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Non-linear vibrations of a cantilever piezoelectric beam in contact with a fixed
disk are studied in this paper. The piezoelectric beam is excited to produce
mechanical longitudinal oscillations by inverse piezoelectric effect of piezoceram-
ics. The equations of motion describing the vibrations and contact forces are
derived by Hamilton’s principle and the geometry constraint. Finite element
formulation is used to reduce the equations to a set of non-linear ordinary
differential equations. The transient amplitudes and the contacting forces are
simulated by the Runge–Kutta algorithm. The effects of piezoceramics, excitation
of voltage and the frictional forces are investigated and discussed.
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1. INTRODUCTION

In recent years, piezomotors have been increasingly discussed as a superior
alternative to electromagnetic motors in special areas of application. A
conventional ultrasonic motor consists of a stator and a disk. The stator is
ultrasonically excited by piezoelectric materials and this piezoelectrically
stimulated mechanical oscillation is used to drive the disk via friction forces [1].
Because of their coupled mechanical and electrical properties [2–4], piezoceramics
have recently attracted significant attention for their potential application as
sensors for monitoring and as actuators for controlling the response of structures.
An increasing amplitude of motion at the end of the resonator was achieved by
suitably tapering the resonator and through this a motor was built up for one
direction of rotation with an efficiency of around 35% [5].

Although many authors have obtained some impressive results for ultrasonic
motors, they have not derived the mathematical model explicitly. Generally, the
piezoelectric characterization is a difficult problem. Numerous investigators [6]

0022–460X/99/020339+19 $30.00/0 7 1999 Academic Press



�
�
� �
�
� �
�
� �
�

�
�
�
�

�
�
�
� X

X

r

Y

O +V –V

lp ls

lt

Polarization

Disk

Piezoceramics
(region 1)

Steel
(region 2)

(a)

Y

(b)

�
��
�
�
�
�
�
�
�

O

.-.   .340

have recently demonstrated the practicability of the integrated concept through the
use of simple structures such as cantilever beams. Several analysis and numerical
models [7, 8] have also been developed to analyze the integrated structures. Most
of the numerical models were based on simplified structures under simple loading
conditions. Although finite element methods have been developed for piezoelectric
structures, the use of finite element techniques for analyzing the integrated
piezo-composite structures has not been fully established [9, 10].

In this paper, the results of the forced vibrations of a cantilever beam in contact
with a fixed disk are studied. The piezoelectric beam is excited by inverse
piezoelectric effect. The configuration of the test structure is shown in Figure 1.
It is composed of a piece PZT G1195N and a steel beam. The formulation is based
on the general concept of constitutive law in piezoelectric materials [11–13].
Applying the geometry constraint at the contact point and the Lagrange multiplier
method, the interaction forces enforce the constraint conditions between the

Figure 1. Schematic diagram of the piezoelectric beam (a) and the disk (b).
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piezoelectric beam and the fixed disk. Hamilton’s principle and calculus of
variation are employed to derive the governing equations. Finally, the assembly
governing equations are solved by use of the Runge–Kutta integration numerical
method. The model developed enables one to investigate the behavior of the
non-linear vibration in transient responses.

2. FORMULATIONS OF THE PHYSICAL MODEL

2.1. 

The model including a piezoelectric beam and a fixed disk is shown in Figure 1.
Region 1 of the beam of piezoceramics having length lp , while region 2 is steel
having length ls , both having thickness h and width b. The cantilever beam consists
of the piezoceramics and steel having total length lt . The beam is pressed to a fixed
disk with radius R and with an angle a with respect to its normal. It is demanded
that the beam is initially pressed to the disk by a normal force N0. Figure 2 shows
the initial and the operating states of the piezoelectric beam. In Figure 3 we have
the displacement relationship with uNe +1 and vNe +1 at end point B. The beam is
modelled as a Timoshenko beam and Hamilton’s principle is used to derive the
equations of motion of the system.

