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Vibration isolators consisting of polymeric materials exhibit non-linearity in
their stiffness and damping characteristics. Two different approaches towards
modelling these non-linear characteristics are discussed. In one approach,
experimentally obtained hysteresis loops are modelled through a suitable
constitutive equation. In the other, experimentally obtained harmonic,
displacement transmissibility plots are modelled by expressing the restoring and
damping forces through lower order polynomials of deformation and rate of
deformation, respectively. In both cases, it is observed that the dynamic stiffness,
which is more than the static stiffness, exhibits a small softening type non-linearity.
The non-linearity in the damping characteristic is seen to be more pronounced
than that in the stiffness.
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1. INTRODUCTION

The highly deformable materials of long-chain molecules, referred to as
elastomeric polymers, are extensively used in various forms for vibration control.
One common application is in the form of a vibration isolator. Viscoelastic
materials can be used to construct the so-called rubber-spring in various
configurations, e.g., mat, waster and tube [1]. Further, elastomers are chemically
bonded to metal parts giving rise to ready-to-use isolators. These bonded rubber
springs are often used in the installation of machinery and equipment [2].

The distinguishing features of an elastomer, which make it useful for controlling
the vibration, are its enormous resilience and high energy dissipation capacity.
Moreover, the recent advances in polymer technology, like interpenetrating
polymer networks (IPN), can impart almost tailor-made mechanical properties to
a polymer [3]. Besides frequency and temperature dependence, the stiffness and
damping characteristics also show non-linear characteristics [4, 5]. Mathematical
models for these non-linear characteristics are required for estimating the
performance of an elastomeric isolator.

In this paper two different approaches to obtaining these models are discussed,
each serving a particular purpose. In the first one, an isolator is subjected to a
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harmonic loading, and the mechanical hysteresis loop is obtained by plotting the
instantaneous force versus deformation over a cycle. This method was used by
Tinker and Cutchins [6] for modelling a wire-rope vibration isolator. A
mathematical expression correlating the force with the deformation and rate of
deformation is attempted so as to simulate the experimentally obtained hysteresis
loops. It is well known that different additives in the elastomer affect the shape
and size of the hysteresis loop [7, 8]. Thus the experimentally obtained hysteresis
loops may suggest to the rubber technologist how to improve the dynamic
characteristics of the isolator. On the other hand, however, the mathematical
model so resulting often turns out to be too complicated for further performance
analysis of such non-linear isolators.

In the second approach, a single-degree-of-freedom system is fabricated by
inserting the isolator between a rigid mass and a harmonically moving base. Then
the harmonic, displacement transmissibility is measured at various exciting
frequencies. The restoring and damping forces exerted by the isolator are assumed
to be low order polynomial function, of its deformation and rate of deformation
respectively. The exponents of the polynomials are chosen after a few trials. The
coefficients of the polynomials are obtained by fitting the theoretical
transmissibility plots with the experimentally obtained ones. Various analytical/
numerical methods of obtaining the (theoretical) transmissibility with various
types of non-linear isolators have already been reported [9, 10]. This approach thus
results in a mathematical model which is convenient for further use in any
non-linear analysis. However, no insight is gained about the mechanisms of energy
dissipation which can help to modify the elastomer so as to improve its
performance. Furthermore, the accuracy and range of validity of the model
depend on the chosen values of the exponents.

In this paper, the first approach is discussed with reference to a tubular rubber
(sleeve) specimen. The second approach is detailed with reference to a commercial
bonded rubber spring in which the elastomer is bonded between a pair of leaf
springs. The experimental details and results not included in this paper can be
found in references [11, 12].

2. EXPERIMENTAL SET-UP AND METHOD

2.1.   

The objective is to obtain the dynamic constitutive equation, for a tubular
rubber specimen, which fits the hysteresis loops generated experimentally with
various amplitudes and frequencies of harmonic loading. The specimen was made
of natural rubber with carbon black fillers (IRHD 40). The external and internal
diameters of the specimen were 34·8 mm and 21·2 mm respectively. The length of
the specimen was 98·1 mm. A single-degree-of-freedom vibratory system was
fabricated with this specimen as detailed below.

