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The superposition method is exploited to obtain free vibration eigenvalues for
thick Mindlin plates resting on point supports. The Mindlin governing differential
equations are satisfied exactly and boundary conditions are satisfied to any desired
degree of accuracy by taking more terms in the solution series. Very good
agreement is obtained with published results based on thin plate theory when the
thickness ratio of the Mindlin plates is allowed to take on values characteristic
of thin plates. Eigenvalues are tabulated for a square plate resting on four point
supports distributed symmetrically along the plate diagonals. Significant
differences are encountered for higher modes when eigenvalues computed by the
Mindlin theory are compared with those based on the thin plate theory.
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1. INTRODUCTION

The free vibration behavior of thin isotropic rectangular plates resting on point
supports is a subject which has received considerable attention in recent years. In
addition to being a problem of academic interest many applications of point
supported plates are found in industry. Examples are to be found in bridge decks,
the mounting of solar panels, and in electronic circuit board design.

Among the literature relevant to point supported thin plates is an earlier
publication by Gorman [1], as well as subsequent publications by Raju and
Amba-Rao [2], and Narita [3]. In a later publication Gorman [4] showed that very
good agreement was encountered when the computed results of all the above
publications were compared. Other related technical papers were listed by
Gorman [1].

One can conclude, therefore, that the problem of computing resonant
frequencies and mode shapes for point supported thin isotropic rectangular plates
is fully resolved. It is know, however, that the situation pertaining to thick plates,
or even thin plates with low resistance to deformation induced by transverse shear
stress, is quite different. The objective set forth in this paper is to describe the
method employed and the results obtained when a free vibration analysis was
conducted on point supported thick Mindlin plates. The superposition method
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266 D. J. GORMAN

was employed to obtain a solution for the governing Mindlin equations.
Verification of the method was carried out by comparing thin plate, and thick plate
results, as the thickness ratio of the Mindlin plate was allowed to take on values
characteristic of thin rectangular plates.

2. MATHEMATICAL PROCEDURE

The analysis is carried out through superposition of the five forced vibration
solutions (building blocks) shown schematically in Figure 1. The first four building
blocks were utilized earlier by Gorman [5] in analyzing the free vibration of
completely free thick Mindlin plates. They were described in detail in this earlier
publication and hence, only a brief description of their development will be given
here for the sake of completeness. In fact, the present solution constitutes
essentially an extension of the earlier solution pertaining to the completely free
Mindlin plate.
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Figure 1. Schematic representation of building blocks utilized in analyzing free vibration of point
supported Mindlin plates.
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2.1. DEVELOPMENT OF THE FIRST BUILDING BLOCK

The three governing differential equations controlling the vibratory behavior of
Mindlin plates are written in dimensionless form as
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Shear forces, bending moments, and twisting moments in dimensionless form
are written as
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The first building block of Figure 1 has slip—shear conditions imposed along the
three non-driven edges. These conditions, indicated by two small circles adjacent
to the boundary, imply zero transverse shear force as well as zero twisting moment
along the edge. They also imply zero rotation of the plate cross-section about a
mid-plane line running parallel to the edge.

The driven edge is free of transverse shear force and twisting moment. It is
driven by a distributed harmonic bending moment. The amplitude of this moment
is represented in series form as

i E, cos (m — ré. (5)

m=12

We begin by considering the response of the building block to the first Fourier
term of equation (5). Only the lateral displacement W and the parameter y, will
be non-zero. Both will be functions of 7, only. The governing differential equations
reduce to a set of two,
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Denoting the functions W(n) = X(n), and v, () = Z(n), we substitute them into
the pair of equilibrium equations. After operating on these equations with
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appropriate operators, the quantity Z(#) is eliminated, leaving a single ordinary
differential equation of the form

{D* + oD’ + 0} X(n) = 0, ()

where the symbol D represents the differential operator and «;; and oy, are known
quantities. Denoting the squares of the roots of the characteristic equation
associated with the above differential equation as R, and R., it is found that they
are always real for our range of interest. Three forms of solution are possible. They
are