The direct and inverse piezoelectric phenomena consist of an interaction
between the mechanical and the electrical behaviors of a material. The constitutive
equations [14] of the piezoceramics can be expressed as

Tij = cE
ijklSkl − ekijEk , Di = eiklSkl + oS

ikEk , (1, 2)

where Tij , Skl , Ek and Di are stress, strain, electric field and electric displacement
components, respectively, cE

ijkl are the elastic coefficients at a constant electric field
strength, eijk are the piezoelectric coefficients and oS

ik are the dielectric coefficients
at a constant elastic stress.

The strain–displacement relations for small deformations can be written as

Sij = 1
2(ui,j + uj,i ), (3)

and the electric fields Ek are related to the electric potential f by

Ek =−f,k . (4)

Figure 2. The initial and the operating states of the piezoelectric beam.
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Figure 3. The displacement relationship between uNe +1 and vNe +1 at end point B.

2.2.   

The technique of the finite element method was developed by many authors to
analyze the devices fabricated from piezoelectric materials [9, 10, 15]. The
formulation procedure is similar to the standard one for structure mechanics
described in reference [16].

Two co-ordinate systems OXY and o'xy are shown in Figure 4. i and j are unit
vectors of the global coordinate system OXY while ei and ej are unit vectors of
the local element co-ordinate system o'xy.

The displacement field of the Timoshenko beam is

u1(x, t)= u(x, t)− yc(x, t), u2(x, t)= v(x, t) (5)

where u and v represent the axial and transverse displacements of the piezoelectric
beam, respectively, and c is the rotating angle of the cross-section.

The position vector of an arbitrary point Pi in the ith element with respect to
the global co-ordinate system is

R(x, y, t)= (R0 + x+ u− yc)i+(y+ v)j, (6)

Figure 4. The ith beam element undergoing gross motion and elastic deformation.
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where R0 is the distance from the origin O of the global co-ordinate to the origin
o' of the local co-ordinate. The distance R0 of each element in regions 1 and 2 are
respectively

g
G

G

F

f
R0 =

(i−1)
m

lp ,

lp +
(i−1)

n
ls ,

i=1, 2, . . . , m;

i=1, 2, . . . , n,
(7)

where m and n are the numbers of elements in the piezoceramics and the steel,
respectively.

By differentiating equation (6) with respect to time t, the absolute velocity vector
is

Rt (x, y, t)= (ut − yct )i+ vt j. (8)

The kinetic energy of the piezoelectric beam can be expressed as

T=
1
2 gV

rRt (x, y, t) · Rt (x, y, t) dV. (9)

where r is the mass density and V is the volume of the beam.
The linear Lagrangian strains are

S11 = ux − ycx , S22 =0, S12 =S21 = 1
2(vx −c), (10)

and the electric field is

E1 =−fx . (11)

The total potential energy for region 1 of the piezoceramics can be expressed as
[12]

U1 =
1
2 gV

({S}T[cE]{S}− {S}T[e]{E}− {E}T[e]T{S}− {E}T[oS]{E}) dV, (12a)

and for region 2 of the steel is

U2 =
1
2 gV

{S}T[cE]{S} dV. (12b)

The mechanical and electrical works are respectively

WF =FF · R(lt , 0, t), WQ =−gA

f{vf}T{D} dA, (13, 14)

where FF is the external contact force applied at x= lt , f is the electric potential
and {vf} is the vector of surface direction cosines. Figure 5 shows the interaction
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Figure 5. The piezoelectric beam and rotor in the regime of slip.

forces for the piezoelectric beam and disk in the regime of slip. The virtual work
done by the current contact force FF on the piezoelectric beam at x= lt is

dWF =FF · dR(lt , 0, t)=−Pdu(lt , t)+Qdv(lt , t), (15)

where the following relations are used

FF =−Pi+Qj, dR(lt , 0, t)= du(lt , t)i+ dv(lt , t)j. (16, 17)

The forces of P and Q are the axial compressive force and the transverse force,
respectively.

