study of the mode localization. The exact eigensolutions of the
systems are obtained by the phase closure principle. Based on actual values of
typical bearing stiffness applied in turbo machinery, the effects of support stiffness,
rotation speed and axial load on the mode localization are examined. These results
are compared with those obtained from the Rayleigh shaft model to assess the
effects of shear deformation. It is shown that mode localization depends strongly
on the modelling of the bearing support.
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1. INTRODUCTION

Flexible shaft elements rotating about the longitudinal axis are commonly
employed as high speed cutting tools or as a means of power transmission in many
engineering applications such as gas or hydraulic turbines, internal combustion
engines, and turbo generators. Recent demands on the performance of these
machine elements at severe operating conditions and the applications of lighter
components require the use of more reliable, failure-safe elements and more
accurate models for analysis. Three beam theories, the Euler–Bernoulli, Rayleigh
and Timoshenko models, have been proposed to study the vibration of rotating
shafts. As more accurate analyses are required, it is recognized that the
Timoshenko theory, which includes both the effects of rotary inertia and shear
deformation, should be used to accurately predict the natural frequencies and
vibration modes of stubby beams [1].

Numerous studies on the vibrations of rotating shafts are well documented
[2–5]. One of the most important topics is the study of the effects of critical
parameters such as end loads, bearing stiffness and overhang mass on the stability
and critical speeds of rotating shafts [6–8]. Other studies focus on the development
of solution techniques to investigate the dynamic response and vibration of
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different rotating shaft models. A model of a rotating Timoshenko shaft subjected
to axial loads was proposed by applying a finite strain beam theory and Hamilton’s
Principle [9]. The transient response of rotating Rayleigh and Timoshenko shafts
was evaluated by a finite integral transform [10] and a modal analysis technique
[11], respectively. Exact solutions for the free and forced responses of a stepped,
rotating Timoshenko shaft system were obtained by the distributed transfer
function method and a generalized displacement formulation [12]. Using the
axially strained, rotating Timoshenko shaft model of reference [9], the reflection
and transmission characteristics of waves incident upon an arbitrary support or
discontinuity were presented [13].

Although there has been much research on the dynamics and vibration of
rotating shafts, the dynamics of rotating multi-span shafts with structural disorder
has not been considered. In many engineering applications, a rotating shaft is
supported by multiple bearings. In particular, when the bearings with identical
stiffness are equally spaced along the shaft, the rotating shaft becomes periodic
with sub-spans inter-coupled by elastic constraints on either or both the transverse
and rotational motions. Hodges introduced the confinement of vibration or normal
mode localization in which vibration amplitudes are confined to some sub-spans
as a result of structural irregularity in periodic mechanical structures [14]. Thus,
with reference to the context of mode localization, transverse vibration modes of
a multi-span rotating shaft can be strongly localized when the span lengths are
slightly disordered, either by error or design.

Since the work of Hodges, there has been extensive research on the dynamics
and vibrations of disordered periodic and cyclically symmetric structures. Here we
cite work on linear systems only. Hodges and Woodhouse, in a supplementary
study on normal mode localization by both theory and experiment, formulated the
localization factor which gives the average spatial decay rate of vibration amplitude
[15]. Valero and Bendiksen [16], and Bendiksen [17] studied the mode localization
behaviour in weakly coupled cyclically symmetric systems such as mistuned
turbomachinery blades and wrap-rip disk antenna. Pierre et al. [18] applied a
modified perturbation method to study mode localization and also experimentally
verified the existence of localized modes for a disordered dual-span
Euler–Bernoulli beam model. Pierre [19] and Chen and Ginsberg [20] investigated
the relationship between mode localization and eigenvalue loci veering of nearly
periodic structures by applying a perturbation method to a general eigenvalue
problem and found that small disorder results in a strong mode localization in the
eigenvalue veering zone. It was also concluded that occurrence of eigenvalue
veering indicated a directional vibration localization which could be present in
axisymmetric structures with some type of irregularities breaking the symmetry
[19]. For example, Ulsoy et al. [21, 22] demonstrated that vibration modes could
be localized in one of the two orthogonal principal directions of a single-span,
rotating Rayleigh shaft with non-circular cross-sections. Other studies of mode
localization include band-wheel systems [23] and axially moving beams [24–26].
One general conclusion from all these studies is that the degree of mode
localization depends on the ratio of the disorder strength to the coupling strength
between adjacent sub-structures.
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The purpose of this paper is to investigate the mode localization in a dual-span
rotating shaft with an intermediate support. A disorder in the span length is
introduced. While most studies have examined beams with a mono-coupling
mechanism (simple supports with elastic rotational constraints), a bi-coupling
elastic constraint on both the transverse and rotational motions is considered in
this work. This constraint models more closely a bearing support. Note that our
study is not the first to examine this type of coupling. Lust et al. [27] presented
a numerical study on the mode localization of a bi-coupled, multi-span
Timoshenko beam. In section 2, the problem is formulated, and in section 3, the
wave solution approach of reference [13] is applied to obtain the exact
eigensolutions. To assess the effects of shear deformation on mode localization,
results of the Timoshenko and Rayleigh models are compared. The effects of
system parameters such as support stiffness, rotation speed (considering both
forward and backward precession modes), and axial load on mode localization are
studied in section 4.

