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A turbomachinery blade is treated as a cylindrical thin panel with curvature and
twist. The non-linear strain—displacement relations of the model are derived based
on the general thin shell theory, and a numerical method for analysing the free
vibrations of curved and twisted cylindrical thin panels is presented by means of
the principle of virtual work for the free vibration using the Rayleigh—Ritz
method, assuming two dimensional polynomial functions as displacement
functions. It is shown that the method is effective in solving free vibration
problems for cylindrical thin panels with curvature and twist by comparing the
numerical results with previous results. The effects of curvature and twist on the
frequency parameters and mode shapes are also discussed.

© 1999 Academic Press

1. INTRODUCTION

Blades are often part of machinery rotating at high speed, so it is very important
to ensure safety while rotating. The configuration of turbomachinery blades is
complex, usually thin with a small aspect ratio, twisted in the lengthwise direction
and cambered in the chordwise direction. That is the reason why so many
researchers have studied them for the past few decades.

There are hundreds of references related to the vibration problems of
turbomachinery blades in published literature. It is known that the important
things are what kind of a model is used for representing the blades and how the
governing equations of the model are established. In the early researches, the
vibration analysis of the blades was based on beam theory, which has some
limitations, and is inadequate for evaluating the higher vibration frequencies and
modes of a thin blade with a small aspect ratio. Two-dimensional models were then
introduced to study the vibration of the blades.

A comprehensive review of the research advances in the vibration of shallow
shells since the 1970s was presented by Liew et al. [1]. A series of studies using
the Rayleigh—Ritz method was begun in the early 1980s. More than a decade ago,
Leissa and his co-workers presented a doubly-curved shallow shell model having
rectangular planform [2-5] which can be used for analysing blades having
relatively small double curvatures very well, but is inadequate for blades having
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large curvatures and large twist. Liew et al. presented shallow shell models [1],
such as the shallow conical shell model, the shallow cylindrical model with variable
thickness, and analysed the vibration characteristics of these models. Leissa, Liew
and their co-workers have done a lot of work on the vibrations of the
turbomachinery blades and the effects of geometric parameters on the vibration
characteristics based on shallow shell theory.

On the other hand, Tsuiji et al. proposed that a blade be treated as a thin plate
having curvature and twist [6, 7], in which they studied the effects of curvature,
twist and other geometric parameters on the vibration characteristics of the model
in detail using general thin shell theory. In particular, they presented a model of
a cylindrical thin panel having twist which represented turbomachinery blades [8].
The Rayleigh—Ritz method was used for the numerical procedure of vibration
analysis of the model. Compared with other methods, it was verified that the
procedure is effective and accurate for dealing with a cylindrical thin panel having
large twist and chordwise curvature. But, the vibrations of shell models having
both spanwise and chordwise curvatures, as well as twist, have not been previously
studied.

It was pointed out that the non-linear strain—displacement relations are
necessary for analysing the vibration of rotating blades [6]. In the present paper,
turbomachinery blades are treated as cylindrical thin panels having twist,
chordwise and spanwise curvatures. The non-linear strain—displacement
relationships of the model are derived and then the principle of virtual work for
free vibration is formulated. The Rayleigh—Ritz method, assuming two-dimen-
sional algebraic polynomials as displacement functions, is used for analysing the
vibration of the model. The effectiveness of this method is verified by comparing
the present results with the available results [5]. Finally, the effects of the geometric
parameters of the model on the vibration characteristics are studied.

2. STRAIN-DISPLACEMENT RELATIONSHIPS

A model of turbomachinery blades shown in Figure 1 is considered, which is
a cylindrical thin panel having twist, chordwise and spanwise curvatures. There
are two co-ordinate systems in Figure 1. One is a right-hand co-ordinate system
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Figure 1. A curved and twisted cylindrical thin panel.
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(x, y, z’) with the origin O, where x is a curvilinear axis in the lengthwise direction,
which is considered as a twisting center axis, the z’-axis takes in the radial direction
where the cylindrical arc is equally divided into two parts, and O is a point on
the z’-axis. Another is a cylindrical co-ordinate system with the origin O, at the
center of the cylinder, where 0 is an angle measured from the z’-axis, and s-axis
takes in the circumferential direction on the middle surface. ©,, r and b are the
central angle, the average radius and the arc length of the cylindrical panel
respectively. 1/R is the curvature of the x-axis, / is the length of the panel along
the x-axis, £, is the central angle (€2, = [/R), k is the twist angle per unit length,
e is the distance between the two points O and O,, and the z-axis is normal to
the middle surface with the outward direction considered positive. ¢ is the angle
between the y-axis and the radial direction of the x-axis in the fixed end of the
panel. k/ is the twist angle at the free end of the panel.

ij, i, and i; are the unit vectors of the co-ordinate system (x, y, z’). A position
vector of a point on the middle surface before deformation is defined by rY

r” =p, +rsin6i, + (r cos 0 — e)is, (1)

where p, is the position vector of the point on the x-axis.
The partial derivatives of r with respect to x and s (r0) are defined as the base
vectors a, and a, on the middle surface, respectively,

orl . . .
a; = 6)2 = Ai, + k(e — r cos 0)i, + kr sin 0is, 2)
or® . . .
a, = r(’)(Q = cos 0i, — sin 0i;. 3)

A unit vector perpendicular to the middle surface is denoted by a;, which is chosen
so that a,, a, and a; form a right-hand orthogonal system,

a; = a; X a,/|a; X a;| = (1/B)(—ek sin 0i, + A4 sin 0i, + A4 cos 0i;), 4)

where A and B are defined in Appendix, and other coefficients used in the
following equations are also defined in Appendix.