The usual approach of the finite element method is to assume each unknown
deformation to be approximated by a finite series of polynomials [17]. The
deflection v and angle c of the beam element can be described by using the cubic
polynomials as

v= a0 + a1x+ a2x2 + a3x3, c= b0 + b1x+ b2x2 + b3x3,

and the deflection u and electric potential f of the beam element by using the
polynomials as

u= c0 + c1x, f= d0 + d1x,

where a0 0 a3, b0 0 b3, c0 0 c1 and d0 0 d1 are coefficients to be determined.
For each element the non-dimensional parameter j= x/l is used, where l is the

length of an element. It is noted that the piezoceramics and the steel have different
element lengths. The element deflections u, v and c, and electrical potential f are
approximated as follows:
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f=[Nf1 Nf2]6 fi

fi+17=Nfq, (19)

where qu =[ui vi ci ui+1 vi+1 ci+1]T is the nodal displacement vector and
qf =[fi fi+1]T is the nodal electric potential vector for the ith element, and
Nu1, Nu2, . . . Nv3, Nv4, . . . , Nc3, Nc4, Nf1, Nf2 are polynomial shape functions.
Details of the shape functions are given in Appendix A.

The derivatives of u, v, c and f with respect to x within the ith element can
be written, respectively, as

ux =
du
dx

=[Bu ]qu , vx =
dv
dx

=[Bv ]qu , (20a, b)

cx =
dc

dx
=[Bc ]qu , fx =

df

dx
=[Bf ]qf , (20c, d)

where

[Bu ]=
d
dx

[Nu ], [Bv ]=
d
dx

[Nv ], [Bc ]=
d
dx

[Nc ], [B ]=
d
dx

[Nf ].

Substituting equations (20a–d) into equations (9) and (12a–b), we have the
kinetic and potential energies of an element as

Te = 1
2q̇

T
u [m]q̇u , (21)

U1e = 1
2(q

T
u [kuu ]qu + qT

u [kuf ]qf + qT
f [kfu ]qu − qT

f [kff ]qf ), (22a)

U2e = 1
2q

T
u [kuu ]qu , (22b)

where [m], [kuu ], [kuf ], [kfu] and [kff ] can be seen in Appendix B.
The displacements at each nodal point of the beam element are assumed to be

composed of the axial deformation u, transverse deformation v and angle c. For
the piezoceramics beam element, each node has an additional degree of freedom
of electric potential f. Then each node for the piezoceramics has four degrees of
freedom u, v, c and f.

2.3.    ’ 

The geometric constraint will be investigated at the end point where the beam
is in contact with the disk. In Figure 3, point D at position (b1, c1) is the center
of the fixed disk, point B is the end point of the beam before deformation. The
position vector after deformation at point B' is

ROB' =R f(lt , 0, t)= (lt + uNe +1)i+ vNe +1j, (23)

where Ne is the total number of elements of the beam.
From the triangle DOB'D, one has the relationship

ROD −ROB' =RB'D . (24)

Thus, the geometric constraint condition can be written as

C=(lt + uNe +1 − b1)2 + (vNe +1 − c1)2 − r2 =0. (25)
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Hamilton’s principle used without considering the constraint equation (25) is

g
t2

t1
0s

Ne

i=1

dLi + dWF + dWQ1 dt=0, (26)

where the Lagrangian function of each element is Li =Ti −Ui . Performing the
variation on the Lagrangian function of each element, one obtains

g
t2

t1

s
Ne

i=1

dLi dt=g
t2

t1
$s

m

i=1 0dqT
ui01Li

1qui
−

d
dt

1Li

1q̇ui1+ dqT
fi01Li

1qfi
−

d
dt

1Li

1q̇fi11
+ s

n

j=1

dqT
uj01Lj

1quj
−

d
dt

1Lj

1q̇uj1% dt

+ $s
m

i=1 0dqT
ui

1Li

1q̇ui
+ dqT

fi
1Li

1q̇fi1+ s
n

j=1

dqT
uj

1Lj

1q̇uj%
t2

t1

, (27)

The varied path concides with the true path at the two end times t1 and t2. It
follows that dqu (t1)= dqu (t2)=0 and dqf (t1)= dqf (t2)=0.

