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The differential equations governing free, in-plane vibrations of non-circular
arches, including the effects of rotatory inertia, shear deformation and axial
deformation, are derived and solved numerically to obtain frequencies and mode
shapes. The lowest four natural frequencies are calculated for the parabolic,
elliptic and sinusoidal geometries with hinged—hinged, hinged—clamped, and
clamped—clamped end constraints. A wide range of arch rise to span length ratios,
slenderness ratios, and two different values of shear parameter are considered. The
agreement with results determined by means of a finite element method is good

from an engineering viewpoint.
© 1999 Academic Press

1. INTRODUCTION

The problem of the free vibration of arches has become a subject of interest for
many investigators due to its importance in many practical applications. The
governing equations and the significant historical literature on the in-plane
vibrations of elastic arches are reported in references and their citations. Den
Hartog [1], Wolf [2], Veletsos et al. [3], Laura et al. [4], Maurizi et al. [5] and
Chidamparam and Leissa [6] calculated the natural frequencies of circular arches.
For non-circular arches, Volterra and Morell [7], Romanelli and Laura [8], Wang
[9], Gutierrez et al. [10], Lee and Wilson [11] and Oh [12] analyzed the free
vibration of arches with various geometries. Although there is considerable
research on the free vibration analysis of arches, most work has been done within
the scope of Bernoulli-Euler or Rayleigh beam theory. These theories are
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recognized as adequate for the usual engineering problems. However, for arches
having large cross-sectional dimensions in comparison with their span length, and
for arches in which higher modes are required, Timoshenko beam theory which
takes into account the rotatory inertia and shear effects gives a better
approximation to the true behavior.

Considerable research has been devoted to study the effects of rotatory inertia
and shear deformation on straight beam vibrations. In the case of arches, Austin
and Veletsos [13], Davis et al. [14], Irie et al. [15, 16] and Issa et al. [17] included
the effects of rotatory inertia and shear deformation on frequencies of circular
arches. Recently, Kang et al. [18] computed the frequencies using the differential
quadrature method; and Yildirim [19] calculated the natural frequencies using the
transfer matrix method, but these are for only the circular arch, which has the
simplest geometry.

For non-circular arches, Suzuki and Takahashi [20] analyzed the free vibration
of elliptic arches with hinged and clamped ends; Tseng et al. [21] recently
calculated the first six natural frequencies for parabolic and elliptic arches.

The main purpose of this paper is to investigate the free vibrations of
non-circular arches based on the Timoshenko beam theory. The differential
equations are derived for the in-plane free vibration of linearly elastic arches of
uniform stiffness and constant mass per unit length. The effects of rotatory inertia,
shear deformation and axial deformation are included.

The governing equations were solved numerically for the parabolic, elliptic and
sinusoidal geometries with hinged—hinged, hinged—clamped, and clamped—
clamped end constraints. The lowest four natural frequencies are calculated over
a range of non-dimensional system parameters: the arch rise to span length ratio,
the slenderness ratio and the shear parameter.

2. MATHEMATICAL MODEL

The geometry of the non-circular arch with uniform cross-section, symmetric
about the crown, is defined in Figure 1(a). Its span length, rise, and shape of the
middle surface are /, i, and y(x), respectively. Its radius of curvature p, a function
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Figure 1. (a) Arch geometry; (b) loads on an arch element.
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of the co-ordinate x, has an inclination ¢ with the x-axis. Shown in Figure 1(a)
are the positive directions of radial and tangential displacements, w and v, and
positive direction of the rotation angle y of the cross section at point ¢.

A small element of the arch shown in Figure 1(b) defines the positive directions
for its loads: the axial forces N; the shear forces Q; the bending moments A ; the
radial inertia force P,; the tangential inertia force P,; and rotatory inertia couple
T. With the inertia forces and the inertia couple treated as equivalent static
quantities, the three equations for “dynamic equilibrium” of the element are

dN/d¢ + Q —pP,=0, dQ/d¢p — N —pP, =0,
(1/p)dMjd¢ —Q + T =0. (1-3)
The rotation of the tangent to the centroidal axis, given in reference [22], is

@ = (1/p)(dw/d¢ — v). 4)

When shear deformation is considered, the rotation of the tangent to the
centroidal axis may be expressed as

P =y +p. (5

where f§ is the angular deformation due to shear.
From equations (4) and (5), one obtains

p=1/p)(dw/d¢ —v — py). (6)

The bending moment, normal force and shear force with inclusion of the effects
of rotatory inertia, shear deformation and axial deformation, as given in reference
[23] are

M= —(Ellp)',  N=(EA/p)v" +w)+ (El/p )’
Q = kAGp = (kAG|p)(W" — v — p¥), (7-9)

where (") = d/d¢, E is the Young’s modulus, 7 is the area moment of inertia of
cross-section, A4 is the cross-sectional area, k is the shape factor of cross-section,
and G is the shear modulus.