The specimen was attached at one end to a small cylindrical projection in a cast
iron plate through a hose clamp. This assembly was fixed to a housing. Slots in
the housing were used to guide projections in the cast iron plate. This, in turn,
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reduced the movements of the specimen in transverse directions. The base of the
housing also had a cylindrical projection at its centre to which the other end of
the specimen was attached through another hose clamp. The housing was secured
to a base plate which, in turn, was mounted on an electrodynamic shaker. A mild
steel block was rigidly connected atop the cast iron plate.

When the shaker moves, the inertia force of the total mass (m) of the cast iron
plate and the mild steel block is the external (harmonic) dynamic force acting on
the rubber specimen. This inertia force is obtained by measuring the acceleration
of the top block. The deformation of the specimen is obtained through
simultaneous measurements of displacements of the top mass (x) and the base
plate (y). The difference of these two displacements, obtained by using the
subtraction mode of the oscilloscope, gives the instantaneous deformation
z(=x− y). The self-explanatory block diagram of the instrumentation used is
shown in Figure 1. It may be mentioned that, in general, subtraction of two
accelerometer signals is not recommended due to variations in their phase
difference and transverse sensitivity. However, in the set-up used, the transverse
movements were negligible. Moreover, experiments were conducted only up to
200 Hz, where as the usable range of the two identical accelerometers (measuring
signals of the same frequency) is up to 6 kHz. Consequently, both the phase
difference and the transverse sensitivity were negligible. The signals to the
oscilloscope were digitized to 4096 data points and transferred to a PC through
RS 232C. The oscilloscope had only 2 channels but three signals, viz., the base
displacement, the displacement and acceleration of the top mass, were to be
handled. Consequently, the phase compatibility between the acceleration and
displacement of the top mass (180° out of phase) had to be maintained by proper
synchronization during the processing of these three signals [11]. The natural
frequency of the system was found to be around 57 Hz and experiments were
conducted up to a maximum frequency of 200 Hz. The high frequency noise in
all the signals was cut off by using a low-pass fitter. The cut off frequency of the
low-pass fitter was set at 3 kHz. The static stiffness of the (encased) specimen was
obtained by conducting a compression test in a Universal Testing Machine
INSTRON 1195.

Figure 1. Block diagram of instrumentation.
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Figure 2. Static force–deformation characteristic during compression test of the tubular specimen.

2.2.   

The specimen used was a commercial metal bonded rubber spring (No. X-20,
manufactured by Resistoflex, India) where the elastomer is bonded between a pair
of leaf springs. Again a single-degree-of-freedom system with harmonic base
excitation was fabricated. A rigid block was attached to the top of the spring
whereas the bottom of the spring was connected to the shaker table through a base
plate. The amplitudes of the top mass (X) and the base plate (Y) were
simultaneously measured by using accelerometers and charge amplifiers as
explained in section 2.1. The displacement transmissibility T=(X/Y) was
measured at various excitation frequencies covering the resonance zone. Similar
measurements were carried out with different base amplitudes. It is well known
that for non-linear systems, the harmonic, displacement transmissibility depends
on the base amplitude [13]. The static stiffness of the specimen was also obtained
by conducting a compression test in INSTRON 1195.

3. RESULTS AND DISCUSSIONS

3.1.   

Figure 2 shows the force–deformation curve during the static test. A slight
softening type characteristic is evident from this figure. Figure 3 shows the
hysteresis loops at three different frequencies with identical deformation
amplitude. The base amplitudes were adjusted so as to generate the same
amplitude of deformation. The slope of the backbone curve of the hysterics loop
indicates the dynamic stiffness of the specimen. This backbone curve is obtained
by joining the points which indicate the average values of the external forces
during loading and unloading for a given deformation. The area of the mechanical
hysteresis loop signifies the specific damping energy (Ds ) of the specimen which
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Figure 3. Mechanical hysteresis loops with 0·1 mm deformation amplitude at different
frequencies: ----, 50 Hz; - - - -, 90 Hz; – · –, 150 Hz.

is the energy dissipated by the specimen per cycle. The area of the hysteresis loop
was calculated using the trapezoidal rule on the data points stored in the PC.