After substituting equations (13), (14), (21), (22) and (24) into equation (23), and
since point O is fixed and the corresponding nodal displacements u1, v1 and c1 are
specified by the boundary conditions u1 = v1 =c1 =0, i.e., du1 = dv1 = dc1 =0,
the global ordinary differential equation of the system can be obtained as

$Muu

0
0
0%6Q� u

Q� f7+$Kuu

KT
uf

Kuf

−Kff%6Qu

Qf7=6FF

FQ7, (28)

where Qu = {u2, v2, c2, . . . , uNe +1, vNe +1, cNe +1}T is the nodal displacement vector,
Qf = {f1, . . . , fm+1}T is the electric potential vector, Muu is the mass matrix, Kuu ,
Kuf and Kff are the mechanical, piezoelectric and dielectric stiffness matrices,
respectively. FF is the mechanical force vector and FQ is the electrical charge vector.

The equations of initial condition can be determined from equation (28) by
neglecting the time-dependent terms and the piezoelectric effects. Thus, one has

Qu =K−1
uu · FF , (29)

where

FF =[0, 0, 0, . . . , −P0, Q0, 0]T, (30)

P0 and Q0 are the initial pressed forces in the longitudinal and transverse directions,
respectively. P0 and Q0 are decomposed directly from N0.

2.4.    

Equation (28) describes the dynamic behavior of a cantilever piezoelectric beam.
As the piezoelectric beam is excited by an applied voltage across two electrodes
on the left and right surfaces of the piezoceramics, these two equipotential surfaces
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have the difference of electrical potentials. Therefore, the electrical boundary
conditions at the right surface of the electrode is usually grounded, and the
electrical potential on the grounded electrode fr is set to zero. Moreover, the left
surface of ungrounded electrodes has an electrical potential f then the FQp is the
nodal charge on the left ungrounded electrode surface. The electrical potential
vector of the system can be set as [15]

Qf = 8Qfr

Qfi

Qfp9. (31)

Then equation (28) can be partitioned as

&Muu

0
0

0 0
0 0
0 0'8Q� u

Q� fi

Q� fp9+ &Kuu

KT
ufi

KT
ufp

Kufi

−Kfifi

−KT
fifp

Kufp

−Kfifp

−Kfpfp'8Qu

Qfi

Qfp9= 8FF

0
FQp9, (32)

where the subscripts i and p denote the non-electrode nodes which include the
internal nodes and the ungrounded electrode nodes, respectively. Identically, Qfi

is the electrical potential vector corresponding to the non-electrode nodes, and Qfp

is the electrical potential vector corresponding to the nodes on the ungrounded
electrode surface.

The first two sets of equation (32) can be rewritten as

$Muu

0
0
0%6Q� u

Q� fi7+$Kuu

KT
ufi

Kufi

−Kfifi%6Qu

Qfi7=6FF −KufpQfp

KfifpQfp 7. (33)

If Qfp is specified as an input for the actuator, the second set of equations in
equation (33) can be used to relate Qfi in terms of Qfp . Then the first set of equation
(33) can be rewritten as

MuuQ� u +K'uuQu =FF −Ff , (34)
where

K'uu =Kuu +KufiK
−1
fifi

KT
ufi

, (35)

Ff =(Kufp −KufiK
−1
fifi

Kfifp )Qfp , (36)

and Ff is defined as the electrical force vector produced by the specified voltage
vector at the piezoceramics.

3. FRICTIONAL CONTACT

In order to demonstrate the accuracy of the developed algorithms, the frictional
contact between the piezoelectric beam and fixed disk is involved. Furthermore,
this study accounts for the effect of deformation of the piezoelectric beam upon
the resulting contact forces. The most common methods of treating the
geometrical contact problems are based on the Lagrange multiplier. As it is
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employed, the geometric condition is enforced by augmenting the Lagrange
multiplier as the additional system variables.