The arch is assumed to be in harmonic motion, or each displacement component
is proportional to sin (wt), where w is the angular frequency and ¢ is time. The
inertia loadings are then

P, = —yAw’w, P = —yAw’, T = —ylo*y, (10-12)

where 7y is mass density of arch material.

To facilitate the numerical studies, the following non-dimensional system
variables are defined. The arch rise to span length ratio f, the slenderness ratio
s and the shear parameter u are, respectively,

f=hll, s=I1./1/]A, u=kGJE. (13-15)
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The co-ordinates, the displacements and the radius of curvature are normalized
by the span length /:

S=x/l, n=y/l; o=w/l, A=v/l; ({=p]l (16-18)
The frequency parameter is
C= w,»sl\/y/iE, 19)

which is written in terms of the ith frequency w = w,, i=1,2,3,4,....
When equations (7-12) are substituted into equations (1-3) and the
non-dimensional forms of equations (13—19) are used, the results are

R e e A (T Vi N (R i U
(20)
R S R e S R (R R B G
20+ s QD)

Y=Y+ (st = sTCH)CY — (s + Lus®A. (22)
The boundary conditions for hinged ends are
0=0, =0, Y =0, (23)

where the last condition assures that the moment M given by equation (7) is zero.
The boundary conditions for clamped ends are

§=0, A=0 y=0. (24)

3. GEOMETRIC FUNCTIONS: ¢, { AND {’

The geometric functions ¢, { and {’ contained in the governing differential
equations (20-22) are computed as follows [11]. The non-dimensional form of the
given arch shape y = y(x) is

n=n(c). (25)
By definition
¢ =mn/2 —tan”' (dn/dS), (= (d/d&)7L + (dn/dE)T2 (26, 27)

Both ¢ and { are computed from derivatives of equation (25) and are expressed
as functions of the single variable y. Then &’ is calculated from the derivatives of
equations (26) and (27) by using

{7 = (d{/dS)(dS/dg). (28)

The non-dimensional equation for the parabolic arch of span length / and rise
h is

n=—4C¢C-1, 0<i<I (29)
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Figure 3. Examples of mode shapes. (a) Hinged—hinged; (b) hinged—clamped; (c) clamped—clamped.

The general equation for the elliptic arch in non-dimensional form, which has
span length /, rise /&, and a co-ordinate system (x, y) originating from the left
support as shown in Figure 2(a), is

n=(b/b)[b} — (& — 12"+ f—b,, 0<EL, (30a)
TABLE 1
Comparison of results between finite element method (ADINA) and
this study
Frequency parameter, C;

Geometry of arch i ADINA This study
Parabolic 1 21-81 21-83
hinged-hinged, 2 55-80 56-00
f=03,5=75, 3 101-7 102-3
uw=03 4 113-4 113-4
Elliptic (¢ = 0-5) 1 35-26 3525
hinged—clamped, 2 56-99 57-11
f=02, s=150, 3 83-05 83-00
uw=03 4 128-1 128-2
Sinusoidal (¢ = 0-5) 1 56-25 56-30
clamped—clamped, 2 66-25 66-14
f=0-1, s =100, 3 1149 114-3
u=03 4 181-7 181-7




Frequency parameter C; for hinged—hinged arches

TABLE 2

Frequency parameter C;

A

uw=01 u=03

r A N A Al

f s Shapet i=1 i=2 i=3 i=4 i=1 i= i= i =
0-01 30 Parabolic 9-650 33-23 6377 94-16 9974 3747 7921 9425
Elliptic 9:654 3323 6377 9410 9979 3746 7921 9425
Sinusoidal 9-646 33-24 63-77 94-19 9971 3747 7921 9425