2. PROBLEM FORMULATION AND WAVE SOLUTIONS

Figure 1 depicts a rotating shaft with an intermediate elastic support and elastic
boundaries. The shaft is subject to axial loads P. Including the effects of rotary
inertia, shear deformations, and axial deformations due to the axial loads, the

Figure 1. A dual-span shaft, subject to axial loads P and with elastic support boundaries, rotates
about its longitudinal axis Z at constant speed V.
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uncoupled equation of motion governing the transverse displacement U is given
in the following non-dimensional form [9]

14u
1z4 − (1+ a)

14u
1z2 1t2 +2ib

13u
1z2 1t

−2ib
13u
1t3 + a

14u
1t4 −16o01+ o−

o

a1 12u
1z2

+16a(1+ o)01+ o−
o

a1 12u
1t2 =0, (1)

where

u=
U
a0

, z=
Z
a0

, t=
T
T0

, T0 =Xra2
0

KG
, a=

KG
E

, b=
ra2

0

ET0
V, o=

P
EAs

.

(1a)

Note that U is the displacement in the complex plane, U=Ux +iUy , where
i=z−1. E denotes the Young’s modulus, r the mass density, As the area of the
cross section, a0 the diameter of the shaft, K the Timoshenko shear coefficient, G
the shear modulus and V the constant angular velocity of the shaft. In Figure 1,
the stations a, b, c, d denote the left boundary, the left and the right of the
intermediate support, and the right boundary, respectively. The non-dimensional
spring stiffness constants are defined as

transverse spring: kt =
KTa0

KAG
, (2a)

rotational spring: kr =
KRa0

EI
. (2b)

We assume the following harmonic wave solution

u(z, t)=C ei(ḡz+ v̄t), (3)

and define the non-dimensional wavenumber ḡ and frequency v̄

ḡ= ga0, (4a)

v̄=
va0

cs 0cs =XKG
r

is known as the shear velocity1. (4b)

Substituting the harmonic wave solution into equation (1) gives the frequency
equation

ḡ4 −Aḡ2 +B=0, (5)

where

A=(1+ a)v̄2 −2bv̄−16o01+ o−
o

a1, (5a)
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B= v̄2$av̄2 −2bv̄−16a(1+ o)01+ o−
o

a1%. (5b)

In general, the four roots of equation (5) are complex. However, for real v̄, it can
be shown that A2 −4B is positive semi-definite for most engineering applications
with aq 0 and −1E oE 1. Hence, based on the algebraic relationships between
A and B, the Timoshenko shaft model has four distinct wave solutions [13]. In
the present paper, only vibration modes below the non-zero cutoff frequency v̄c ,

v̄=
b

a
+X0ba1

2

+16(1+ o)01+ o−
o

a1, (6)

are considered, i.e., BQ 0. Note that for b=0 and o=0, v̄c is 4 or about 20 kHz
which is far beyond the practical range of frequencies. The wave solutions are then

u(z, t)= (C+
u1 e−iḡ1z +C−

u1 eiḡ1z +C+
u2 e−ḡ2z +C−

u2 e−ḡ2z) eiv̄t, for Ae 0, (7)

u(z, t)= (C+
u1 e−ḡ1z +C−

u1 eḡ1z +C+
u2 e−iḡ2z +C−

u2 eiḡ2z) eiv̄t, for AQ 0, (8)

where

ḡ1 =
1

z2
(zA2 +4=B=+ =A=)1/2, ḡ2 =

1
z2

(zA2 +4=B=− =A=)1/2, (9)

and the coefficients C+ and C− denote positive- and negative-travelling waves from
the origin of disturbance, respectively. Note that both wave solutions (7) and (8)
have two propagating and two attenuating wave components.

