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This paper continues and terminates the sequence of the preceding papers [1–4]
about sound fields in wedge-shaped spaces, and especially resumes the topic of
reference [4] which deals with the scattering of sound at building corners and an
absorbing cylinder which surrounds the corner. The corner flanks in [4] were
supposed to be rigid, so the sound field could be synthesized with ideal wedge
modes. The present paper continues the task of reference [4], but now the corner
flanks are absorbing. A model of the arrangement is applied which uses a special
case of the modal analysis in reference [1]. The field space is subdivided into
ring-shaped zones with radii ri , and the wall admittance Gi of the absorbing flank
in each zone is supposed to be inversely proportional to the radius, Gi (r)0 1/r,
so that the average value of the model admittance in a zone �Gi (r)� equals the
admittance G of the flank. An admittance function Gi (r)0 1/r is associated with
wedge modes of a simple form. The model with the ‘‘stepping admittance flank’’
is an approximate to the corner with constant admittance if the number of
ring-shaped zones is high enough, so that the variation of Gi (r) in the zones
remains restricted. The absorbing cylinder around the corner is used here for two
reasons: first, the stepping admittance model is singular at the corner, which is
excluded by the cylinder, second: it shall be investigated how an absorbing flank
will influence the potential of the cylinder to improve the corner shielding which
was demonstrated in reference [4] for rigid corner flanks.
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1. INTRODUCTION

The present paper is a member of a series of previous papers [1–4], which all have
as their common topic the sound field analysis in wedge-shaped spaces. The
common aim is the field synthesis with wedge modes, which are mutually
orthogonal between the wedge flanks. The last contribution [4] dealt with the
sound scattering at rigid corners which are surrounded by an absorbing cylinder.
The rigid corner flanks allow for the use of ‘‘ideal wedge modes’’ (associated with
ideally reflecting flanks) for the field formulation. The first contribution [1]
explained (with literature about the theme), why special problems are encountered
when the flanks of the wedge-shaped space are absorbing; then the wave equation
in cylinder co-ordinates generally is no longer separable. A special condition was
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indicated in reference [1] for which the separability is retained even with absorbing
flanks, namely when the (normalized) surface admittance G of the flank is a radial
function G(r)0 1/r inversely proportional to the radius r. The radial functions of
the wedge modes then are Bessel, Neumann or Hankel functions with complex
orders. This special case is used here to construct a model of the corner with a
locally absorbing flank having a constant surface admittance G.

The philosophy of the model makes use of the general finding that reflection
and scattering at absorbing walls or sound propagation along walls with
‘‘structured’’ (i.e., spatially variable) admittance can be approximated by
interactions with a wall with constant admittance if, first, the variation of the
admittance is not too strong, and second if the structure dimensions are small
compared to the wave length. Then the average admittance is the important
quantity. Therefore one can subdivide the wedge space into ring-shaped zones with
radii ri and suppose in each zone a flank admittance Gi (r)= ci /r. The factors ci

are determined so that the average �Gi (r)� over the width Dr of the ring equals
G. One easily finds

Gi (r)=
G
r

ri − ri−1

ln (ri /ri−1)
. (1)

A typical arrangement is illustrated in Figure 1(a). A corner with one rigid and
one absorbing flank lets a wedge-shaped field space with a wedge angle U0 (e.g.,

Figure 1. (a) Scheme of a corner with one rigid flank (at q=0) and one absorbing flank (at
q=U0) with an absorbing cylinder of radius a and a (normalized) surface admittance Gc . A line
source is at Q=(rq , qq ). (b) Scheme of the stepped admittance model of a corner with one rigid flank
(at q=0) and one absorbing flank (at q=U0).
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U0 =270° in the sketch). The corner is surrounded by a cylinder of radius a which
is supposed to be locally absorbing with a (normalized) surface admittance Gc .
Two types are considered for the incident sound. In the first case it is produced
by a line source (parallel to the corner) at position Q with the coordinates (rq , qq ).
One can then place the source inside one of the ring zones, rs−1 Q rq Q rs , with a
zone number i= s. The second case with an incident plane wave is obtained by
letting rq:a. Figure 1(b) shows the scheme of the stepping wall admittance Gi (r)
at the absorbing flank. The admittance steps between the zones become smaller
and smaller with increasing zone limit radius ri . Except near the origin they can
be made small by choosing small Dr values. Note that Dr must not be constant;
it could be set to smaller values near to the origin and to larger values in greater
distances. The absorbing cylinder with radial surface admittance Gc and diameter
2a eliminates the singularity at the origin.