60 Parabolic 10-66 37-61 80-15 133-0 1074 3894 86-25 1499
Elliptic  10-68 37-61 80-16 133-0 10-76 3894 86:26 1499

Sinusoidal 10-65 37-61 80-15 1330 10-73 3894 86:25 1499

100 Parabolic 12-17 3876 8543 147-5 1220 3926 8788 1549
Elliptic  12-22 3876 8545 1475 1225 3926 8791 1549

Sinusoidal 12-15 38-76 8541 147-5 12:17 3926 87-87 1549
0-1 30 Parabolic 22-31 30-54 6093 8971 22:48 3421 7494 93-87
Elliptic 2239 3040 61-08 8857 2259 3405 7500 93-82
Sinusoidal 22-23  30-64 60-86 90-52 22-38 34-32 7493  93-84

60 Parabolic 34-48 41-53 76:92 126-:0 3564 41-67 8226 1411
Elliptic  34-33 4132 7780 1253 3547 41:56 83-02 1402

Sinusoidal 34-59 41-57 7644 1264 3575 41-66 8186 141-6

100 Parabolic 3551 6424 86:66 1394 3595 6476 8835 1460
Elliptic 3535 62:03 90-24 1388 3579 62:69 9179 1453

Sinusoidal 35-62 6572 84:31 1397 36:06 6610 86-14 1464
0-2 30 Parabolic 24-80 3650 53-72 81-56 2740 3679 6452 9123
Elliptic 2449 36:21 54-29 8029 27-04 36:75 6473 9101
Sinusoidal 25-03 36-59 5348 82:36 27-66 3674 6448 91-18

60 Parabolic 2776 61-71 7663 1104 28-57 6464 77-88 1222
Elliptic  27-40 59-26 7990 109-3 2820 6199 81-33 120-8

Sinusoidal 28-02 6345 7440 111-0 28-84 6664 7541 1229

100 Parabolic 2852 67-10 120-8 123-1 28-83 6868 1233 1259
Elliptic 2815 6524 119-8 1264 2846 6674 1247 1268

Sinusoidal 28-79 68-18 121-2 1215 2910 69-80 1213 1266
0-3 30 Parabolic 1920 43-35 46:60 71-09 20-89 4542 52-51 8565
Elliptic  18-84 41-89 48-18 70-34 2048 4481 5316 8509
Sinusoidal 19-48 44-33 4556 71-47 21-20 45-50 52-43 8543

60 Parabolic 21-21 52-72 9090 92-53 2173 55-52  91-03 101-0
Elliptic  20-80 51-85 9170 92-20 21-30 5457 9243 99-99

Sinusoidal 21-52  53-12 9029 93-00 22:04 5597 90-37 101-5

100 Parabolic 21-72 5527 9993 146-1 2190 56-37 1034 1485
Elliptic 2129 5446 99-04 1457 21-47 5554 102-5 1489

Sinusoidal 22:03 5566 100-4 146:4 22:21 56-77 1040 1482
04 30 Parabolic 1478 36:11 4920 60-04 1586 41-58 49-28  73-95
Elliptic 14-44 3585 4946 5973 1548 4122 49-58  73-85
Sinusoidal 15-04 36-14 4921 60-13 16-14 41-56 49-38  73-46
60 Parabolic 16-11 42-10 7566 9729 1642 4396 8137 9777
Elliptic 1572 41-79 7515 97-62 16-:03 4361 8079 98-19
Sinusoidal 16-40 42-21 75994 9723 1671 44-08 81:69 97-68

100 Parabolic 1643 43-77 80-71 124-8 1652 4449 83-02 130-1
Elliptic  16-04 43-44 80-13 1239 1613 44-14 82:41 1292

Sinusoidal 16-72 43-91 81-05 1253 16:81 44-63 83-38 130-7

1 For the elliptic and sinusoidal arches, ¢ = 0-5.



Frequency parameter C; for hinged—clamped arches

TABLE 3

Frequency parameter C;