An arbitrary point P outside the middle surface of the panel is considered and
its position vector r” before deformation is given by

K = £ 4 zay, 5)

where z is the distance of the point P from the middle surface in the direction of
a;. The partial derivatives of r® with respect to x, s and z are defined as base
vectors g; (i = 1, 2, 3) respectively. They are given by

©
g = Larx = (A4 + zew)iy + {k(e — r cos 0) + zcp i + (kr sin 0 + zep)is,
or? )
=" ZCz]i] + (COS 0 + ZC22)i2 — (sm 0 — ZC23)i3,
roo
or?” C C .
g, =—— = —(ek/B) sin 0i, + (A/B) sin 0i, + (A/B) cos 0is. (6)

0z
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The displacement vector U of the point P is defined by
U= U(x,s,z)a + V(x, s, z)a, + W(x, s, z)as, 7
where U(x, s, z), V(x, s, z) and W(x, s, z) are the components in the directions of

a;, a, and a;, respectively.
The position vector r of the point P after deformation is given by

r=r"+U=r"+ {4U — (ek/B) sin 0W}i,
+ {k(e — r cos 0)U + cos OV + (A/B) sin OW }i,
+ {kr sin QU — sin OV + (A/B) cos W }is. (8)

The partial derivatives of r with respect to x, s and z are defined as base vectors
G; (i =1, 2, 3) respectively. They are

d , : , 0 i i i
G - é — g, + Guis + G + Gusis, G, = ﬁ =& + Gyl + Gui + Gals,
or . ; i
G: =5 =& + Guii + Gob + Gk, ©)

where G; (i,j =1, 2, 3) are expressed as follows:

U ek ., W  2kp

1
GU—Aa—x B a—x+7U+ﬁcos(kx+q5—0)V+c“W,

oU oV A . ow A .
G12=kela—x+cos Qa—x+§s1n06—x— {Rcos(kx—l—qb)—kkzr smH}U

+ ksin 0V + c, W,

rsin U g0V AW (A :
G13—krs1n08x—smHax-l—Bcosﬁax+{Rs1n(kx+¢>)+ke1}U

+ kcos OV + cis W,

1 k .
G21=r{ %IHJ—eBs1n08£/+£cos(kx+¢—9)U+rCle},

1 oU oV A . oW . )
G22=r<ke169+cos969+3s1n950+krs1n8U—sm9V+rc22W>,

<kr sin@a—u sinBa—V-i—écosGa—W+ kr cos U — cos OV + rcng>,

~ | —

G = 20 0%t g 20

ou ek . ,OW

GSI:AE_ESIHQE,
ou oV A . oW
ng—ke1§+cos6§+§sm6§,
. oU . o0V A ow
G33—k}’SIHQE—SIHQg-FECOSBE. (10)
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By the use of equations (6) and (9), the Green strain tensors f; (i, = 1, 2, 3) can
be obtained from the following equation

2i=6GG —gg (,j=1273), (11)

namely,

2ﬁ1 = 2{32 + Z((,]]A + Clzkel + C]3kl" Sln 0)} 0

+ 2{ke> + z(c1» cos 0 — ¢i5 sin 0)} gz

+2 [Akp + Z{Cn 21519 —Cn <§ cos (kx + ¢) + k’r sin 9>

+ ¢ <}i sin (kx + ¢) + kzel>}}U

[ekzsmﬁ—i—Acos (kx + ¢ —0) +Z{Cn 1 cos (kx + ¢ — 0)

+ ¢k sin 0 + ¢i3k cos 6}}/

+ 2{c11A + ciker + cikr sin 0 + z(cl, + ¢ + )W+ G

2fi2 — !BZ k2€§ + Z(C“A + Clzkel + C13k}’ sin 9)} %]
+ % {kes + (e cos 0 — ciysin 0)) 5
. aUu
+ {k€2 =+ Z(CzlA + ngkel + C23k}" Sin 0)} a

+ {1 + z(cx cos 0 — ¢ 8in 0)} %

+ z|:{c“ % cos (kx + ¢ — 0) + ciok sin 0 + ¢35k cos 0}
+ ¢ %p — {; cos (kx + ¢) + k*r sin 0}

+ 2 {ﬁ sin (kx + ¢) + kzel}}U
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+|:_ejcsin9—|—z{—i(CuSiﬂ@"‘Cl}COSO)

+on % cos (kx + ¢ — 0) + cnk sin 0 + cak cos GHV

Z{Bl; sin 0 cos (kx + ¢ — 0) — ik + z(crica + cnen + 013023)}

+G|]G2| + GIZGZZ + G13G23’
2ﬁ3 = {Bz =+ kze§ + Z(C“A + C12k€1 =+ C13kl" Sin 9)} %]

+{kes + z(c12 cos 0 — ¢y sin 0)} %—IZ/

ow 2ek* . Ak?

+8x+{ sin (kx + ¢ — BRpsm0+Bez}U
ek Ak

+{ BR sin 0 cos (kx + ¢ — 0)+}V

+G11G31 —'I- G12G32 + G13G333

2f22 = % {k62 + 2(621/1 + cnker + cxkr sin 9)} %

2 .
+ {1 + z(c22cos 0 — ¢33 5in 0)} %

1
+2z {021 R

cos (kx + ¢ — 0) + cnk sin 0 + ¢k cos G}U
2 .
-z (ca2sin 0 + ¢ cos O)V

214 2
+ v {B + ZV(C; + 5+ C%a)} W+ G+ G, + G,

2y = 1 8W+ {key 4+ z(cu A + cnker + cxkr sin 9)} 6

+{1 + z(cxn cos 0 — ¢y sin 9)} E

Ak ek
+{B BRschos(kx+qb—0)}

A
— V+ G21G31 + G22G32 + G23G33,

Br
ow

2 =2%>

+ Gi + G5 + G (12)