Sequentially, the external contact force vector FF is calculated by means of two
terms [18]. The first one is the product of the scalar Lagrange multiplier with the
gradient of the constraint, and represents the generalized normal reaction force
l · BT. The second represents the generalized friction force =l= · Qf , where =l= is
replaced by l sign (l). The constraint matrix is

B=$0, 0, 0, . . . ,
1C

1uNe +1
,

1C
1vNe +1

, 0%,
and the friction force vector is

Qf = m60, 0, 0, . . . ,
−1C
1vNe +1

,
1C

1uNe +1
, 07,

where m is the coefficient of dry friction.
The constraint matrix B contains coefficients which are functions of the

geometry of contact; therefore, B is an implicit function of time and can be
differentiated with respect to time as follows:

C� =BQ� u =0, C� =B� Q� u +BQ� u =0. (37, 38)

To simulate the motion of the piezoelectric beam in contact with the fixed disk,
equations (34) and (38) should be solved together.

Equation (34) is premultiplied by M−1
uu and rearranged as follows:

Q� u =M−1
uu [−K'uuQu +FF −Ff ], (39)

where FF = l(BT +sign (l)Qf ).
Combining equations (38) and (39), the Lagrange multiplier is obtained as:

l=[BM−1
uu (BT +sign (l)Qf )]−1 · [−BQu +BM−1

uu (KQu +Ff )]. (40)

Equations (39) and (40) are the foundations for a numerical procedure solution
of the equations of motion (34) and the constraint (25). The procedure as described
above is repeated at each time point in the numerical simulation. Initial conditions
which satisfy the constraint conditions (25) and its condition of time derivative (37)
are selected.

4. TREATING GEOMETRIC CONSTRAINT

In order to improve the numerical accuracy for this constrained dynamics
system, direct treatment of the geometric constraint is used. From equation (25)
uNe +1 and vNe +1 are related by

vNe +1 =zr2 − (lt + uNe +1 − b1)2 + c1. (41a)
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T 1

The material properties of piezoceramics and steel

Piezoceramic Steel

Young’s modulus (GPa): E 63·0 220
Poisson’s ratio: v 0·3 0·3
Shear modulus (GPa): G 24·2 84·6
Density (kg/m3): r 7600 7800
Piezoelectric (C/m2):
e111 16·002 0
e112 36·792 0
Dielectric (nN/V2): oS

11 15·3 0

The velocity and acceleration are, respectively,

v̇Ne +1 =−
lt + uNe +1 − b1

zr2 − (lt + uNe +1 − b1)2
u̇Ne +1, (41b)

v̈Ne +1 =−
(lt + uNe +1 − b1)üNe +1 +

r2u̇2
Ne +1

r2 − (lt + uNe +1 − b1)2

zr2 − (lt + uNe +1 − b1)2
. (41c)

By substituting equation (41) into equation (34), and eliminating the (3Ne +2)th
row and column of equation (34), the equation can be solved by the numerical
method. Once vNe +1 is obtained, the longitudinal displacement

uNe +1 =2zr2 − (vNe +1 − c1)2 + b1 − lt

can be determined, where the negative sign is taken for the compressed beam.
It is known that the angle a depends on time. In Figure 3, the two vectors OB'

and DB' are respectively

OB'= (lt + uNe +1)i+(vNe +1)j, (42)

T 2

Comparison of natural frequencies (Hz) for the cantilever beam

Free vibration Free vibration Boundary constraint
Mode (steel) (piezo+steel) (piezo+steel)

v(I) 3521·72 2625·04 12 736·81
v(II) 21 310·63 18 454·16 39 461·89
v(III) 60 739·06 51 558·10 85 682·11
v(IV) 107 404·20 97 179·51 132 713·66
v(V) 191 609·88 148 882·25 145 823·94
u(I) 57 466·04 49 863·59 44 937·08
u(II) 207 926·83 162 555·79 228 044·84

v(I): first bending mode, v(II): second bending mode, v(III): third bending
mode, v(IV): fourth bending mode, v(V): fifth bending mode, u(I): first axial
mode, u(II): second axial mode.
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DB'= (lt + uNe +1 − b1)i+(vNe +1 − c1)j. (43)

Using the inner product one obtains the angle a as

a= p−cos−1 0 (lt + uNe +1)(lt + uNe +1 − b1)+ vNe +1(vNe +1 − c1)

z(lt + uNe +1)2 + v2
Ne +1z(lt + uNe +1 − b1)2 + (vNe +1 − c1)21. (44)