The example of Figure 1 (with the arbitrary value U0 =270°) with an ideal
and an absorbing flank is an element of the more general case that both flanks
are absorbing. Then the ideal flank is placed in the angle bisector of the wedge
angle, and the ideal flank is rigid, if the sound field is symmetrical with
respect to the angle bisector (e.g., the line source lying on it or the plane wave
incident parallel to it). For more general source positions the task is solved
twice: first with a rigid flank in the angle bisector, then with a soft (pressure
release) flank at the angle bisector. Any skew field distribution then can be
represented by a superposition of these solutions. Here the main concern is with
the arrangement of one rigid and one absorbing flank. The most important
intermediate results for a soft flank combined with an absorbing flank will be
given, however.

Any wedge angle 0QU0 E 2p is possible. The results of the present stepped
admittance model can be checked with results from other models and theories. If
the wedge angle is moderate, U0 E 45°, the results of the present method can be
compared with those of reference [2], where the wedge was modelled with stepping
lined duct sections. For U0 =2p and small cylinder diameters 2a (possibly
combined with Gc =0) the present results can be compared with those of the
theory for thin absorbing screens by using Mathieu functions (see reference [5]).
The present theory will analytically go over to that of reference [4] when both
flanks are rigid.

2. FIELD FORMULATION FOR A LINE SOURCE

With a line source at the co-ordinates rq , qq the question immediately arises
whether it would be better to place the line source in a zone limit, rq = ri , or inside
a zone. Here it is placed inside a zone i= s with rq $ ri−1, ri , mainly for reasons
of clarity.

The field formulations are of the form

p(r, q, z)= s
h

Rh (r)T(hq)Z(kzz), (2)
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where the factor Z(kzz) may be one of the functions e2jkzz, cos (kzz), sin (kzz) or
a linear combination thereof with a given wave number kz . Because Z(kzz) will
appear as a factor in all field representations, one can drop it (like the time factor
ejvt); the only consequence of a value kz $ 0 will be a modification of the radial
wave number k2

0:k2 = k2
0 − k2

z . For the numerical examples below it is supposed
that for kz =0, Z(kzz)=1, for reasons of simplicity (nevertheless the wave number
symbol k will be used further). The terms in the sum are orthogonal in the
range 0E qEU0 for the forms cos (hq) (symmetrical modes) and sin (hq)
(antisymmetrical modes) for T(hq) or a linear combination thereof (skew modes),
if h=const (q). The boundary condition at the absorbing flank,

Z0vq (r, U0)=
j

k0r
1p(r, U0)

1q
=
!

Gp(r, U0), (3)

leads to

(hU0) tan (hU0)= jkrU0G,

(hU0) cot (hU0)=−jkrU0G,

symmetrical modes,

antisymmetrical modes.
(4)

These are the characteristic equations for the azimuthal wave numbers h. The
solutions hn generally become functions of r, when G$ 0=const or =G=$a. That
is the reason why the wave equation cannot be separated. If however
G=G(r)0 1/r, then h=const (r) and the wave equation leads to the Bessel
differential equation for the radial term Rh (r),

0 12

1r2 +
1
r

1

1r
+ k2 −

h2
n

r21Rhn (r)=0, (5)

with general solutions of the form

Rh (r)=Rn (kr)= cnH(1)
hn

(kr)+ dnH(2)
hn

(kr), (6)

where H(i)
hn
(kr) are Hankel functions, propagating radially inward for i=1 and

outward for i=2. They have the orders hn which—according to equation (4)—
generally are complex. The counting index n of the modes, which corresponds to
the counting of the solutions hn , is somewhat arbitrary; one can retain
n=0, 1, 2, . . . .

With G=G(r)= c/r with a constant c (having the dimension of a length),
the characteristic equations (4) take the forms z tan (z)= jkcU0 and
z cot (z)=−jkcU0, respectively. These are the forms of the characteristic
equations for symmetrical and antisymmetrical modes in straight silencer ducts
with a locally absorbing lining. The techniques of their solution can be taken from
there (see also reference [1]).

A surface admittance G=G(r)= c/r of the corner flank with c=const over the
whole length of the flank would be unrealistic. However one can subdivide the
flank into strips of a width Dr and suppose for each strip ri−1 E rE ri a surface
admittance Gi (r)= ci /r. When one chooses ci so that the average �Gi (r)�=G, one
obtains the admittance profiles (1). Each of the ring-shaped zones ri−1 E rE ri has
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its own set of model solutions hi,n , and the wedge modes in the zones are
orthogonal with norms

Ni,n =
1
U0 g

U0

0

cos2 (hi,nq) dq=
1
2 01+

sin (2hi,nU0)
2hi,nU0 1 . (7)

The orthogonality of the modes makes possible a modal analysis of the total sound
field in which the sound fields of the zones are fitted to each other at the zone limits
by their sound pressure and radial velocity. The modal analysis is exact in the sense
of a Fourier analysis.