TWISTED CYLINDRICAL THIN PANELS 69

A local orthogonal co-ordinate system (&, 1, {) issuing from the point P is
introduced, and the strains ¢; (i,j = 1, 2, 3) of the point P with respect to this
co-ordinate system can be obtained from the following equation (reference [9]):

0(Xk 6061 .o
2¢; = v (G, j=1,2,3). 13
ij AZ| 121 aﬂ 8ﬂ, ﬁ/ ( J ) ( )

If (o, o2, o3) are used instead of (&, , {) and (B, S2, f3) in place of (x, s, z), the
coefficients duy /0f; are given by

Ox 1< A) ox_ _lek ox _

- F\" e ) & TER T

22 },{k(r—ecos@)%—zgh}

ds 1 0s 0z 0z 0z
%—?(B"‘Z;M), 876_07 875_07 %_07 aig_l’
F=B( + zp)) (14)

The non-linear strains e; (i, j = &, n, {) with respect to the local co-ordinate system
can be written as

e=cn=U +5UE+3VE4+3WE, ey ==V, +3U; +5V; +35W],
eq = en =Wt ;Ui +3Vi + 3 W2,
¢y =20 = U, + Vi + UU, + ViU, + W,
e =26 = U+ We+ UU + VeVt WV,
ey =2en=V+ W, + U+ V, V. + W, W, (15)

where

U52117|:B<1+ZBV>%U+I€( Bz—i—zh)%g

Ak 1 [ A’k
{BP +ZB2r<Rp + e"’“ﬂ’“)}‘f
1
+{q+zmcos(kx+</’)—9)}V

2
b+ o ek’ etz ! <Ah4 ;(th)}w}
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:}[kez<1+zm>‘gl]+<1+ Br)g;/ lfe;(ez—zéh)%g
+l:<—ez+zlh>%g <1+Z§1}’>th—§§h3W}
m:}{{ Bhy+ = 1<i{27h1h3—Ah4>}U+ekh3V+<l+ ;)%ZV
+l;< e+ z—5 />88V9V}
U, = 1|: ekh;%U {hz"‘Z <h2h4+gf§ phz-l-B2 (e cos 0 — r)hyh )}

ek {Sll’l 0 + z = <h4 Sln 9 2 /72}13)} % h3 w + — (B + Zh4) aaleji|,

1 2
v, — F[’: (B + zh) S0 + L (B4 zh) S+ 2 55 hner 00
2
=S U + {A S <Ah4 ke >}W}
ox B

2 2
W, = }Hkh. —a ke (Alu o h1h3>}U ~ {f bzt <Ah4 e h,;)}V

(B + zhy) %V 4z ek o, %W}

U = B%—U _ke2%U+ oV oz, W:%V (16)

The non-linear strains are significant in the analysis of the vibrations of curved
and twisted thin cylindrical panels rotating at high speed. In this paper, the
components of the non-linear strains, which also appear in the non-linear strains
of plates in the same manner, are considered, and the underlined terms in equation
(14) are adopted.

For thin panels, it can be assumed that the cross-sections of the panels which
are perpendicular to the middle surface before deformation remain plane and
perpendicular to the deformed middle surface and suffer no strains in their plane.
A unit vector n normal to the deformed middle surface is defined as

n = (G X G2).-0/|(Gi x Go)|:—0 = I'1a, + I'a, + I';a;, (17)
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where I'y, I'; and I'; are the components in the directions of the vectors a,, a, and
a;. From equations (9) and (16), I'; (i =1, 2, 3) can be given as follows:

1 ek low  k ow
F‘=B<h4u_Bzrh3U B6x+209>

2
I,= _§<1 BécRpsmHez)u%—;(k hzez‘f‘A)

kK ow 1 k* ,\ow
+Bze25x_r<1+3282>69’

Ak 1 1 ek2 du  1dv
Fz—l—f-Bszu-i-Bz qu +B< hz€2+h4> +67+*%_1 (18)

where u, v and w are the displacements of the point on the middle surface in a;
(i =1, 2, 3) directions and two-dimensional functions with respect to x and 0. By
the use of equation (17), for an arbitrary point in a curved and twisted cylindrical
thin panel, the displacements U, ' and W can be expressed by

1 ek 1 ow kK ow
U—M+ZF1—<1+ZBh4>M hq ?a‘f‘ZEez%,

k ek 1 ek’ k ow
V——2B<1 Bszsm9e2>u+{l+zB<A+B,h;e2>}v+zB2ezax

20°

Substituting equation (19) into equation (15), the non-linear strain—displacement
relations of a curved and twisted cylindrical thin panel can be rewritten as follows:

2
_Zi<1+k >‘3W W=w+z(I's— 1) = w. (19)

(Q5+zF + @) + 12, e (Q,7+zr + 2’®,) + 1Y,

1
e =0, €y = F (Qgy + 2l + 22‘pén) + ¥:.¥,, e =0, ey =0, (20)
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where

2
ou Bk 5u+ik u+1qv+<h4+B]§ h362>w’

&= BT “ T BR T B
A 0 k 0 k k? 2 Aek?
rg—< +h4>a” r(hl—mez)angR{ zzpc 05 e — “giz= p* sin 0
ek’ e’k?
+ 5 P4 sin e, — cos (kx + ¢ — 0) — B sin® 0 cos (kx + ¢ — 0)
A? ek 61) ek? ov
+B2rp} Bt e e
1|4 k? 2 Aek? 2ek?
+- {Bz hy, — ng e;cos 0 cos (kx + ¢ — 0) + B“eR phs — e hgqe2