For comparison of results to be presented later, the parameters A and B for the
Rayleigh shaft model neglecting the effects of shear and axial deformation are

A= av̄2 −2bv̄−16o, B=−16av̄2. (10)

For convenience, the overbar on the non-dimensional quantities is dropped
hereafter.

3. EIGENSOLUTIONS OF THE SYSTEM

The characteristic equation of the system is obtained by the phase closure
principle [28, 29]. Group the wave components into 2×1 vectors of positive- and
negative-travelling waves:

C+ =6C+
u1

C+
u27, C− =6C−

u1

C−
u27. (11a, b)

Referring to Figure 1, the relation between the incident, reflected and transmitted
waves are

C−
d =RdC+

d , Rd = rd , (12a)

C−
c =RcC+

c , Rc =T2rdT2, (12b)
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C−
b =RbcC+

b , Rbc = rbc + tbc (R−1
c − rbc )−1tbc , (12c)

C−
a =T1C−

b , (12d)

C+
a =RaC−

a , Ra = ra , (12e)

C+
b =T1C+

a , (12f)

where the subscripts denote the locations, R is a reflection matrix relating the
amplitudes of positive- and negative-travelling waves at the support and the
boundaries, and T1 and T2 are the field transfer matrices defined as

T1 =$e−ig1(l1/a0)

0
0

e−g2(l2/a0)%, T2 =$e−ig1(l2/a0)

0
0

e−g2(l2/a0)%, for Ae 0; (13a)

T1 =$e−g1(l1/a0)

0
0

e−ig2(l1/a0)%, T2 =$e−g1(l2/a0)

0
0

e−ig2(l2/a0)%, for AQ 0. (13b)

ra and rd are the reflection matrices of waves incident upon boundaries a and d,
respectively:

ra = rd =$ h1(ig1 + kr )
i(g1 − h1)+ kt

h2(g2 + kr )
(g2 − ih2)+ kt%

−1

$−h1(ig1 − kr )
i(g1 − h1)− kt

−h2(g2 − kr )
(g2 − ih2)− kt%,

for Ae 0, (14)

where

h1 =
g2

1 −v2

g101+ o−
o

a1
, h2 =

g2
2 +v2

ig201+ o−
o

a1
, (14a, b)

and

ra = rd =$ h1(g1 + kr )
(g1 − ih1)+ kt

h2(ig2 + kr )
i(g2 − h2)+ kt%

−1

$−h1(g1 − kr )
(g1 − ih1)− kt

−h2(ig2 − kr )
i(g2 − h2)− kt%,

for AQ 0, (15)

where

h1 =
g2

1 +v2

ig101+ o−
o

a1
, h2 =

g2
2 −v2

g201+ o−
o

a1
. (15a, b)

rbc and tbc (listed in Appendix A for a general support) are the reflection and
transmission matrices of incident waves upon the intermediate support,
respectively. In the development of the above equations, kta = ktbc = ktd = kt and
kra = krbc = krd = kr are assumed throughout this paper.
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Solving the above matrix equations gives

(raT1RbT1 − I)C+
a =0, (16)

where I denotes the 2×2 identity matrix. For non-trivial solutions, the natural
frequencies of the system are obtained from

C(v)=Det [(raT1RbT1 − I)]=0. (17)

Typical plots of C(v) versus v for the symmetric rotating shaft system (l1 = l2)
are shown in Figure 2. Comparing Figures 2(a) and (b), it is seen that small
incremental steps are required for finding the roots of C(v) when the subsystems
are weakly coupled through the intermediate support [see Figure 2(b)]. In
Figure 2(b), two successive natural frequencies are closely spaced, indicating that
they are in a veering zone. Moreover, both Re [C(v)] and Im [C(v)] experience
sharp jumps near the natural frequencies, but the functions remain continuous and
finite. Similar phenomenon also occurs when the span lengths are slightly different.

4. RESULTS AND DISCUSSION

Results for the first four eigensolutions are presented as functions of the system
parameters: slenderness ratio (s), support stiffness (kt , kr ), rotation speed (b), and
axial force (o). Define the slenderness ratio s and the span length disorder D as

s=
a0

l1 + l2
, D=

l2 − l1
l1 + l2

×100%. (18a, b)

Table 1 summarizes the values of the system parameters used in the numerical
studies. For each natural frequency, the corresponding mode shape and amplitude
ratio (R) between the two sub-spans are found. The amplitude ratio is defined as

R=g
G

G

F

f

=u2=
=u1=

,

=u1=
=u2=

,

for =u1=e =u2=,

for =u1=Q =u2=,
(19)

T 1

List of system parameters

a0 0·0955 m*
l1 + l2 1 m
r 7700 kg/m3

K 0·9*
E 207×109 N/m2*
G 77·7×109 N/m2*
KT0 109 N/m2† KTa =KTbc =KTd = nKT0, n=1, 2, . . .
KR0 109 N·m/rad† KRa =KRbc =KRd = nKR0, n=1, 2, . . .