Case 1, R, R, <0-0; Case 2, R <00, R,>00; Case 3, R, R, >00. (9

Let us set

/IRl =R (10)

Considering Case 1, for example, and taking advantage of symmetry about the
£-axis, and enforcing boundary conditions at the edge, n = 1, the solution takes
the form

X(n):%(cos an + X1 cos fn), (11)

and returning to the coupling equation one can write
E . .
Z(n) = e (S, sin oy + X1, sin fy), (12)

Similar forms of solution are available for the other two cases. All symbols are
defined in the publication by Gorman [5].

We next look at the building block response to Fourier terms where m > 1. Lévy
type solutions for the three parameters of interest are written as

WE ) =Y Xa(n)cos (m — g,

m=23

VG =S Yo sinn—Dré, yu@Em) =Y Zu(p) cos (m — Dt

m=23 m=23
(13-15)

The next step is to substitute these expressions into the three governing
differential equations. One thereby obtains a set of three coupled ordinary
differential equations. Again, utilizing appropriate differential operators, the
function X,,(n) and Z,, () may be eliminated and a sixth order ordinary differential
equation involving Y, (), only, is obtained. It is written as

{D6 + o1 D* + 0 D* + 0633}Ym(7’l) =0. (16)
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Now we set the squares of the roots of the associated characteristic equation
equal to Ry, R,, and R;, and it is found that all three are real for our range of
interest. We introduce the quantities

a=JIRl,  B=VIR, =Rl (17)

and it becomes apparent that four possible forms of solution exist. They are
described as,

Case 1, R, R, and R; < 0-0; Case 2, R, R, <00, R; > 0-0;
Case 3, R, <00, R,, R; > 0-0; Case 4, R, R, and R; > 0-0. (18)

For illustrative purposes only the solution for Case 1 will be examined. After
taking advantage of symmetry about the £-axis, and thereby eliminating three of
the unknowns, the solution is obtained in the form

Y..(n) = A, cos an + B,, cos fn + C,, cos yn. (19)

Upon enforcing the boundary conditions along the driven edge one obtains
EHl
Y,.(n) = 3 {cos an + X1 cos fin + X2 cos yn}. (20)

Returning to the coupling equations from which the parameter Y, (n) was
separated it is easily shown that one may write

X.(n) = §'§ {R,1cosan+ X1 R,,cos fn + X2 R,;cos yn} (21)
and
E., . .
Zu(n) =3 {S,isinon + X1 .S,,sin fn + X2 S, cos yn}. (22)

Again, all symbols are as defined in the publication by Gorman [5]. Solutions
for Cases 2,3, etc., differ from that given above in that some or all of the
trigonometric functions will be replaced by hyperbolic functions. In fact, for all
work reported here, only Cases 3 and 4 are encountered for the higher Fourier
driving coefficients.

One thus has available the exact response of the first building block to any
number of terms in the driving series. It will be appreciated that solutions for the
second, third, and fourth building blocks of Figure 1 are readily extracted from
the above solution by an interchange of axis, or replacing the parameter # by 1 —
or ¢ by 1 — &, etc. The rules for transformation of axes when altering the solution
for the first building block in order to obtain the solution for the second, for
example, are summarized in an earlier publication [5]. They are repeated here for
convenience. (1) Temporarily replace 2> with 1*¢>. (2) Replace ¢, by ¢./¢p. (3)
Temporarily replace ¢ with its inverse, 1/¢. (4) It is customary to replace the
previous subscript “m’’, with “n”’, in order to avoid confusion.
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2.2. DEVELOPMENT OF THE FIFTH BUILDING BLOCK SOLUTION

A solution for this building block response is obtained by following the same
basic approach as that utilized so often in thin plate theory. The present
transverse-shear deformable building block is given slip-shear support, as defined
earlier, along all edges. It is driven by a harmonic concentrated force acting on
the lateral surface at dimensionless co-ordinates # and v, with respect to the upper
reference frame.