—l—% cos (kx + ¢ — 0)}0

_Adw R ow 2k dw k(41 \ow
Bor B TR “avan T B\RY T 99 ox

1 ek* . AK? 1 5 N L

~ B { — -, sin e, + BRPe + B q(B* — k’e3) 0
1 2

+E <Ah4 — eBiz //ll l’l3>W,

Aek , Ov  ek? v A w k? O*w
;= B 5% ox Br B 00 B ox? T BY? hleQW

k o*w k (A? ow
+W(A€2—rh1)m+34 < p+h1q>a

ow

1 A’k7 1 k kz
z{B4Rpez+Rcos(kx+¢—9)+ 5y sin 0 + 4h,qe2}60,
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ek low k ow Bk ou Bov
'f’¢=—h4u+ h3 +§E B0 Qﬂ—f 80-1—7%-}-

2 21,3
r,= ;’ﬁ h”g” (km kh)‘%’ ek sin? Ou + kmgv

00 ' B°Rr
ov 2%k, . Bo*w ek . . ow
<h4+ >80 B h;sm@v—PW—Br&nQa

, 2
+Z—Ij2 e, sin 0 % + é (Ah4 ek h1h3>w’

2
b, = ek h hs gu ek {epm sin* 0 — hse; cos (kx + ¢ — 0) + zphlhs}u

N Bfﬁ hy { g5 oy — I sin 0+ sin 0 sin (kx + ¢ — 9)}0

1 ‘w ek O*w

72l agt — B 5t By G (ke — B sin 9)%
+§f:2 (e cos 0 — r)(Bhy sin 0 — hohs) g—g
‘I’n=%hlu—%v+%%,
—kezgi+ (B> —k* z)gg gi—éezgg—efsinev—%hw,
Fg,,—zAk gz+f(32h4+khl e) SLQ‘ Zek® { > phy — e cos (kx+¢)}u

24 0 24k 0 2ek
Biré_ = ez@—g ¢ {R sin 0 sin (kx + ¢ — 0) + zrhsCI}U

+27k 62w_2 0w + 2 aw 2k ow
2007 T Fox 00 Tox — Br9°a0°
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k? e . R ek’ .
b, = 7R @ sin 0 cos® (kx + ¢ — 0) + Br (1 — A)hs sin 0
2Aezk7 ) 1
“BRY p°hy sin 0 + rph‘

e e e, . .
—Ehgcos(kx—kqﬁ—0)+Eph4cos9—§h4sm9$m(kx+qS—H)

2e 1
“BRr phag sin 6 — Rr ——hie;cos (kx + ¢ — 0)}u

1 |1 1 Aek? ow
+B}’{R cos (kx+ d) — 9) +?h4q +B4Rph3}ax

k)1 e ek?
_Br{mezcos(kx—i—qﬁ—e)-i—Bzrhzhz BRpe20059

1 . ow ek , 0*w 0*w
—Berqezsln(kx+d)—9)}69 B hs 6x2+B 2(h4e7—h)802

1 (el 4 Fw
+35 <Bzrh3€2_ ; h4> ax 30" 2D

3. THE METHOD OF VIBRATION ANALYSIS

For the free vibrations of thin panels, the principle of virtual work can be
written as

jjj (oecdes: + ay0e,, + 1e0e:)F dxrdb dz
volume

—JJ\J\ pCOz(Ua1 + Vaz + Wa3)5(Ua1 + V32 + Wa3)F dxrdodz = 0. (22)
volume

Substituting equations (19) and (20) into equation (22), integrating the equation
with respect to z, and neglecting the rotating inertia and the terms having z' whose
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power i is greater than three, the principle of virtual work for the free vibrations
of curved and twisted cylindrical thin panels can be rewritten as:

H B{Q 5Q. + Q, 50, + v(Q: 69, + Q, 6Q.) + L= 5

QW 590} dxr do

+” % [rf 5T + Q. 00, + . 5Q. + I', 6T, + Q, 56, + &, 5Q,

+v([:0,+ T, 0: + &:0Q, + Q,0P: + &, 0Q;: + Q. 6d,)
I—v
T

&n én &n &n én n

_pl {Q{ 5F5 + Fg 5Qc —|— Q'7 5F,7
+T,0Q,+ v(Q:0I', + I, 0Q: + Q, 0I': + I': 62,)

+17;v (Qg’y, 5Fcfn + Fcfr, 5Q<y,)}:| dx r d@ — fJ pa)le[{Bz + kzeg}u 51,{

+kes(v du 4+ udv) +vdv+ wow]ldxrdd =0, (23)

where H = Et/(1 —v?), D = Ef'/{12(1 — v*)}, E is Young’s modulus, v Poisson’s
ratio, p material density material and w angular frequency.

In order to generalize equations independently of the dimensions of panels, the
following non-dimensional variables and parameters are introduced,

X = x/I, i=ull, v =v/l, W= w/l, R =R/, i=rfl,
e=celr, k =kl (24)
The Rayleigh—Ritz method is used for the free vibration analysis of the panels,
so the non-dimensional displacements #, & and W are assumed as two dimensional

polynomial functions with respect to ¥ and 6, which should satisfy the boundary
conditions at X = 0, namely,

_ _ _ ow
u=0, =0, w=0, E_O’ (25)

and given as

2

M; Ny My
Z bk[)zkel W= Z Z cnmxmena (26)
= m=2n=0

i 0 k

1j

where a;, by and c,, are unknown coefficients, N; and M; (i = @, o, w) are the
maximum power of X and 6 in the displacement functions respectively.
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TABLE 1