uw=01 uw=03
r A N A A
f s Shapet i=1 i=2 i=3 i=4 i=1 i= i= i =
0-01 30 Parabolic 13-71 37-67 6699 94-20 1491 45-11 8730 9425
Elliptic 1371 3767 6699 9416 1491 45-11 8730 94-25
Sinusoidal 13-71 3767 6699 9422 1491 4511 8730 9425
60 Parabolic 1544 45-81 89-55 1421 1579 4861 9929 1652
Elliptic 1545 4581 89-56 1420 1580 48-61 9929 1651
Sinusoidal 15-44 45-81 89-54 142-1 1579 4862 9928 1652
100 Parabolic 16-70 48-33  98-20 1623 1682 4945 1024 1733
Elliptic 1671 48-33 9820 162-3 16:83 4944 1024 1732
Sinusoidal 16:69 48-33 9819 1623 1681 4945 1024 1733
0-1 30 Parabolic 23-53 3505 6430 9059 24-08 41-61 8293 93-88
Elliptic 2353 3490 6447 8946 2410 41-44 83-:00 93-82
Sinusoidal 23-51 35-16 6421 9139 2406 41-75 8289 93-88
60 Parabolic 39-62 44-22 8626 1346 4048 4600 94-87 1551
Elliptic 3975 4360 8698 133-8 40-60 4546 9543 1539
Sinusoidal 39-48 44-66 85-83 135-1 40-34 4640 94-54 1558
100 Parabolic 44-12 64-54 9786 153:6 4509 6500 101-1 1634
Elliptic ~ 44-15 6270 100-3 1529 45-13 63-31 1034 1626
Sinusoidal 44-08 6579 9628 154-0 4504 6614 9970 1638
0-2 30 Parabolic 2833 37-10 5742 8317 32-37 3831 7217 9123
Elliptic 2811 36:59 5800 81-74 32:25 37-87 72:39 9105
Sinusoidal 28-49 37-39  57-11 84-14 3244 38-61 72:07 9122
60 Parabolic 3423 6476 8163 1186 3597 6720 8593 1348
Elliptic 3398 62:13 8454 1174 3573 64-82 8851 1332
Sinusoidal 34-40 66-75 79-50 1194 36-14 6891 84-15 1358
100 Parabolic 3598 7598 1229 1342 36:68 7854 123-5 1415
Elliptic 3572 73-44 1253 1337 36:42 7587 1265 1404
Sinusoidal 36:-16 77-62 121-2 1347 36:86 8029 1216 1421
0-:3 30 Parabolic 22-60 44-:00 49-69 73:39 2575 4549 59-57 8565
Elliptic =~ 22:29 42-58 51-08 72-46 2541 44-83 60-06 85-40
Sinusoidal 22-84 44-98 4875 7390 2599 4583 59-38  85-56
60 Parabolic 26-56 59-54 90-99 100-5 27-68 6403 9141 1123
Elliptic ~ 26:20 5820 92-15 9976 2732 6247 9290 111-2
Sinusoidal 26-81 60-30 90-38 101-0 2795 6493 90-64 1130
100 Parabolic 27-69 64-03 1109 147-7 2813 6593 1162 1491
Elliptic ~ 27-33 62-:85 109-8 148-0 2776 64-71 1150 1499
Sinusoidal 27-96 64-70 111-6 1477 2839 6663 1169 148-7
04 30 Parabolic 17-77 3941 4943 6272 1986 47-00 4997 7828
Elliptic 1747 3885 4986 62-33 19-52 4573 51-02 7811
Sinusoidal 18-00 39-63  49-32  62:87 20-11 47-66 4948 77-53
60 Parabolic 20-39 4853 82-81 9731 21-09 51-63 91-07 9777
Elliptic ~ 20-05 4799 82-15 97-63 20-74 51-04 9025 9822
Sinusoidal 20-65 48-79 83-19 9728 21-36 5193 9153  97-68
100 Parabolic 21-11 5141 9026 1346 2136 52:66 9377 1416
Elliptic ~ 20-75 50-86 89-53 1336 21-01 52:09 93-:00 140-4
Sinusoidal 21-37 5169  90-69 1353 2162 5295 9424 1423