5. NUMERICAL RESULTS AND DISCUSSION

Dimensions of the piezoelectric beam are the length of piezoceramics lp =2 mm
and the length of steel ls =20 mm. The piezoceramic beam is assumed to be
uniform with width b=5 mm and thickness h=2 mm. The material properties
of piezoceramics and steel are listed in Table 1. The disk is made of steel, which
is assumed to be rigid compared with the flexible beam, with thickness 2·5 mm and
radius r=20 mm. The coefficient of dry friction m and shape factor K of the
Timoshenko beam are taken to be 0·2 and 0·85, respectively. The initially normal
force pressed to the piezoelectric beam is N0 =9·81 N and the initial angle
a0 =30°, so the initial longitudinal and transverse displacements of the
piezoelectric beam u0(x) and v0(x) can be determined from the static analysis of
equation (29).

In order to study the non-linear vibrations of the piezoelectric beam, the finite
element technique is used to solve this problem. The Runge–Kutta integration
scheme is utilized to simulate the system dynamics. Six elements, including two

Figure 6. The axial and transverse transient amplitudes of the piezoelectric beam for the free
vibration. (a) The transient axial deflection up at x= lp . (b) The transient transverse deflection vp at
x= lp . (c) The transient axial deflection us at x= lt . (d) The external voltage.
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elements in the piezoceramics and four elements in the steel, are taken to analyze
the piezoelectric beam. Good accuracy is achieved by comparing with the higher
numbers of elements (not shown here). Table 2 gives the comparison of frequencies
of the longitudinal and transverse modes for both free vibrations and boundary
constraint. For free vibration, we can find that the frequencies for piezoceramics
and steel are smaller than those for only steel. This is because Young’s modulus

Figure 7(a–h)—(Caption on following page).
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Figure 7(i–l)

Figure 7. The transient amplitudes and contacting forces for the piezoelectric beam for the forced
vibration. (a) The transient axial deflection up at x= lp . (b) The transient transverse deflection vp at
x= lp . (c) The transient slop cp at x= lp . (d) The external voltage. (e) The transient axial deflection
us at x= lt . (f) The transient transverse deflection vs at x= lt . (g) The transient slope cs at x= lt .
(h) Time history of angle a. (i) Time history of axial force P. (j) Time history of transverse force
Q. (k) Time history of normal force N. (l) Time history of frictional force T.

of the piezoceramics is smaller than that of steel. For the boundary constraint case,
the frequencies are much higher. When the external excitation of voltage is close
to one of the constrained frequency, the system can obtain a most effective
response.

For free vibration the geometric constraint is absent, and l=0. Figure 6 shows
the transient response of the piezoceramics due to a 10 kHz sine input on the
actuator with 100 V amplitude. Figures 6(a) and (c) show the transient amplitudes
for the axial deflection at x= lp and x= lt , respectively. From Figure 6(a), it is
observed that the motion of this point is not a sine function as voltage input, due
to the coupling dynamics between piezoceramics and steel. Thus, the assumption
of pure sinusoidal motion used to drive the steel beam as in reference [1] may
introduce errors even in this simple free vibration case. More noisy shapes at beam
tip can be seen in Figure 6(c). Figure 6(b) shows the transverse displacement at
x= lp is zero, because the voltage is not applied in the transverse direction. The
periodic sinusoidal voltage applied in the axial direction is shown in Figure 6(d).

For the forced constrained vibrations, the geometric constraint is investigated
and the interactions of frictional forces are included. Figures 7(a)–(c) show the
transient responses of the piezoelectric beam at x= lp , due to a 10 kHz sine input
on the piezoceramics with 100 V amplitude. Figure 7(d) shows the periodic
sinusoidal voltage applied in the axial direction. Because of the contact behavior,
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Figure 7(a) shows that the shape is more noisy and is quite different from the sine
function. Thus, the simple sinusoidal motion assumed in reference [1] will yield
unsatisfactory results. Figures 7(e)–(g) show the transient responses of the
piezoelectric beam at x= lt . Figure 7(h) shows the variation of angle a with time.
It is seen that the magnitude of variation of the angle is quite small compared with

Figure 8(a–h)—(Caption on following page).
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Figure 8(i–l)