Convergence of A versus the number of integrating points

Points
r A Al

No. 10 12 16

1 6:6501960 6:6501953 6:6501955

2 22122679 22-122679 22-122680

3 37-098692 37-098692 37-098693

4 51-700550 51-700547 51-700550

5 64-579485 64-579482 64-579484

6 91-069888 91-069888 91-069888

7 118-27498 118-27498 118-27498

8 121-25889 121-25888 121-25889

9 129-76028 129-76024 129-76024
10 184-76464 184-76466 184-76466

Substituting equations (24) and (26) into equation (23), and integrating the
equation with respect to ¥ and 0, the vibration equation is presented in a matrix
form as:

(A—2B)q =0, 27)

where A and B are stiffness and mass matrices respectively, and q is a vector
consisting of unknown coefficients a;, by, and ¢,,,. 4 is a non-dimensional frequency
parameter, defined as

)2 = ptw?’l'/D (28)

TABLE 2

Convergence of A versus the number of terms in the displacement functions

Ni, M; 6,6 6,7 7,6 7,7 7,8
N;, M; 6,6 6,7 7,6 7,7 7,8
Ny, My 7,7 7,8 8,7 8,8 8,9
Terms
r A A}
No. 42/42/48 48/48/54 49/49/56 56/56/63 63/63/70
1 6:6770 6:6590 6:6706 6:6522 6-6501
2 22-172 22-155 22-144 22-126 22-122
3 37-207 37-190 37-120 37-104 37-099
4 52-074 52-046 51-735 51-707 51-700
5 64-869 64-826 64-631 64-585 64-579
6 92-875 92-841 91-103 91-074 91-069
7 120-62 120-46 118-42 118-28 118-27
8 12222 122-08 121-44 121-28 121-26
9 137-47 137-44 129-82 129-76 129-76
10 186-29 186-13 184-96 184-79 18476
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From equation (27), the eigenvalues and corresponding eigenvectors can be
evaluated by common methods.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, several models are studied by the method presented in this paper.
The first ten frequency parameters 4 and some corresponding mode shapes are
shown to verify the effectiveness of the method and to explain the effects of
geometric parameters on the frequency parameters and the mode shapes of
vibration. Poisson’s ratio v is 0-3. The origin O of the co-ordinate system (x, y, z")
is considered as the center of gravity of the cross-section of the panel at the fixed
end, so the parameter e can be given by

e = rsin (Q/2)/Q/2 (29)

4.1. CONVERGENCE STUDIES

The Rayleigh—Ritz method with two-dimensional polynomial functions to
approximate the displacement functions i, © and w, and the Gauss—Legendre
integration method are used for analysing the vibration problems of cylindrical
panels, so that it is necessary to check the effects of the number of terms in the
displacement functions and the number of points adopted in integration on the
convergence of frequency parameters. A model with a severe configuration is taken
to be considered, namely, Q, = 90°, Q, = 90°, k = 60°, ¢ = 0°, an aspect ratio
[/b =2 and a thickness ratio b/t = 20.

When the displacement functions #, ¢ and w having 63, 63 of 70 terms are
considered, the convergence is checked for 10, 12 and 16 Gauss—Legendre
integrating points, respectively, and the results are shown in Table 1. It is shown
that the convergence of the first ten frequency parameters 4 (wlz\/ pt/D) is very
good. So 12 integrating points are used for the following numerical analysis.

Table 2 shows the effects of the number of terms in the displacement functions
on the first ten frequency parameters 4. In Table 2, N, and M, (i=u, o, w)
represent the maximum power of ¥ and 0 in the displacement functions i, the
“Terms” represents the number of terms existing in each of the displacement
functions. In this paper, the maximum power in the displacement functions are
assumed as follows:

Nﬁ:Na, N‘?:Na‘f‘ 1, Mz":Mﬁ; Mw:Ma"i‘ 1- (30)

According to equation (26), for the case of N; = N and M; = M, it can be shown
that the displacement functions i, ¢ and w have N x (M + 1), N x (M + 1) and
N x (M + 2) terms respectively. The method has a good rate of convergence for
the first ten frequency parameters when N; and M; are 7 and 8 respectively.

4.2. COMPARISON WITH AVAILABLE RESULTS

Leissa et al. studied the vibration characteristics of doubly-curved cantilevered
shallow shells having rectangular planform [5], in which the shells having a square
planform a’/b” = 1, a thickness ratio b'/h = 100, Poisson’s ratio v = 0-3, a ratio



TABLE 3
Comparison of frequency parameters A with reference [5]

Symmetric mode Antisymmetric mode
N A
r Al r Al
Q Q(I/R) Method 1 2 3 4 1 2 3 4
5-7320° —5-7392° Leissa 49440 25795  32-758 56-767 85961  31-512 68129 71-904
Present 49498 25802  32-817 56-798 8:6107 31481  68-241 71-879
0-0° Leissa 52174 24778  28-230 55-156 8:6138  31-565  64-325 72-042

Present 5-2189 24767  28-:215 55-121 8:6099  31-555  64-267 72-004
5-7392° Leissa 4-8282 22694  32-687 61-282 8-6090  31-385  66:366 73-486
Present 48299 22708  32-740 61-355 8-6220  31-422  66-485 73-550

11-4783° —11-5370° Leissa 6-5038 29931  46-125 65-010 8-8019  32:683  73-991 77-842
Present 6-5319  30-033  46-441 65-328 8-8662  32:579  73-846 78-530
0-0° Leissa 83683  26-828  35-120 58:726 89063  33-249  64-646 75-030

Present 83916  26-738  35-139 58-627 8-8964  33-230 64-414 74928
11-5370° Leissa 6-5854  24-893  38-933 72267 8-8553  32-161  68-789 80-677
Present 66167  25-:044  39-252 72-456 89142  32:341  69-201 81-238

28-9550° —30-0° Leissa 82429  36:503  72-331] 99-151 9-4214  36:294  82-126  107-57
Present 84091 37367  73-683 10277 9-8746 35713 82720  113-00

0-0° Leissa 16-991 30-:650  47-704 90-217  10-595 42-234  65-585 90-029

Present 17-183 30-332  47-507 90-154  10-613 42-391  64-160 89-739

30-0° Leissa 9-0327 30476  49-237 89-361 9-7809  33-998  72:253 96-738

Present 9-1706  32-188  51-760 92-936  10-198 35280  75-319 10185




TABLE 4

Frequency parameters L (2, = 60°, ¢ = 0°)

2 (%)

.