The building block is considered to be composed of two rectangular plate
segments, each with a separate co-ordinate system. The common boundary runs
parallel to the £-axis and passes through the point of application of the driving
force. The amplitude of this dimensionless force is represented by a Dirac function
running along the common boundary. This function, in turn, is represented in
series form. Before non-dimensionalizing, the condition of lateral force
equilibrium across the common boundary is written as

5 Wi(x,y)  oWax,y) | 2P & cos(m— Dmu B X
K Gh[ 3y + 3 == Y s cos (m— o (23)

m=12

where §,, =2, m = 1;0,, = 1, m > 1, and the subscripts 1, and 2, refer to the upper
and lower segments of the building block, respectively.

We begin by considering the response of this building block to the first driving
term on the right hand side of equation (23), that is, the case where m = 1. Again
the response will be a function of the co-ordinate #, only. Referring to the earlier
solution, and concentrating on the situation of Case 2, we will again replace the
functions W,(n), and y,(n) with X,(n) and Z,(n), respectively. A similar set of
functions with subscript 2 will pretain to the lower segment of the building block.

It will be obvious that the above functions, after enforcing the outer boundary
conditions, must take the form [5]

Xi(n) = Ay cos an + B, cosh B
and
Zi(n) = A Sy sin oy + B, S, sinh B, (24)

where o and f are defined in equation (10), and quantities S,,, and S, are obtained
through coupling of equations (6) and (7). A similar set of solutions with subscript
2 exist for the lower segment of the building block.

Conditions of continuity which must be enforced across the common boundary
are those of displacement, cross-section rotation, moment, and shear
force—transverse driving force equilibrium (equation (23)). The latter is expressed
in dimensionless form as

p
=5 (25)

dXi(n)
dny

dXa(n)
dny

n=v n=ov*
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It follows immediately that the set of four simultaneous non-homogenous
equations resulting from enforcement of the above continuity conditions may be
represented schematically as indicated below. These equations are readily solved
by a simple computer routine to obtain values for the four unknowns in terms of
the dimensionless driving force amplitude, P*.

Aml Bml AmZ BmZ
COoS ow cosh pv —cos av* —cosh fo* 0
S, sin ow S,.2 sinh fv S, sin w* S, sinh fov* _ 0
Suocosov  S,pf cosh fo  — S0 cosav®* —S,,cosh fo* 0
— o sin ow p sinh fv —o sin o * p sinh fo* P*/2

(26)

Next the building block response to higher driving terms in the series, i.e.,
m > 1, is examined. Again the quantities W, y,, etc., take the form given by
equations (13—15). The functions X,.(), X..(n), etc., after enforcing the boundary
conditions at the boundaries, # = 0, become [5]

X(]’]) = Amle COS on =+ BmRm2 COSh ﬁn + Cn1Rm3 COSh m, (27)
Y(n) = A, cos an + B,, cosh fn + C,, cosh yn, (28)
Z(n) = AnSm sin an + B, S, sinh fn + C,.S,s sinh yn, (29)

The six conditions of continuity to be enforced across the common boundary,
along with their appropriate mathematical formulation, are (superscripts indicate
differentiation with respect to n)

(1) Continuity of W(¢, n); require Xi(n)|,-. = Xo(n)|, -

(2) Continuity of ¥, (&, n); require Zi()l,-, = —Z2(7)|, =+
(3) Continuity of M, (&, n); require Zi()l,=. = Z:(1)l, - -
(4) Continuity of M,.(¢, n); require Y{(n)l,—. = — Y, (1), - -

(5) Continuity of (2. ); require Yy()l,- . = Ys(p ..
(6) Require Q{(n)], . + Oy(E, .. = P*cos (m — lymu, . require
Xl/(n)|r7:r + XZ[(”)|n:x;* = P* COS (m — 1)7[1,{