* Reference [10].
† Typical bearing stiffness of turbo machinery, reference [30].
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Figure 2. Typical plots of the characteristic equation of the forward precession mode of the
rotating Timoshenko shaft system, a=0·3378, b=0·01, o=0, l1 = l2; (a) kt = kt0, kr = kr0, (b)
kt =a, kr =0; Re [C(v)] (——), Im [C(v)] (– – –).

where u1 and u2 are the maximum displacements of the sub-spans. To study the
effects of shear deformation on mode localization, results obtained for both the
Timoshenko and Rayleigh shaft models (which hereafter, for brevity, are denoted
by TM and RM, respectively) are compared in terms of their amplitude ratios.
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Since the quantitative definition of mode localization is subjective and relative
depending on the types of applications, the term localized mode in this paper refers
to any mode which has a non-zero ratio of span length disorder to amplitude ratio
and with sufficiently small span length disorder. Based on this definition, even a
mode with D/R1D might be considered localized. However, in such a case, the
term weakly localized is used instead of not localized. In the numerical studies,
D is chosen to be 2% which satisfies our definition of localization. For brevity,
the term mode localization increases (decreases) means that the degree of
mode localization D/R increases (decreases) as R decreases (increases) for a
fixed D.

As a general note, the discussion on the effects of system parameters on mode
localization in sections 4.1 to 4.4 for finite kt cannot be generalized to results when
the stiffness is very large. In the latter case, the dynamic behaviour of the rotating
shaft becomes different (refer to section 4.5) and follows that of a mono-coupled
system with the sub-spans coupled only by the rotational spring.

4.1.    

The effects of shear on mode localization is investigated in terms of the
slenderness ratio s. As s or the mode number increases, the shear deformation
effects become more dominant, and the TM gives a more accurate prediction of
the system response. Figure 3 shows the effects of s on mode localization by
comparing the amplitude ratio R for both TM and RM. Note that the data points
are discretely jointed. Representative mode shapes are also plotted.

Results show that both shaft models exhibit similar qualitative behavior in mode
localization. The modes are strongly localized for small values of s, and the
localization in general decreases with increasing s. Modes of TM are more
localized than those of RM. As the slenderness ratio and/or mode number
increases, the difference in R between the two models becomes larger. This
indicates that the effects of shear on mode localization are important for rotating
shafts with large s and for higher modes. As noted before, these trends are
generally valid when the transverse spring stiffness is not very large. In Figures 5
and 6 of reference [27], it is shown that for a non-rotating beam with kt =a, mode
localization increases with s and the mode number.

4.2.    

Previous research on mode localization has focused on mono-coupled systems
in which the coupling between the subsystems is usually modelled by a simple
support and a rotational spring [18]. However, in practical applications, infinite
stiffness for the transverse displacement does not exist. The system studied in this
paper represents a rotating shaft on bearing supports (KT0 and KR0 are typical
bearing values in turbo machinery; see Table 1). This section investigates the
combined effects of transverse and rotational support stiffness on mode
localization.

Figure 4 plots the amplitude ratio as a function of transverse spring stiffness
for four different rotational spring stiffness. In general, as the mode number
increases, differences in R between the RM and TM become larger. It is also seen
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Figure 3. Amplitude ratio R as a function of slenderness ratio s for the forward precession mode,
a=0·3378, b=0·01, o=0, D=2%, kt = kt0, kr = kr0; (a) 1st, (b) 2nd, (c) 3rd, (d) 4th mode; TM
(W), RM (w). Representative modeshapes are shown; TM (——), RM (– – –).