£ (%) 30 (%) 60 £ () 90
No. 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60
1 92209 82068 69984 60511 53700 9-1744 79943 68077 59159 52873 92109 79755 68309 59962 54166
2 15375 16894 18989  20-119 19334  16:135  17-829  19-675  20-559 19708 17228 18998 20496 21056  20-148
342572 45819 41251 37149 36241 37719 41898 41663 36399 33775 34910 39028  40-956 35273  31-161
456693  50-512 52097 54437 54827 54718  S1-536 48321 50850  52:179 52071  S50-690 45797  47-167 48742
5 58528 61506 66328 71504 76278 67408 62821 64581  67-587  70-142 64785  61-389  60-394 62674  64-191
6 86:884 90666 92468 93457 94183  76-546 82271 88765 94247 96352  80-450 78827  84:279  89-656  91-121
792335 92373 95769 99775 10271 95601  97-546 10183  106:52 11070 10020 10407  108-04 10741  109-40
8 12235 12052 11544 11315 11525 12277 12372 11826 11322 11502 10736 10902 11347 11891  123-96
9 12949 127-15 12963 13307 136:60 13552 12943 12847 13172 13530 14338 13581 12604 12520 12972
10 14540 14676  148-54 15027 15190 14608 14669 15076 15561 16024 16223  161-62 16580 170-74  174-80




TABLE 5

Frequency parameters 7. (2, = 60°, ¢ = —45°)

2 (%)

s Al

£ (%) 30 (%) 60 £ () 90
No. 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60
1 88411 80326 69496 60490 53763 80167 7-3403 65008 57661 51947 72373 67295 61213 55627  5-1130
214230 15699 17770 19070 18774  13-184 14966 17065 18405 18345 12280 14215 16305 17-640 17757
340608 42075 41721 40263 39974 34357 36208  37-842 39169  40-247  30-784 33092 35399 37307 38727
4 49015 49693 50466  52:316 53821  45-557 47-857 50964 54440 56769 42324  44-691 48677 54357  59-532
569571 67513 68654 714657 75061 76113 75555 72887  70-691 70634  70-644 73274 76597  74-885 68916
6 87027 89123 90394  90-602  90-655 84-810 83694 85288 88476 91902  89-571  86-558  82:229  82:933  89-048
799666 97718 97792 99-837 102460  110-88 10524 10092  98-564  98:972 12368 11607 108-47 10380 10361
8 11817 11755 11466 111-49 11037 13381 13338 12974 122:10 116:47 127447 12501 12201 12030  119-29
9 136:83 13547 136:80 14004 143-65 13968 13728 133-16 13293 13408 16305 157-17 14479 13255 12486
10 15365 15200 15122 15129 15226  160-45 15550 15585 158:19 16075 18670 17962 17398  169-50  167-63




TABLE 6

Frequency parameters 7. (2, = 60°, ¢ = —90°)

@ ()
r A Al
k() 30 k () 60 k (°) 90
r N N Al
No. 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60
1 8:5766 80277  7-0517  6-1853 55127  7-4761  7-1509 65034  5-8600  5-3128 66630 64627  6:0256 55484 51112
2 13544 14449 16259 17-746 17981  11-580  12:180  13-558  15-049 15937 10-018 10-414 11414 12:669  13-717
3 41378  40-448 38437 36704 36499  34-047 33-766  33-107 32-611  33-059  28-534 28429  28-238 28342  29-352
4 42851 43431 44888 46894 48823  37-169  37-586  38:797 40-684 42984  34:177  34-558 35649 37282  39-163
5 74915 75501  76:974 78755 80-214 82940  81-811  80-264 78953 77785 76747 75386  73-:000  71-003  69-805
6 88847 88509  87-532  86-235 85570 84:077 84771 85075 84:566  83-826 83435 84-599  86-275 86885  86:085
7 10690 10691  106-58  105-43  103-76 11926 11832 11584  112:41 10858 12373  123-08 121-15 11803 11400
g 111-14 11119 111-75 11342 11606 127-02 12718 12743 12756 12771  143-08  141-69 138-:34 13446  131-15
9 14279 14340 14524 14810 15124 16763 16581 16145 15658 15212 170-38  169-30 16636  162:07  156-90
10 171-14  168-63  165-08  162-:02  159-81  179-15 177-22 176:54 177-34 17857 19518  196:68 19972  201-83  201-05




TABLE 7
Frequency parameters 4 (€, =90°, ¢ = 0°)

2 ()
8 A A
(%) 30 (%) 60 % (°) 90
r % Al r % Al r A Al
0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