1 For the elliptic and sinusoidal arches, ¢ = 0-5.



TABLE 4

Frequency parameter C; for clamped—clamped arches

Frequency parameter C;

uw=01 uw=03
r A N A A
f s Shapet i=1 i=2 i=3 i=4 i=1 i=2 i= i =
0-01 30 Parabolic 1810 41-68 6996 94-21 20-75 52-72 9425 95-00
Elliptic 1810 41-:68 6996 94-19 20-75 5272 9425 95-00
Sinusoidal 18-10 41:68 6996  94-22 20-75 52-72 9425 9500
60 Parabolic 21-37 54-18 9870 1507 22-26 59-05 1127 180-4
Elliptic ~ 21-37 54-18 9870 150-7 22:25 59-04 112-7 1803
Sinusoidal 21-38 54-18 98-69 1507 22-27 59-05 1127 180-4
100 Parabolic 22-83 58-62 1113 1772 23-17 60-66 117-8 192-3
Elliptic ~ 22-81 58-62 1114 1772 2315 6066 117-8 1923
Sinusoidal 22-85 58-63 111-3 1772 23-18 60-67 117-8 192-3
0-1 30 Parabolic 2593 3885 6742 91-14 2743 4871 90-62 93-88
Elliptic 2580 3873 67-60 90-06 2729 48-57 90-67 93-82
Sinusoidal 26:01 38-94 67-31 91-88 27-52 48-82 9060 93-88
60 Parabolic 42-89 50-36 9536 1427 4326 5469 1079 168-0
Elliptic ~ 42:28 50-23 9598 1417 4271 54-56 1083 1663
Sinusoidal 43-29 50-45 9497 143-3 4363 5479 107-6 169-2
100 Parabolic 54-39 64-61 110-1 167-6 5621 6504 1154 1812
Elliptic =~ 5426 62:85 11199 1668 56-:08 6343 117-0 180-4
Sinusoidal 54-49 65-81 1089 1681 5630 66-14 1143  181-7
0-2 30 Parabolic 3271 3727 60-83 8441 3811 4017 7968 9123
Elliptic 3242 36:69 6141 82:87 3771 39-85 79-87 91-06
Sinusoidal 32-91 37-62 60-50 85-51 38-37 4042 7960 91-23
60 Parabolic 4178 6601 88-59 1262 4496 6795 9653 1469
Elliptic 4145 63-52  91-03 1247 4462 6589 9840 144-8
Sinusoidal 42-01 67-82 86:86 1272 4521 6937 9530 1483
100 Parabolic 44-84 84-10 1256 1462 46-16 87-63 1265 1567
Elliptic ~ 44-51 80-76 128-8 144-8 45-82 84-07 1299 1551
Sinusoidal 45-09 86-45 1234 147-1 46:41 90-17 1242 1577
0-:3 30 Parabolic 2643 4415 53-00 7537 3166 4550 66:60 8565
Elliptic =~ 26:09 42-85 5419 7424 3126 44-83 6697 8548
Sinusoidal 26-68 45-03 5224 76:04 3195 4591 6644 8559
60 Parabolic 3291 6593 92-09 107-8 3501 72-10 93-:06 123-5
Elliptic ~ 32:50 6399 9375 1066 34-58 69-72 9508 1219
Sinusoidal 33-21 67-15 91-13 1085 3533 7368 9179 1245
100 Parabolic 34-99 73-11 122-3 1482 3583 76:06 1297 149-2
Elliptic ~ 34-56 71-47 121-1 1486 3540 7434 1283 1501
Sinusoidal 35-30 74-08 123-1 148-0 36-15 77-10 1306 1488
04 30 Parabolic 2118 4226 4992 6515 2472 48-63 5458 78-35
Elliptic  20-85 41-33 50-66 6463 2434 4749 5540 78-38
Sinusoidal 21-42 42-76  49-59  65-37 25-00 49-30 54-17 78-03
60 Parabolic 2563 5505 89-87 9732 2696 59-78 9777 1011
Elliptic 2523 5426 8913 97-63 26-54 5887 9822 100-2
Sinusoidal 25-92 55-47 90-30 97-29 2727 6027 97-68 1016
100 Parabolic 26-97 59-52 100-1 1434 2748 61-51 1051 1509
Elliptic ~ 26:55 5875 9921 142-1 2706 60-71 1041 149-7
Sinusoidal 27-28 59-94 100-6 1442 27-79 6196 1056 1518

1 For the elliptic and sinusoidal arches, ¢ = 0-5.
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where
by = (1 + 2¢)/2, by = fI[1 — 2(e + )"?/(1 + 2¢)]. (30b, ¢)

Finally, the non-dimensional equation for the sinusoidal arch shown in Figure 2(b)
18

n=f—c + c sin (¢ + ce), 0<éEL, (31a)
where
¢ = f/[1 — sin (¢;¢)], ¢ =w/(1 + 2e¢). (31b, ¢)

For the above arch geometries, ¢, { and {" are calculated in a straightforward
manner from equations (29-31), respectively, with use of equations (26-28).