Figure 8. The transient responses of the piezoelectric beam for the beating phenomena. (a) The
transient axial deflection up at x= lp . (b) The transient transverse deflection vp at x= lp . (c) The
transient slop cp at x= lp . (d) The external voltage. (e) The transient axial deflection us at x= lt .
(f) The transient transverse deflection vs at x= lt . (g) The transient slope cs at x= lt . (h) Time history
of angle a. (i) Time history of axial force P. (j) Time history of transverse force Q. (k) Time history
of normal force N. (l) Time history of frictional force T.

a0. Figures 7(i)–(l) show the interaction forces at the contact point. These
directions of the interaction forces are decided from Figure 5.

If the system is subjected to harmonic excitation and its excitation frequency
is equal to its natural frequency, resonance will occur and the transient amplitude
increases infinitely. If the applied voltage frequency is close to, but not exactly
equal to the natural frequency of the system, a phenomenon known as beating may
occur. Figures 8(a)–(l) show the beating phenomenon of the transient amplitudes
and the contacting forces of the system under N0 =29·43 N and 50 000 Hz voltage
frequency which is close to the natural frequency 44 937 Hz in Table 2. This
beating phenomenon can also be seen in Figures 7(a)–(l), since the 10 kHz voltage
frequency is also close to the natural frequency 12 737 Hz in Table 2.

6. CONCLUSIONS

The behavior of non-linear vibrations of a piezoelectric beam in contact with
a fixed disk is studied in this paper. These formulations are based on the general
concept of constitutive law in piezoelectric materials and Hamilton’s principle
allowing the introduction of kinetic energy, electrical energy, and geometric
constraints relating the deformation variables. Then, the equations are solved by
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using the Runge–Kutta integration numerical method, and the vibration responses
of the piezoelectric beam are investigated with the sinusoidal input voltage.

From the results, we can draw the following conclusions: (1) The simple
assumption of sinusoidal motion of the piezoelectric material used in analysis of
piezomotor may introduce large errors. Thus, in the design and analysis of
piezomotor, a full model consisting of the coupling behavior of piezoelectricity and
structure should be considered. (2) In dealing with the constrained motion, a
procedure has been presented for incorporating dry friction force into the model,
which is based on the state variables and the magnitude of contacting force. The
analysis procedure developed here could be easily extended to treat the more
complex and realistic model of piezomotors.
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APPENDIX A

Details of the shape functions of equations (18, 19) are:

Nu1 =1− j, Nu2 =1− j, Nf1 =1− j, Nf2 = j,

Nv1 =
1−3j2 +2j3 + (1− j)h

1+ h
, Nv2 =

[j−2j2 + j3 + (j− j2)h/2]l
1+ h

,

Nv3 =
3j2 −2j3 + jh

1+ h
, Nv4 =

[−j2 + j3 − (j− j2)h/2]l
1+ h

,

Nc1 =
6(−j+ j2)

l(1+ h)
, Nc2 =

1−4j+3j2 + (1− j)h
1+ h

,

Nc3 =
6(j− j2)
l(1+ h)

, Nc4 =
−2j+3j2 + jh

1+ h
,

where h=12EI/KGAl2.

APPENDIX B

For the kinetic energy (21) and the potential energy (22a, 22b) of an element:

[m]=g
l

0

{rA{[Nu ]T[Nu ]+ [Nv ]T[Nv ]}+ rI[Nc ]T[Nc ]} dx,

[k1]=g
l

0

EA[Bu ]T[Bu ] dx,

[k2]=g
l

0

EI[Bc ]T[Bc ] dx,
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[k3]=g
l

0

KGA{[Bv ]T[Bv ]− [Bv ]T[Nc ]− [Nc ]T[Bv ]+ [Nc ]T[Nc ]} dx,

[kuu ]= [k1]+ [k2]+ [k3],

[kuf ]= [kfu ]T =g
l

0

A{e11{[Bu ]T[Bf ]}+ e12{[Bv ]T[Bf ]− [Nc ]T[Bf ]}} dx,

[kff ]=g
l

0

o11A{[Bf ]T[Bf ]} dx.
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