12-642 10932 93035 7-9978 6:9946 12-:016 10-318 8-8022 7-6017 6-6889 11-517 99634 85784 7-4831 6:6522
15915 17-940 19977 21-197 21-001 17-068 19-199 21-023 21-958 21-519 18-578 20-726 22:256 22-823 22:126
48-491 51-607 48-937 44-838 42:664 43-320 46:952 47-485 43-208 39979 39-924 43-487 45-124 41-212  37-104
55-855 53-455 54:364 56295 56978 52:064 50-550 50-483 53-280 54-699 48-135 46-775 46999 49990 51-707
71-934 70923 72-677 75-801 79-073 79-648 73-952 69-495 69-240 71-274 72715 72-075 65928 63-375  64-585
88-890 89-042 89-887 90-778 91332 86-144 87-889 90-846 93-359 94-550 92:016 85-928 86:706 8§89-839 91-074
97-879 99-324100-66 101-67 103-:06  95-635 98-947 104-23 108-59 11120 100-96 103-00 108-73 114:06 118-28
126-23 127-55 129-24 13091 132-81 131-27 130-38 127-59 124-87 125-84 118-80 120-86 123-99 123-48 121:28
147-59 14373 141-54 142-15 144-51 142-66 141-08 139-79 139-72 139-41 14599 14071 13159 12738 129-76
161-23 160-45 158-46 155-30 151-80 17169 168-:03 16632 166-62 167-65 186:53 187-25 184-96 18509 184-79




TABLE 8
Frequency parameters 7. (2, = 90°, ¢ = —45°)

2, (%)
(8 A A
(%) 30 % (°) 60 (%) 90
r A Al r % N % Al
0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

12:321 10-790 9-2967 8:0494 7-0549 10-840 9-6650 8-5245 7-5140 6:6721 9-5187 87005 7-8681 7-0892 6-4158
14-554 16-559 18-625 20-065 20-350 13943 16:107 18:253 19-800 20-243 13451 15689 17934 19-570 20-117
46:293 47-341 48:176  47-989 46-800 40-176 41-215 42-084 42-828 43-412 36759 38-059 38980 39-619 40-223
60-138 61:793 58-978 56:799 56-791 55-579 58-886 62-285 65-426 65533 50-800 53-777 57-047 60-373  62-981
71-105 68-636 70-845 73936 76-491 83-227 79-269 74-772 70-515 69-646 83-:212 85965 84-644 80485 74-772
90-892 90-335 89-851 89-470 89-135 89-064 89-898 90-400 90-718 91-343  92-098 88-515 88-732 8§9-711 90-631
106-17 105-42 10530 10595 107-44 113-86 109-23 106-81 10729 110-07 12734 119-32 11196 109-83 113-34
13171 13533 13342 128-61 12518 147-62 143-82 13873 13122 123-67 140-89 13519 130-87 12775 123-82
143-67 138-82 140-26 14572 151-12 154-37 157-82 151-47 147-88 14691 17739 172:64 159-89 148-:05 141-09
170-71 168-:04 164-72 161-17 157-79 167-65 160-39 162:92 16535 16720 18656 18521 181-86 177-32 174-54




TABLE 9
Frequency parameters 7. (2, =90°, ¢ = —90°)

@ ()

A

% (°) 60

A

§
(%) 90
A

15

45

Al r N

60 0 15 30 45 60 0

15

30

45

N

60

12-237
13-640
46-105
54-775
77-422
92-065

11-034
15-018
46-358
53-671
77-919
92-095

9-5705
16-891
47-101
50-994
79-017
91-984

11479 114-12 11297
126-:56 126-69 126-10
144-64 145-38 14791
186-34 183-97 178-78

8:3321
18-436
47-892
48-361
80-114
91-355

112-48
124-12
152-08
173-34

7-3254 10-747 9-8533 87590 7-7911 6-9592 9-4678
19-169 11-737 12-801 14-356 15-895 17-059 10-282
45-632  40-757 40951 41-517 42245 42-087 37763
49750 45-431 45-134 44-368 43-664 44-558 38-210
80-893  90-792 89-650 87-730 85-956 84-563 8§9-844
90-210  92:652 93-083 92:996 91-790 89-616 92-276

112-:69 12897 127-54 124-23 119-85 11497 130-72
121-72 134-33 134-65 134-48 133-13 131-11 154-16
156-60 173-07 173-43 17493 17466 169-47 197-34
169-17 194-11 189-29 182-15 179-09 183-16 210-48

8:8272
11-066
37-946
38-132
87-719
93-761

130-05
152-83
193-46
211-63

8-:0043
12:306
37-857
38-587
84-733
94-818

127-78
149-31
186-69
212:22

7-2476  6:5707

13-675
37-797
39-434
82-171
94-237
123-58
144-62
179-75
214-02

14-933
38:256
40-478
80-452
91-795
117-97
139-70
172-89
211-26
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(’'/R, = 0-1,0-2, 0-5) and a curvature ratio (R,/R, = —1-0, 0, 1-0) are studied, and
eight frequency parameters (wa’z\/ ph/D) for the first four symmetric and
antisymmetric modes are presented as shown in Table 3. The same models having
an aspect ratio //b and a thickness ratio b/t which are expressed as

I/b = (a'[b))2Q, sin (Q,/2)/Q, sin (), b/t = (b’ [h)Q,/2 sin (@./2),  (30)

and Q, (5-7320°, 11-4783°, 28-9550°), ©, (+5-7392°, +11-5370°, 0°, +£30°) and
¢ = £90° are analyzed by the present method and the frequency parameters
obtained (wl’,/pt/D) are also shown in Table 3. It can be seen that the results
obtained by the two methods agree well. For the cases in which 2, and Q, are less
than 11-4783° and 11:5370°, the difference is less than 1%, and the maximum
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Figure 2. (a) Vibration modes (2; = 90°, 2, = 30°); (b) Vibration modes (2, = 90°, 2, = 60°); (c)
Vibration modes (2, = 90°, Q, = 90°).
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difference of as much as 5-1% occurs for the fourth antisymmetric mode when €,
and @, are 28-9550° and 30-0°, but it is only 2% for the case of Q, = 28-9550° and
2, = 0°. These mean that the difference will become larger with the increases of
chordwise and spanwise curvatures. Also it can be seen that the difference caused
by @, is greater than that caused by Q. Leissa et al. studied the vibration problems
based on the shallow shell theory, so that the method is capable of representing
the vibration characteristics accurately for shells having relatively small curvatures
and it is inadequate for shells having large curvatures. But the present method has
no limitations.