It is seen that the above continuity conditions provide a set of six
non-homogenous equations for evaluation of the unknowns A4,,, B, ... etc.
Again, these unknowns are readily evaluated with a simple computer sub-routine.
We now have a solution for the response of the fifth building block to any
harmonic driving force of dimensionless amplitude P*. It is appropriate at this
time to point out that this solution for the fifth building block is valid, regardless
of the driving force location, i.e., it may be located anywhere on the interior
surface of the plate or on the plate edges. The fact that the solution is valid, for
example, even when the co-ordinates u or v take on extreme values of zero or one,
was not appreciated in earlier publications utilizing the superposition method for
thin plate analysis. In fact, separate solutions developed earlier for plates driven
by concentrated forces along their edges were not really necessary.
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3. GENERATION OF THE EIGENVALUE MATRIX

This part of the procedure is virtually identical to that described earlier for
analysis of point supported thin plates. In addition to the first four building blocks
we will require an additional building block of the type described immediately
above for each point support acting on the plate of interest. It will be obvious that
all required edge conditions of the superimposed set of building blocks are satisfied
except that of zero bending moment along the boundaries. Furthermore, the
condition that the net displacement at the location of all point supports should
equal zero, must also be satisfied.

A schematic representation of a typical eigenvalue matrix is presented in
Figure 2. Here, only a single point support is considered to act. Small inserts to
the right of the figure indicate boundary conditions to be satisfied.

In the upper segment of the matrix we require vanishing of the net bending
moment along the edge, # = 1. Toward this end the sum of the contributions of
cach building block toward the bending moment along this edge is expanded in
a cosine series of K terms where K equals the number of terms in the building block
expansions. Each coefficient in this new series is set equal to zero, thereby
providing a set of K homogenous algebraic equations relating the Fourier driving
coefficients and the driving force dimensionless amplitude. It will be noted that
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Figure 2. Schematic representation of eigenvalue matrix based on three term building block
solutions
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Figure 3. Alternate building block driven by concentrated harmonic driving force. Dirac function
lies along line running parallel to n-axis.

the contribution to bending moment of the point-force driven building block is
already available in the form of a cosine series.

Moving down to the edge, £ = 1, we find that the contribution toward bending
moment of this latter building block is not directly available in series form.
Experience has shown that the best means for handling this contribution is
to follow the same procedure as that followed for thin plates in an earlier
publication [1].

We re-consider the formulation of the point-force driven building block for
Figure 1. Let us suppose the building block is divided into two segments by a
partition line running parallel to the n-axis, as shown in Figure 3. The solution
for the response of this building block can obviously be obtained from the
companion solution of Figure 1 through introducing an interchange of axes as
discussed earlier. In addition to introducing the transformation modifications, u
must now be replaced with », and v with u. In view of the original definition of
P*, P* must now be temporarily replaced with P*/¢*, as discussed in an earlier
publication [6]. With this new solution to the same building block, one has its
contributions toward bending moment along edges, ¢ = 1, and & = 0, available in
cosine series form. Thus it is possible to complete generation of the first four
segments of the matrix of Figure 2.

Finally, it is required that net displacement at each point support must vanish.
Thus a set of homogenous algebraic equations equal to the number of driving
unknowns is obtained. Then, those values of the parameter A* which cause the
determinant of the eigenvalue matrix to vanish i.e., the eigenvalues, are searched
for. Mode shapes associated with each eigenvalue are obtained after setting one
of the non-zero unknowns equal to unity and solving the resulting set of
non-homogenous equations for the remaining unknowns.

It is important to note that each additional support point necessitates the
addition of only one more row and one more column to the matrix. Numerous
point supports can therefore be handled without serious difficulty.
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4. PRESENTATION OF RESULTS

It will be understood that no attempt can be made to store eigenvalues to cover
all possible design needs. Accordingly, only a limited amount of data is presented
to demonstrate the method and to permit validation tests.