Figure 4 shows the variation of Ds with the excitation frequency (v) for a
constant deformation amplitude. It may be concluded from Figures 3 and 4 that
neither the dynamic stiffness nor the damping force changes substantially with
frequency (within the range of measurement, i.e., 20–200 Hz). Thus the hysteretic
and Coulomb, rather than the viscous (frequency dependent), damping
mechanisms seem to be predominant.

Figure 4. Variation of the specific damping energy with the excitation frequency at a
deformation–amplitude of 0·1 mm.
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Figure 5. Mechanical hysteresis loops at 60 Hz with different amplitudes of deformation: ----,
0·05 mm; · · ·, 0·1 mm; - - - -, 0·15 mm; – · · –, 0·25 mm; – · –, 0·30 mm.

To study the dependence of the dynamics characteristics on the deformation
amplitude, tests were conducted at a particular frequency with varying amplitudes.
Figure 5 shows the hysteresis loops for various deformation amplitudes at a
particular excitation frequency. It is clear from Figure 5 that, the dynamics
stiffness of the specimen is amplitude-dependent and has a softening type
characteristic. Therefore, it is proposed to model the restoring force (Fs ) of the
specimen as

Fs (z)= kdynz=[a− bZq]z; (1)

where kdyn is the dynamic stiffness and Z is the amplitude of deformation (z) with
a, b and q as constants. These constants are determined by using the method of
least squares to fit the experimental data on kdyn obtained from the backbone curves
of the hysteresis loops shown in Figure 5. The numerical values of these constants
are obtained as follows: a=1476917·4 N/m, b=2839317·7 N/m1·1 and q=0·1.
The values of kdyn are seen to be greater than the static stiffness.

Figure 6 shows the variation of the specific damping energy (Ds =area of the
loops shown in Figure 5) with the deformation amplitude (Z) at a particular
frequency. This figure suggests that Ds is approximately proportional to Z1·5.
Thus the entire rate-dependent damping force cannot be the linear hysteretic
type for which Ds is proportional to Z2. It is known that for Coulomb damping,
Ds varies linearly with Z. Therefore, first it is proposed to model the
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damping force (Fd ) of the specimen, by a combination of hysteretic and Coulomb
damping, as

Fd (ż)= fc sgn (ż)+ (h/v)ż; (2)

where h is the linear hysteretic damping coefficient, fc is the limiting value of the
Coulomb damping force, the dot at the top denotes the time-derivative and

sgn (ż)= 8+1
−1
0

if
if
if

żq 0
żQ 0
ż=09.

With the damping force Fd given by equation (2), the specific damping energy Ds

comes out as

Ds = phZ2 +4fcZ. (3)

The numerical values of h and fc are obtained so as to fit equation (3) to the data
points of Figure 6 in the sense of least square error. The numerical values so
obtained are h=2·11×10−3 kg/s2 and fc =1·5 N.

It should be noted here that the idealized (constant) Coulomb damping,
modelled by sgn (ż), results in sharp corners in the hysteresis loop due to a sudden
(discontinuous) change in the value of the damping force at the limits of
deformation during a cycle. Such sharp corners are, however, not discernible in
Figure 5. This is not surprising. Due to various contributions of the molecular
friction and effects of the fillers in the elastomer, the friction force does vary with
both frequency and amplitude. The behaviour, in fact, is distinctly different from
that seen in structural materials [14].