that the effects on localization are significantly different between the kr $ 0 and
kr =0 cases. When kr $ 0, mode localization increases with the transverse stiffness,
agreeing with a well known observation that the weaker the inter-span coupling,
the stronger is the localization [18]. Moreover, localization has a weaker
dependence on the rotational spring stiffness. The amplitude ratios for the kr = kr0

and kr =10kr0 cases differ by at most 20% over the range of kt , and comparing
the kr =10kr0 and kr =50kr0 cases, there is practically no difference. This
dependence, however, increases with the mode number and kt . The results here
show that the transverse span support stiffness is a much more important factor
than the rotational stiffness in determining the amount of mode localization.
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When kr =0, the dependence of R on kt is not monotonic. It is seen that
localization in the first and second modes is strongest when kt = kt0, and in the
third and fourth modes it is strongest when kt =5kt0. Hence, when the intermediate
support consists of only a transverse spring, mode localization does not always
increase when the inter-span coupling becomes weaker. This is true for both the
TM and RM. To understand this phenomenon, consider the wave propagation at
the support. Figure 5 plots the frequency dependence of a vibration ratio d [31]

Figure 4. Amplitude ratio R as a function of transverse spring stiffness for forward precession
mode, a=0·3378, b=0·01, o=0, D=2%; (a) 1st, (b) 2nd, (c) 3rd, (d) 4th mode; TM (W), RM
(w) for kr = kr0; TM (T), RM (t) for kr =10kr0; TM (Q), RM (q) for kr =50kr0; TM (E), RM
(e) for kr =0. Representative modeshapes are shown; TM (——), RM (– – –).
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Figure 5. Vibration ratio d as a function of frequency v for the Rayleigh model, a=0·3378,
b=0·01, o=0, D=2%, kr =0; (a) kt = kt0, (b) kt =5kt0, (c) kt =10kt0, (d) kt =50kt0. Dashed curve
(– – –) shows the modulus of the transmission coefficient of the propagating wave (t11) at the support.
Natural frequencies are marked by dots (W) on the upper frequency axis.

and the wave transmission coefficient (t11) for the RM. d is the ratio of the
amplitudes of propagating waves on both sides of the support and is defined as

d=
z1+ r2 −2r cos ca

t
, ca =fa +fr +ft 2

p

2
−2g1l1, (20)

where r= =r11=, t= =t11=, fa =arg (ra ), ra is r11 at the left boundary, fr =arg (r11),
ft =arg (t11). It is noted that d$R since attenuating waves are neglected in d.
Nevertheless, they show the same qualitative trends [26, 32]. The natural
frequencies vj of the system are also marked (symbol W) on the frequency axis.
When d1 1, mode localization is very weak. From equation (20) and also shown
in the plots of Figure 5, d becomes unbounded when t approaches zero. The
frequency at which t11 =0 is the impedance mismatching frequency vimm .
Figure 5(a) shows the result for kt = kt0. It is seen that both v1 and v2 are close
to vimm , and thus the first and second modes experience the strongest localization
at kt = kt0. Similar reasoning can be applied to Figure 5(b). Note that vimm can be
solved directly from the condition t11 =0 or

2g2(g2
1 + g2

2 )= kt . (21)
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The analytical solution of the above equation shows that vimm increases rapidly
as kt is increased. This is depicted in Figures 5(c, d) which also show that the
increase of vj is limited by the eigenvalue inclusion principle [33]. Thus, for large
kt , strongest localization occurs at much higher modes.

4.3.    

It is well known that rotating shafts have forward precession and backward
precession modes with different natural frequencies. The mode shapes associated
with these two precession modes are generally different except for the hinged

Figure 6. Amplitude ratio R as a function of rotational speed b, a=0·3378, o=0, D=2%; (a)
1st, (b) 2nd, (c) 3rd, (d) 4th mode; TM (W), RM (w) for kt = kt0, kr = kr0; TM (T), RM (t) for
kt =10kt0, kr =10kr0; TM (Q), RM (q) for kt =50kt0, kr =50kr0. Representative modeshapes are
shown; TM (——), RM (–·–) for b=0; TM (– – –), RM (–··–) for b=1.
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Figure 7. Amplitude ratio R as a function of rotational speed b when kt =a, a=0·3378, o=0,
D=2%; (a) 2nd, (b) 4th mode; TM (W), RM (w) for kr = kr0; TM (T), RM (t) for kr =10kr0.
Representative modeshapes are shown; TM (——), RM (–·–) for b=0; TM (– – –), RM (–··–) for
b=1.

boundary condition [2]. Figure 6 shows R as a function of the rotation speed for
the forward precession mode under various support conditions. Results for the
second and fourth modes when kt =a are shown in Figure 7. It is seen that, for
kt finite, mode localization decreases with b, while for kt =a, it increases with
b. Figure 6 also shows that for bi-coupled systems, the effects of the rotation speed
are more pronounced when the modes are strongly localized. However, it
should be pointed out that in the practical range of the rotation speed
(b=0·11 9×104 rpm), the effects of speed on mode localization are basically
insignificant. Comparison of results shown in Figures 6 and 7 reveals that the
effects of rotation speed are more pronounced for the RM in the finite stiffness
cases, but more for the TM in the kt =a cases.