4.3. RESULTS OF CURVED AND TWISTED CYLINDRICAL THIN PANELS

In this section, several models are studied by the present method in order to
ascertain the effects of geometric parameters on the vibration characteristics. The
numerical results for 4 are shown in Tables 4-9 for the models having a different
Q. (60°, 90°), 2, (30°, 60°, 90°), k (0°—60°), ¢ (0°, —45°, —90°), an aspect ratio
[/b =2 and a thickness ratio b/t = 20.

A set of vibration modes for the models having Q, = 90°, 2, (30°, 60°, 90°) and
k (0°, 30°, 60°) are plotted in Figures 2(a—c). Modes 1-10 are arranged from left
to right. The displacement w is only considered in these contour plots and the
heavier lines are nodal lines (w = 0).

From the tables and Figure 2, it can be observed that the first frequency
parameter A decreases monotonically with the increase of the twist angle k, and
the shape of the first vibration mode is similar to the first spanwise bending mode,
which changes slightly while the twist angle increases. The second mode is the first
torsional mode for the case of kK = 0°, and the mode shape changes greatly when
the twist angle increases from 0°—60°. The first torsional mode trends toward the
second spanwise bending mode and the corresponding frequency parameter A
increases with the increase of the twist angle, but it begins to decrease when the
twist angle reaches about 50°.

In a word, the effects caused by the twist angle are different for lower and higher
frequency parameters, which is larger for lower frequency parameters than higher
ones. It can be seen from the tables that the maximum variation can reach 45%
for the first frequency parameter and about 10% for the tenth one.

Considering the effects of €,, the frequency parameters increase with the
increasing Q, in any case with k, Q, and ¢ investigated in this paper. This means
that the stiffness of the model increases when €, increases. The effects caused by
2, are complex. In the case of ¢ = —90°, the first four frequency parameters
increase, but the last four ones decrease while Q, increases. For the case of ¢ = 0°,
the first frequency parameter decreases and the second one increases while Q,
increases. In the case of ¢ = —45°, the first and the second frequency parameters
decrease while €2, increases. The others either increase or decrease with the increase
of €.

The mode shapes shown in Figure 2 correspond to the models with large
curvatures, so the symmetric modes and antisymmetric modes cannot be seen. But
it will be seen when ¢ = —90°. From the mode shapes, the qualitative changes
for a different twist angle k, Q, and €, can be seen.
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5. CONCLUSIONS

In this paper, turbomachinery blades are considered as a model of cylindrical
thin panel having twist, chordwise and spanwise curvatures. Based on the general
thin shell theory, the non-linear strain—displacement relations are established. A
numerical method for analysing the free vibration characteristics of the models is
presented by using the principle of virtual work for the free vibration and the
Rayleigh—Ritz method. It is shown that the method is effective for analysing the
vibrations of the turbomachinery blades, and can provide accurate results when
the proper number of integrating points and terms of displacement functions are
adopted.

The effects of curvature and twist on the vibrations are studied. It is known that
the stiffness of the model increases when the curvature of the s-axis increases. The
frequency parameters may increase or decrease when the curvature of the x-axis
increases. With the increase of the twist angle, the first frequency parameter
increases, and the second one increases and begins to decrease when £, reaches
about 50°, and the change in the second mode shape is obvious. The changes in
the other mode shapes can be seen from Figure 2. The effects of the angle ¢ can
also be seen in the tables.

The method presented in this paper is adequate for evaluating the vibration
characteristics even if the models have large curvatures and large twists, and the
angle ¢ can be changed freely in these models, which supplies a different model
of turbomachinery blades for analysing the vibrations of the blades.
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APPENDIX

The coefficients adopted in this paper are defined as
A=1—(r/R)sin (kx + ¢ — 0) + (e/R) sin (kx + ¢), B = \/ezk2 sin” 0 + A°

p= —rcos(kx + ¢ — 0) + e cos(kx + ¢),
g = (Ar/R) cos(kx + ¢ — 0) + e’k* sin 6 cos 0,
A . Aek® .
Ci1 = —ﬁ sm(kx + d) - 9) + B°R p sm 9’
_ ek Ak kb sin’
Cin = g sin 0 cos(kx + ¢) — 3 cos 0+ ZRP S0 0,
k . e . ek* .
¢ = psin 0 —p sin(kx + ¢) + A + g p sin 0 cos 0,

ek 1 .
Ca1 =Br(—cos 0 + pigsin 0) ,

¢n = (1/Br) {Ir{ cos(kx + 0 — ¢)sin 0 + A cos 0 — (4/B* q sin 0} ,

¢ = (1/Br) {Ir{ cos(kx + 0 — ¢)cos 0 + A sin 0 — (4/B’ q cos 9} ,

ee=e—rcosl, e;=ecosf—r,
h = A — (e/R) sin 0 cos(kx + ¢ — 0),
hy = (A/R) cos (kx + ¢ — 0) + ek’ sin 0,
hy = A cos 0 — (r/R) sin 0 cos(kx + ¢ — 0),
hy = (ek?/B*R) p sin 0 — (1/R) sin(kx + ¢ — 0),
pr= (1/B)(A/r + hs + (ek?| B’r) hse,). (A.1)
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