Following the dry friction characteristics of polymeric seals reported in reference
[15], it is now proposed to modify equation (2) as follows:

Fd (ż)=Fc (ż)+Fh (ż)= [fc +C1 e−C2=ż=−C3= −( fc +C1 e−C2C3) e−C4=ż=]

× sgn (ż)+ (h/v)ż, (4)

Figure 6. Variation of the specific damping energy with the deformation–amplitude at 60 Hz.
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Figure 7. Variation of the Coulomb friction force with the rate of deformation.

where Fc represents the Coulomb damping force and Fh is the hysteretic damping
force with C1, C2, C3 and C4 as constants. After a few trials, the following
numerical values for these constants (for the specimen under experimentation)
were obtained: C1 =3·5 N, C2 =20 s/m, C3 =0·01 m/s and C4 =90 s/m. With
these values and fc =1·5 N, the plot of Fc versus ż is shown in Figure 7.

To check the validity of the proposed model (i.e., equations (1) and (4)),
hysteresis loops are simulated by plotting F(=Fd +Fs ) versus z with
z=Z cos (vt−f) at two different frequencies. The numerical values of various
parameters like a, b, q, fc , h, C1 etc., have already been mentioned. Two such loops
and the corresponding ones obtained experimentally are shown in Figures 8 and
9. Similar close agreements were observed for other frequencies and amplitudes
of deformation [11]. The specific damping energy predicted by the mathematical
model was seen to be proportional to Z1·48.

With the proposed mathematical model, the deformation of the specimen is
governed by the following differential equation:

mz̈+Fs (z)+Fd (ż)=−mÿ, (5)

where m is the isolated mass, y=Y cos vt is the base displacement and Fs and
Fd are given by equations (1) and (4) respectively. The steady state harmonic
transmissibility is given by T=X/Y=[y+ z]max /Y. It should be noted that such
a model is valid only for harmonic (displacement) transmissibility neglecting
super- and sub-harmonics, i.e., with z=Z cos (vt−f).
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Figure 8. Comparison of mechanical hysteresis loops with 0·1 mm deformation amplitude at
50 Hz: ----, simulated by equation (4); - - - -, experimentally obtained.

Figure 9. Comparison of mechanical hysteresis loops with 0·15 mm deformation amplitude at
120 Hz: ----, simulated by equations (1) and (4); - - - -, experimentally obtained.
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Figure 10. Static force–deformation characteristic during compression test of the bonded rubber
spring specimen X20.

3.2.   

Figure 10 shows the force–deformation curve as obtained from the static test.
Again a slight softening type characteristic is exhibited. The static stiffness starts
with a value 33·3 kN/m and falls to 26·4 kN/m at the higher range of deformation.
The harmonic displacement transmissibility (T) versus the frequency ratio V

(=v/vn with vn as the linear natural frequency) plots with various base amplitudes
are shown in Figure 11. The mass being isolated m=2·1 kg.

Figure 11. Variation of the harmonic displacement transmissibility with the frequency ratio at
different base amplitudes (mm): w, (0·2); ×, (1); +, (2); r, (3 and 3·5).
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Figure 12. Comparison of transmissibility plots with 3·0 mm base amplitude: ×, experimentally
obtained; - - - -, simulated by equations (6) and (7).

In the first step, the transmissibility curve with the minimum base amplitude
(i.e., 0·2 mm in Figure 11) is considered and the non-linear effects neglected. The
peak frequency (where the transmissibility is maximum) was found to be 22 Hz.
One assumes this as the linear natural frequency of the system. This assumption
is not very erroneous for the small amount of damping revealed by the narrow
band width of the transmissibility plot. With vn =2p×22 rad/s and m=2·1 kg,
the dynamic stiffness kdyn is obtained as kdyn =40·125 kN/m which, as expected, is
more than the static stiffness. The viscous (linear) damping factor (z) is then
obtained from the value of the resonance transmissibility (Tr ), i.e., the
transmissibility at V=1, using the standard result [1] is z=1/2zT2

r −1 which
comes out as 0·1768. Thus, the viscous damping coefficient c=2z(kdynm)1/2 =102·6
Ns/m.