Figure 8 shows R as a function of the rotation speed for the backward precession
mode under different support conditions. Results for the second and fourth modes
when kt =a are shown in Figures 8(e) and 8(f), respectively. In general, for a
given b, the backward precession modes are more localized than the forward
precession modes. The effects of the rotation speed on the mode localization are
significant for both the RM and TM, and unlike the forward precession modes,
the trends do not constitute a pattern. In the second and fourth modes of
Figures 8(e) and (f), a mode delocalization phenomenon [27, 32] is observed in
which the localization first decreases and then increases as the rotation speed is
increased.

4.4.    

Figures 9 and 10 show the effects of axial loads, both tension and compression,
on the mode localization. Results shown in Figure 9 are for the cases with finite
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support stiffness, and results for the second and fourth modes when kt =a are
plotted in Figure 10. The range of loads applied is o=−0·050 0·05, where the
maximum compressive load is chosen to be smaller than the first buckling load
to ensure that v1 is real. For example, v1 =0·1433 at o=−0·05 when b=0·01,
kt = kt0 and kr = kr0 (weakest constraint case presented).

Results of Figure 9 show that, when kt is finite, mode localization decreases with
increasing tension and increases with increasing compression. On the other hand,
when kt =a, the trends of the effects reverse. Moreover, Figure 9 shows that for

Figure 8. Amplitude ratio R as a function of rotational speed b, a=0·3378, o=0, D=2%; (a)
1st, (b) 2nd, (c) 3rd, (d) 4th, (e) 2nd, (f) 4th mode. For (a)–(d), TM (W), RM (w) for kt = kt0, kr = kr0;
TM (T), RM (t) for kt =10kt0, kr =10kr0; TM (Q), RM (q) for kt =50kt0, kr =50kr0. For (e)–(f),
TM (W), RM (w) for kt =a, kr = kr0; TM (T), RM (t) for kt =a, kr =10kr0.
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bi-coupled systems, the effects of the axial strain are more pronounced when the
modes are strongly localized. It was mentioned by Lust et al. [27] that for a
two-span Timoshenko beam, an application of a compressive load can lead to a
slight delocalizing effect when kt =a (mono-coupled system). This phenomenon
is confirmed by our results in the second and fourth modes shown in Figure 10.
Comparison of plots in Figure 9 indicates that the RM and TM have similar
qualitative behaviour under the action of axial loads when the spring stiffness is
finite. However, when kt =a, mode localization in the RM appears to be
unaffected by changes in the axial load, as shown in Figure 10.

Figure 9. Amplitude ratio R as a function of axial load o, a=0·3378, b=0·01, D=2%; (a) 1st,
(b) 2nd, (c) 3rd, (d) 4th mode; TM (W), RM (w) for kt = kt0, kr = kr0; TM (T), RM (t) for
kt =10kt0, kr =10kr0; TM (Q), RM (q) for kt =50kt0, kr =50kr0. Representative modeshapes are
shown; TM (——), RM (–·–) for o=0; TM (– – –), RM (–··–) for o=−0·05.



0.05

0.01

0.00

0.02

0.03

0.04

–5 –4 –3 –2 –1 0 1 2 3 4 5

A
m

p
li

tu
d

e 
ra

ti
o

, 
R

(a)

3,41,2

3 4

2

1

Axial load,   (  10–2)

–5 –4 –3 –2 –1 0 1 2 3 4 5

(b)

3,4
1,2

3 4

2

1

Axial load,   (  10–2)

    149

Figure 10. Amplitude ratio R as a function of axial load o, a=0·3378, b=0·01, D=2%; (a) 2nd,
(b) 4th mode; TM (W), RM (w) for kr = kr0; TM (T), RM (t) for kr =10kr0. Representative
modeshapes are shown; TM (——), RM (–·–) for o=0; TM (– – –), RM (–··–) for o=−0·05.

4.5.        