4. NUMERICAL METHOD AND COMPUTED RESULTS

Based on the above analysis, a general Fortran computer program was written
to calculate the frequency parameters C; and the corresponding mode shapes
0 =10,(¢) and 4 = A/(¢). The numerical methods similar to those described by
Veletsos et al. [3] and Lee and Wilson [11] were used to solve the differential
equations (20-22), subject to the end constraints as given in equations (23) and
(24). The hinged-hinged, hinged—clamped and clamped—clamped end constraints
were considered for each of the three arch geometries, for given parameters f, s,
u and e. (Recall that ¢ is needed for elliptic and sinusoidal geometries only.) First,
the Determinant Search Method combined with the Regula—Falsi method was
used to calculate the characteristic values C;, and then the Runge-Kutta method
was used to calculate the mode shapes. In this study, the lowest four values of C;
and the corresponding mode shapes were calculated.

The numerical results are shown in Tables 1-4 and Figure 3. A value of ¢ = 0-1
corresponds to a wide-flange steel section and u = 0-3 corresponds approximately
to a solid rectangular metal section.

The first series of numerical studies are shown in Table 1. These studies served
as an approximate check on the analysis presented herein. For comparison
purposes, finite element solutions based on the finite element program ADINA
were used to compute the lowest four frequency parameters C; for three cases: a
hinged—hinged parabolic arch with = 0-3, s = 75 and p = 0-3; a hinged—clamped
elliptic arch with f=0-2, s =50, u =0-3 and ¢ = 0-5; and a clamped—clamped
sinusoidal arch with f=0-1, s = 100, £ = 0-3 and ¢ = 0-5. The ADINA results
were calculated using 100 beam elements. The agreement is good for all cases
considered.

Tables 2—4 depict the lowest four values of the frequency parameters C; for
parabolic, elliptic and sinusoidal geometries with hinged—hinged, hinged—clamped
and clamped—clamped end constraints. From these and other results, the following
conclusions were reached. (1) The C; values always increase as the slenderness ratio
s increases. (2) The C; values are always somewhat higher with g = 0-3 than with
u = 0-1, other parameters remaining constant. (3) For a given set of arch
parameters and matching end constraints, the arch geometry has little effect on
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the frequency parameters C:. (4) As the end constraint increases on all three arch
geometries, from hinged—hinged to hinged—clamped to clamped—clamped, each
value of C; increases, other parameters remaining constant.

Shown in Figure 3 are the computed frequency parameters C; and their
corresponding mode shapes for hinged—hinged, hinged—clamped and clamped—
clamped parabolic arches with f=0-2, s = 50 and u = 0-1. In Figure 3, the C,
values and the chain line are the frequency parameters and their corresponding
mode shapes for arch without rotatory inertia and shear deformation as obtained
by Oh [12].

5. CONCLUSIONS

The differential equations for in-plane vibrations of noncircular arches,
including the effects of rotatory inertia, shear deformation and axial deformation,
were derived and solved numerically. There is very good agreement between the
results of the present analysis and ADINA. For three arch geometries (parabolic,
elliptic and sinusoidal), the effects of each of the three parameters f, s and u on
C; were investigated. The methods presented here for calculating frequencies and
mode shapes for noncircular arches were found to be efficient and reliable over
a wide range of system parameters. In this paper, numerical results were provided
only for the parabolic, elliptic and sinusoidal arches; however, the approach
presented here can also be extended to arches of other geometries with little effort
in section 3.

ACKNOWLEDGMENTS

The first author extends his thanks to the Korea Science and Engineering
Foundation for financial support; and to Korea Advanced Institute of Science and
Technology for providing the facilities and the appointment of Post-Doctoral
Fellow to do this research in 1997.

REFERENCES

1. J. P. DEN HARDOG 1928 Philosophical Magazine 5, 400—408. The lowest natural
frequency of circular arcs.

2. J. A. Worr Jr. 1971 Journal of the Structural Division, American Society of Civil
Engineers 97, 2337-2350. Natural frequencies of circular arches.