In a paper referred to earlier [4], a thorough study was made of the free vibration
of thin square rectangular plates resting on four symmetrically distributed point
supports acting on the diagonals. The first four eigenvalues were listed for plates
in symmetric-symmetric, anti-symmetric—anti-symmetric, and symmetric—anti-
symmetric modes. It was decided to follow the same type of study here, utilizing
the Mindlin thick plate theory. Two plate thickness ratios were utilized, 0-01 and
0-1. It is known that with the ratio of 0-01, which corresponds to a thin plate, the
Mindlin theory should generate eigenvalues which are almost equal, though
probably slightly below those computed by thin plate theory. This slight reduction
is to be expected as the Mindlin theory, unlike the thin plate theory, takes plate
rotary inertia into account and does not consider the ability of the plate to resist
transverse shear force induced deformation to be infinite. This type of comparison
provides a valuable check on the Mindlin theory and its application.

Results of the earlier thin plate study, as well as eigenvalues computed here by
the Mindlin theory, for two plate thickness ratios, are presented in Tables 1-3.
These results pertain to the three families of free vibration modes as discussed
earlier. It shoud be made clear that while the thin plate eigenvalues were computed
by focusing on a quarter plate only, the current results, based on Mindlin theory,
were computed by utilizing the full plate analysis as described in this paper.

TABLE 1

Computed eigenvalues for fully symmetric mode vibration of square plate with four
supports symmetrically distributed on diagonals (v = 0-333); u, v, provide
co-ordinates of one point support

u=vuv
A

-

Mode 0 0-05 0-1 0-15 02 025 0-3 0-35 0-4

7-112 9464 12:81 17-59 1922 1922 1922 1572  13-37
1 7-078 9-448 12:80 17-58 1922 1922 1922 1572  13:37
6:666  9-033 1219 1659 1858 1858 18-58 1497 1275

19-22 19-22 19-22 1922 23-12 23-54 1926 1922 1922
2 19-22 19-22 19-22 1922 23-10 23-53 1925 1922 1922
18-58 18-58 18-58 18-58 2198 22-51 18-28 1858  18-58

44-08 49-44 54-04 57-32 5456 5508 59-56  56-64  52-56
3 4376 49-17 5375 57-05 5433 5486 59-19 5632 5227
3859 4352 47-09 4856 4029 40-06 4894 48-40 4542

91-56 1104 116-4  87-12 63-88 63-16 8120 1164 110-5
4 91-02 1100 1161  87-68 63-51 62-81 8094 116-1 1101
7536 9105 97-61 66-:09 5522 5505 6057 97-61 8772

*A: Thin plate theory [4]; B: ¢, = 0-01; C: ¢, =0-1.

*

Aw» QOw» QO QWP
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TABLE 2

Computed eigenvalues for fully antisymmetric mode vibration of square plate with
four supports symmetrically distributed on diagonals (v = 0-333); u, v, provide
co-ordinates of one point support

u v

Al

r

Al
Mode 0 0-05 0-1 0-15 0-2 0-25 0-3 0-35 0-4

3818 50-56  66-52 68-12 51-04 34-81 2538 19-53 15-88
1 3796 5036 6634 6782 50-82 3465 2526 1944 1581
33-11 4417 5679 59-63 40-29 2795 2064 1618 13-64

68-12 6812 6812 7544 6812 6812 6812 6812 6812
2 67-82 6782 6782 7516 6782 6782 6782 6782 6782
59-63 5963 59-63 6290 5963 59-63 59-63 5963 59-63

121-8 1387 1455 1093 1227 1231 1106 97-12 8632
3 1209  138-1 1444 1086 121-8 122-1 109-8 96-55 8590
97-61 1094 1071 72:50  97-61 9144 8512 7735 T1-17

173-2 1995 1883 151-6 1576 1982 202:6 1883 1696
172:0 1989 186:6 150-5 1566 1972 2014 1869 1682
1319 1494 1262 1193 1219 139-6 1537 136:8 1251

*A: Thin plate theory [4]; B: ¢, = 0-01; C: ¢, = 0-1.