In the study of mode localization in elastic beams on regularly spaced supports,
it is common to model the support as a mono-coupling constraint of a simple
support (kt =a) and a rotational spring [18]. However, it may be more realistic
for certain applications to model the support as a combination of transverse and
rotational springs with finite stiffness such that adjacent sub-spans are bi-coupled
and vibration energy is transferred through the two degrees of motion. Moreover,
our results have clearly indicated significant differences in the dynamic behaviour
of the rotating shaft system between finite and infinite stiffness cases. Thus the
issue of modelling of the span support is important in the study of mode
localization. Table 2 provides an overview of the differences in the effects of
systems parameters on the localization trends for the mono-coupled (kt =a, kr

finite) and bi-coupled (kt , kr finite) systems.
In addition to the results presented in sections 4.1 to 4.4, two other support

conditions should be mentioned in order to give a complete picture of the
localization patterns. Figure 11 shows the amplitude ratios (log scale) of the
second and fourth forward precession modes as a function of the rotational spring
stiffness for a bi-coupled TM system. The results for the mono-coupled system
(kt =a case) are also plotted for comparison. In the latter case, localization
increases as the rotational spring stiffness is increased or when the coupling
between spans becomes weaker. This is the classical result. However, for very large
transverse stiffness (say kr =5000kt0), the change in R follows the trend of the
mono-coupled system up to a certain value of kr , beyond which the system behaves
as a bi-coupled system. For the second mode, R decreases up to kr 1 50kr0 and
then increases with increasing kr . Thus, when the transverse support stiffness is
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T 2

Summary of the effects of system parameters on the mode localization for two models of the span support

Support model and coupling type

Range of parameters
System parameters mono-coupled bi-coupled considered in the analyses

Slenderness ratio, s V v 0·02E sE 0·1
Mode number V v Shown up to the fourth mode
Translational spring stiffness, kt V V See Figure 4
Rotational spring stiffness, kr V v See Figure 4
Rotational speed, b (forward V v 0E bE 1

precession)
Axial compression, −o v V 0E−oE 0·05E ocritical load

Axial tension, +o V v 0E oE 0·05

V degree of mode localization increases as the parameter in the first column increases.
v degree of mode localization decreases as the parameter in the first column increases.
Note: Also refer to two exceptional cases of the bi-coupled system in section 4.5.
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very large, the system may be treated as mono-coupled for small kr , but must be
treated as bi-coupled when kr is sufficiently large. For large, kr , R approaches a
constant, indicating again the weak dependence of localization on the rotational
span support stiffness in bi-coupled systems.

The case of a bi-coupled system with kr =0 is discussed in section 4.2 and the
impedance mismatching frequency vimm is defined. When the rotational spring
support is present, the wave propagation changes from the impedance
mismatching to a matching phenomenon [13] in which the reflection coefficient r11

can become zero. Define the impedance matching frequency vim as the frequency
at which r11 =0. It was shown that, for an Euler–Bernoulli beam, when a natural
frequency is close to vim , the corresponding mode is delocalized since vibration
energy is easily transmitted [26]. In relation to the vibration ratio d, when vj 1vim ,

Figure 11. Amplitude ratio R as a function of rotational spring stiffness for the forward precession
modes of TM, a=0·3378, b=0·01, o=0, D=2%; (a) 2nd, (b) 4th mode; kt =50kt0 (W), kt =50kt0

(T), kt =500kt0 (Q), kt =5000kt0 (E), kt =a (R).
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Figure 12. The reflection coefficient of the propagating wave (r11) at the support for forward
precession modes of (a) TM and (b) RM, a=0·3378, b=0·01, o=0; kt = kt0 and kr = kr0 (——),
kt =6kt0 and kr =6kr0 (–·–), kt =10kt0 and kr =10kr0 (– – –). Impedance matching frequencies occur
when r11 =0.

the jth mode becomes weakly localized and d1 1. Possible support conditions for
which the delocalization can occur were also discussed in reference [26]. It should
be noted that while there is only one real root for vim in both the Euler–Bernoulli
model [26] and the RM [see Figure 12(b)], the TM can have more than one root.
Figure 12(a) plots the wave reflection coefficient of the rotating shaft as a function
of frequency for three different support conditions. The three cases have either two
roots, one root, or no root. Based on Figure 12, it is thus possible for the rotating
shaft system (both RM and TM) to experience mode delocalization due to
impedance matching. Lust et al. [27] also reported a delocalization in Timoshenko
beams and attributed three factors to that occurrence. Note that, in contrast, there
is always one real root for vimm in both the RM and TM.

5. SUMMARY AND CONCLUSIONS

A numerical study is performed to investigate the mode localization in a
dual-span rotating shaft on regularly spaced bearing supports by introducing a
small disorder in the span length. The shaft is modelled as a rotating Timoshenko
beam subject to axial loads and its free response is evaluated by the phase closure
principle. The main findings of this work are as follows.