To characterize the non-linear effects, one first observes from Figure 11 that
with increasing base-amplitude, the peak transmissibility increases considerably
with a slight change in the peak frequency. The changes in both these quantities
saturate beyond a base-amplitude of 3 mm. The change in the peak frequency is
mainly governed by the non-linearity in stiffness while that in the peak
transmissibility is affected predominantly by the non-linearity in damping. The
decrease in the peak (1natural) frequency with increasing deformation amplitude
suggests a weak, softening type non-linearity in the stiffness. Similarly, the increase
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in the peak transmissibility with increasing deformation amplitude can be
modelled by providing a non-linear damping force with a negative coefficient.

Assuming symmetric behaviour in tension and compression, as a first trial cubic
non-linear terms are used and the equatioin of motion for m is written as

mz̈+ kdynz+ az3 + cż+ bż3 =−mÿ, (6)

where ÿ=−v2Y cos vt is the acceleration of the base. The linear parameters kdyn

and c have already been determined. The non-linear coefficients a and b are
suitably adjusted so that the displacement transmissibility T=[y+ z]max /Y
matches the experimentally obtained values for Y=3 mm. Equation (6) can be
either numerically integrated (with trial values of a and b) using Runge–Kutta
method or solved by the harmonic balance method [9]. The best values for a and
b turn out to be a=−0·0892 N/mm3 and b=−25·82 Ns3/m3. The theoretical and
experimental transmissibility plots, shown in Figure 12, match quite well.
However, with the same values of a and b, if the amplitude of base displacement
Y is changed to 2 mm, then the theoretical and experimental transmissibility values
(especially the peak values) differ considerably as shown in Figure 13.

By proposing to replace the cubic damping term by quadratic type non-linearity
and modifying equation (6) as follows:

mz̈+ kdynz+ az3 + cż+ bż=ż==−mÿ. (7)

Figure 13. Comparison of transmissibility plots with 2·0 mm base amplitude: ×, experimentally
obtained; - - - -, simulated by equation (6).
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Figure 14. Comparison of transmissibility plots with 1·0 mm base amplitude: ×, experimentally
obtained; - - - -, simulated by equation (7).

The transmissibility values obtained after numerical integration of equation (7)
match closely the experimental values with Y=3 mm for the following values:
a=−0·071 N/mm3 and b=−0·243 Ns2/m2. With these values of a and b, the
simulated (from equation (7)) and experimental transmissibility plots match very
closely for all values of YE 3 mm [12]. Figures 14 and 15 show two such plots
for Y=1 mm and 2 mm respectively.

Thus, the following constitutive equation

F(z, ż)=Fs (z)+Fd (ż)= kdynz+ az3 + cż+ bż=ż=, (8)

with kdyn =40·125 N/mm, a=−0·071 N/mm3, c=102·6 Ns/m and b=−0·243
Ns2/m2 can be used to model the bonded rubber spring up to a fairly high level
of deformation. It is known that the variation of the non-linear natural frequency
(vnl ) with the amplitude of motion for a linear plus a cubic restoring force is given
by [16]

vnl /vn 1 1− 3
8

aa2

kdyn
, (9)

where vn is the linear natural frequency and a is the amplitude of motion. It may
be pointed out that the peak frequencies obtained from the experiment agree quite
well with vnl obtained from equation (9) with a=−0·071 N/mm3. The
experimental results shown in Figure 10 demonstrated a saturation effect for
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Figure 15. Comparison of transmissibility plots with 2·0 mm base amplitude: ×, experimentally
obtained; - - - -, simulated by equation (7).

Yq 3·5 mm. This behaviour can be modelled only after including higher order
terms like gz5 and dż5 with gq 0, dq 0 in equation (8).

4. CONCLUSIONS

The non-linear dynamic constitutive equation of an elastomeric isolator can be
modelled through two different approaches depending on the type of information
needed. In order to simulate the experimentally obtained hysteresis loops, a
combination of a linear hysteretic and a varying Coulomb damping is required.
The dynamic stiffness, which is more than the static stiffness, can be modelled with
a weak, softening characteristic. An assumed polynomial form of the constitutive
equation can simulate the transmissibility characteristics. The accuracy and range
of validity of the model depend on the chosen values of different exponents in the
polynomial. The non-linearity is more predominant in the damping characteristic
as compared to that in the stiffness characteristic.
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