3. A.S. VELETSOS, W. J. AUsTIN, C. A. L. PEREIRA and S. J. WUNG 1972 Journal of the
Engineering Mechanic Division, American Society of Civil Engineers 98, 311-329.
Natural frequencies of circular arches.

4. P. A. A. LAUrA, P. L. VERNIERE DE IRASSAR, R. CARNICER and R. BERTERO 1988
Journal of Sound and Vibration 120, 95-105. A note on vibrations of a circumferential
arch with thickness varying in a discontinuous fashion.

5. M. J. Maurizi, R. E. Rosst and P. M. BELLES 1991 Journal of Sound and Vibration
144, 357-361. Lowest natural frequency of clamped circular arcs of linearly tapered
width.

6. P. CHIDAMPARAM and A. W. LEissA 1995 Journal of Sound and Vibration 183, 779-795.
Influence of centerline extensibility on the in-plane free vibrations of loaded circular
arches.



10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

NON-CIRCULAR ARCHES 33

. E. VOLTERRA and J. D. MORELL 1960 Journal of Applied Mechanics 27, 744-746. A
note on the lowest natural frequency of elastic arcs.

E. RoMANELLI and P. A. A. LAURA 1972 Journal of Sound and Vibration 24, 17-22.
Fundamental frequencies of non-circular, elastic, hinged arcs.

T. M. WANG 1975 Journal of Sound and Vibration 41, 247-251. Effect of variable
curvature on fundamental frequency of clamped parabolic arcs.

R. H. GUTIERREZ, P. A. A. LaUrA, R. E. Rossi, R. BERTERO and A. VILLAGGI 1989
Journal of Sound and Vibration 129, 181-200. In-plane vibrations of non-circular arcs
of non-uniform cross-section.

B. K. LEg and J. F. WILsON 1989 Journal of Sound and Vibration 136, 75-89. Free
vibrations of arches with variable curvature.

S. J. On 1997 Ph.D. Thesis, Wonkwang University. Free vibrations of arches with
variable cross-section.

W. J. AusTiN and A. S. VELETSOS 1973 Journal of the Engineering Mechanics Division,
American Society of Civil Engineers 99, 735-753. Free vibration of arches flexible in
shear.

R. Davis, R. D. HENSHELL and G. B. WARBURTON 1972 Journal of Sound and Vibration
25, 561-576. Constant curvature beam finite elements for in-plane vibration.

T. IriE, G. YAMADA and K. TAKAHASHI 1979 Ingenieur-Archiv 48, 337-346. In-plane
vibration of Timoshenko arcs with variable cross-section.

T. IRiE, G. YAMADA and K. TANAKA 1983 Journal of Applied Mechanics 50, 449-452.
Natural frequencies of in-plane vibration of arcs.

M. S. Issa, T. M. WANG and B. T. Hstao 1987 Journal of Sound and Vibration 114,
297-308. Extensional vibrations of continuous circular curved beams with rotary
inertia and shear deformation, I: free Vibration.

K. KaANG, C. W. BERT and A. G. StRIZ 1995 Journal of Sound and Vibration 181,
353-360. Vibration analysis of shear deformable circular arches by the differential
quadratic method.

V. YiLDIRIM 1997 Computers & Structures 62, 475-485. A computer program for the
free vibration analysis of elastic arcs.

K. Suzuki and S. TAKAHASHI 1979 Bulletin of the Japan Society of Mechanical
Engineers 22, 1284-1292. In-plane vibrations of curved bars considering shear
deformation and rotatory inertia.

Y. P. TsenG, C. S. HUANG and C. J. LiN 1997 Journal of Sound and Vibration 207,
15-31. Dynamic stiffness analysis for in-plane vibrations of arches with variable
curvature.

J. HENRYCH 1981 The Dynamics of Arches and Frames. Amsterdam: Elsevier.

S. F. BorG and J. J. GENNARO 1959 Advanced Structural Analysis. New Jersey: Van
Nostrand.



	1. INTRODUCTION
	2. MATHEMATICAL MODEL
	Figure 1. 

	3. GEOMETRIC FUNCTIONS
	Figure 2. 
	Figure 3.
	Table 1
	Table 2.
	Table 3.
	Table 4.

	4. NUMERICAL METHOD AND COMPUTED RESULTS
	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