*

Qw» QWP QWP QWP

TABLE 3

Computed eigenvalues for symmetric—antisymmetric mode vibration of square plate
with four supports symmetrically distributed on diagonals (v = 0-333); u, v, provide
co-ordinates of one point support

u=vuv
A

-

Mode 0 0-05 0-1 0-15 0-2 0-25 0-3 0-35 0-4

15-55 1923 2339 2779 31-77 3261 2358 17-72 13-53
1 1554 19-14 2329 2769 31-:66 3253 23:53 17-68 13-50
1391 1753 2125 2507 2844 2679 1964 1461 10-70

49-92  54-12 5832 60-80 4736 3469 36:36 3697 36-81
2 49-67 5403 5821 6071 4724 3457 3622 36:83 3666
44-43 4873  52-38 5495 3926 3152 3274 3322 33-00

80-08 9120 9916 9292 8336 9288 9232 8596 7444
3 79-60 90-71 98-58 92-88 83-:05 9245 9174 8550 7810
67-48 7613 8121 6494 6498 7224 7379 6993 6472

115-1 1214 130-5 1047 1042 1069 1228 1307 1268
114-5 221-0 1299 1040 103-5 1064 1223 1302 1261
94-28 9932 1065 86:74 8661 88-:02 9748 1074 99-15

*A: Thin plate theory [4]; B: ¢, = 0-01; C: ¢, =0-1.

*

QWP QW QWP QWP
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Results are presented for nine different support point configurations, with the
first four eigenvalues tabulated for each mode family. Twenty-four terms were
utilized in the building block solutions for the present study. Convergence tests
indicated that eigenvalues are accurate to three significant digits and in almost all
cases to four significant digits.

The most striking observation relates to the very good agreement encountered
when results of the thin plate theory are compared to results obtained by the
Mindlin theory for a thickness ratio of 0-01. In view of the fact that the thin plate
theory results tabulated here were found to be in very good agreement with the
findings of several other researchers, as discussed earlier, one is entitled to have
high confidence in the present Mindlin theory results.

Moving on to results obtained here for plates with much higher thickness ratios,
i.e., 0-1, the most striking observation is the vast decrease in eigenvalues associated
with this thickness ratio increase. This decrease is particularly large for the higher
vibration modes. Based on these results it is seen that large errors in computed
natural frequencies of thick plates would be encountered for many vibration
modes, particularly the higher ones, if one were to rely on thin plate theoretical
analysis.

5. DISCUSSION AND CONCLUSIONS

It is found that the superposition method is ideally suited for the free vibration
analysis of thick Mindlin plates resting on point supports. The supports may be
given any distribution upon the plate surface or along the edges. Very good
agreement is obtained between the results of the Mindlin theory and thin plate
theory for low values of plate thickness ratios. The most obvious conclusion to
be drawn, based on results of the study, is that thin plate theory is particularly
unsuited for computing resonant frequencies of the higher modes of
point-supported thick plates. Discrepancies of more than 25% would have been
encountered for some of the modes studied here.

While the outer boundaries of the plates studied here were considered to be free
of edge support it will be appreciated that the same method of analysis would work
just as well if any of the other classical edge conditions had been imposed.
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APPENDIX: LIST OF SYMBOLS

plate edge dimensions

= ER*/(12(1 — v?)), plate flexural rigidity

Young’s modulus for plate material

shear modulus of plate material

plate thickness

number of terms in series solutions

bending moments associated with & and 5 directions, respectively
twisting moment

amplitude of concentrated harmonic driving force

= —2Pb’/|Dd?

transverse shear forces associated with ¢ and # directions, respectively
dimensionless co-ordinates of point support

=1 —u, and 1 — v, respectively

plate lateral displacement divided by side length “a”

co-ordinate distance along & and # directions, respectively
distances_along plate co-ordinate axes divided by a and b, respectively
= wa’\/p/D, free vibration eigenvalue

mass of plate per unit area

circular frequency of plate vibration

= b/a, plate aspect ratio

h/a, plate thickness ratio

plate cross-section rotation associated with & and » directions, respectively
Mindlin shear factor

Poisson ratio of plate material

= (1-)2

=(1+v)2

= 6K%(1 — )
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