(1) The issue of modelling of the span support is important in the study of mode
localization. It is shown that significant differences exist between results for
the mono-coupled (simple support with finite rotational spring stiffness) and the
bi-coupled (finite transverse and rotational spring stiffness) systems. When the
transverse support stiffness is very large, the system may be treated as
mono-coupled for small rotational spring stiffness, but must be treated as
bi-coupled when the rotational stiffness is sufficiently large.

(2) For mono-coupled systems (kt =a and kr finite, or kt finite and kr =a),
the degree of mode localization increases monotonically with the support spring
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stiffness, as the strength of the inter-span coupling is weakened. In general, the
transverse support stiffness is a more important factor than the rotational stiffness
in determining the amount of mode localization. The degree of localization
depends weakly on the rotational spring stiffness except when the support has a
very large transverse spring stiffness.

(3) When the span support consists of only a transverse spring (i.e., strongly
coupled in rotation), mode localization does not always increase when the
inter-span coupling strength is decreased. This can be explained by the impedance
mismatching of the wave propagation at some particular modes. However, when
the support is constrained by both the transverse and rotational springs, wave
impedance matching occurs at some frequencies allowing energy to be transmitted
easily and mode delocalization is possible for both the Rayleigh and Timoshenko
models.

(4) In the practical range of rotational speed, mode localization of the forward
precession modes is slightly affected by changes in the speed. However, the effects
of rotation speed are significant for the backward precession modes.

(5) For bi-coupled systems, mode localization decreases with increasing tension
and increases with increasing compressive load. On the other hand, for
mono-coupled systems (simple support with finite rotational spring stiffness), the
trend of these effects reverse.

(6) The qualitative behaviour of mode localization is found to be similar for
both the Rayleigh and Timoshenko models. As the slenderness ratio increases, the
difference in mode localization between these two models becomes larger. In
general, localization is stronger in the Timoshenko model. For mono-coupled
systems, mode localization in the Rayleigh model is slightly affected by changes
in either the rotation speed or the axial load.
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APPENDIX A: REFLECTION AND TRANSMISSION MATRICES

When a set of waves are incident upon a point support consisting of transverse
and rotational springs (k1 and kr , respectively), dampers (ct and cr , respectively),
and a rotor mass m (with mass moment of inertia Jm ), the wave reflection and
transmission matrices at the support for a Timoshenko beam model are

r=
1
D $r11

r21

r12

r22% and t=
1
D $t11

t21

t12

t22%,
where, for Ae 0

D= {h1(2g1 − iHm )+ ih2(2g1 +Hm )}{2h1g2 −2ih2g1 +Hs (h1 − h2)},

r11 =−2h1h2g1(Hm −Hs )+ ih2
2Hs (2g2 +Hm )− ih2

1Hm (2g2 +Hs ),

r12 =−2h2[ih1{g2Hm +Hs (ig1 +Hm )}+ h2{g1Hm −iHs (g2 +Hm )}],

r21 =2h1[ih1{g2Hm +Hs (ig1 +Hm )}+ h2{g1Hm −iHs (g2 +Hm )}],

r22 =2ih1h2g2(Hm −Hs )+ h2
2Hm (2g1 − iHs )+ h2

1Hs (iHm −2g1),

t11 =2h2
2g1(2g2 +Hm )+2h2

1g1(2g2 +Hs )−2ih1h2{2g2
1 − g2(2g2 +Hm +Hs )},

t12 =2h2(h2g1Hm +ih1g2Hm + h1g1Hs +ih2g2Hs ),

t21 =−2h1(h2g1Hm +ih1g2Hm + h1g1Hs +ih2g2Hs ),

t22 =2h2
1g2(2g1 − iHm )+2h2

2g2(2g1 − iHs )+2h1h2{2ig2
2 − ig2

1 − g1(Hm +Hs )},

Hm = kr +icrv− Jmv2, and Hs = kt +ictv−mv2,

and, for AQ 0

r and t can be obtained by replacing ig1 and g2 in the above expressions with g1

and ig2, respectively. In this case, note that h1 and h2 are given by equations
(15a, b).

Note that, for convenience, overbars for non-dimensional quantities have been
dropped in the above expressions. For the system shown in Figure 1, rbc and tbc

can be obtained by setting ct = cr =m= Jm =0. Detailed derivations of r and t
can be found in reference [13].
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