The critical question of the approximation is whether the model with the stepped
flank admittance is an acceptable model for the flank with constant G. Here one
can trust the often made experience that a surface with a ‘‘structured’’ admittance
G(r) can be approximated by a constant admittance if, first, the average �G(r)�
agrees with G, and, second, if the structure length Dr is small compared to the wave
length, and, third, if the variation of G(r) is not too strong (high peaks in =G(r)=
would act as isolated scatterers). These conditions can be complied with by the
choice of equation (1) and of sufficiently small intervals Dr, except very near to
the origin. The neighbourhood of the origin is eliminated by the absorbing
cylinder. Even when this has a small radius a, the fulfilment of the conditions can
be improved by taking smaller Dr near the origin than at greater distances.

So the characteristic equations for the mode solutions are (i=1, 2, . . .)

(hi,mU0)6tan
cot

(hi,mU0)=2jU0
k0Dr

ln (ri /ri−1)
G6rigid

soft
flank at q=0. (8)

It should be noticed that ln (ri /ri−1):0 for large ri ; the solutions tend to those for
a soft flank hi,mU0:(m2 1/2)p if the flank at q=0 is rigid and hi,mU0:mp if the
flank at q=0 is soft.

The sound field in the zone i$ s (not containing the source) is formulated as

pi (r, q)= s
me 0

[Ai,mH(1)
hi ,m

(kr)+Bi,mH(2)
hi ,m

(kr)] cos (hi,mq),

Z0vr,i =
jk
k0

s
me 0

[Ai,mH'(1)
hi ,m (kr)+Bi,mH'(2)

hi ,m (kr)] cos (hi,mq): (9)

i.e., with radially inward and outward going modes. In principle this formulation
is retained also behind the source, because reflected waves from the zone steps
there could be possible. If however the zone i is far behind the source where the
steps become negligibly small the inward running terms with Ai,m can be neglected
(see below for more about this).
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One needs coupling coefficients between modes of adjacent zones given by the
integrals (Ti,m (q) are the azimuthal mode functions)

X(i)
m,n =

1
U0 g

U0

0

Ti,m (q)Ti+1,n (q) dq,

Y(i)
m,n =

1
U0 g

U0

0

Ti,m (q)Ti−1,n (q) dq=X(i−1)
n,m . (10)

If the flank at q=0 is rigid, these become

X(i)
m,n =

1
2 $sin ((hi,m − hi+1,n )U0)

(hi,m − hi+1,n )U0
+

sin ((hi,m + hi+1,n )U0)
(hi,m + hi+1,n )U0 %,

Y(i)
m,n =

1
2 $sin ((hi,m − hi−1,n )U0)

(hi,m − hi−1,n )U0
+

sin ((hi,m + hi−1,n )U0)
(hi,m + hi−1,n )U0 %, (11a)

and, if the flank at q=0 is soft

X(i)
m,n =

1
2 $sin ((hi,m − hi+1,n )U0)

(hi,m − hi+1,n )U0
−

sin ((hi,m + hi+1,n )U0)
(hi,m + hi+1,n )U0 %,

Y(i)
m,n =

1
2 $sin ((hi,m − hi−1,n )U0)

(hi,m − hi−1,n )U0
−

sin ((hi,m + hi−1,n )U0)
(hi,m + hi−1,n )U0 %. (11b)

Consider first the boundary condition at the cylinder around the corner, r= a:

Z0vr =
j
k0

1p
1r

=
!

−Gcp. (12a)

This gives

jk
k0

[A1,mH'(1)
h1,m (ka)+B1,mH'(2)

h1,m (ka)]=−Gc [A1,mH(1)h1,m (ka)+B1,mH(2)
h1,m

(ka)],

(12a)

leading to

B1,m =−A1,m

GcH(1)
h1,m

(ka)+ j(k/k0)H'(1)
h1,m (ka)

GcH(2)
h1,m

(ka)+ j(k/k0)H'(2)
h1,m (ka)

, (13)

This could also be written B1,m = r1,mA1,m with modal reflection factors r1,m

r1,m =−
GcH(1)

h1,m
(ka)+ j(k/k0)H'(1)

h1,m (ka)
GcH(2)

h1,m
(ka)+ j(k/k0)H'(2)

h1,m (ka)
. (14)
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It should be noticed that in the zone i=1 only one set of amplitudes is unknown,
the set of the A1,m .

Consider next the boundary conditions at a zone limit ri between two zones i
and i+1 not containing the source. When one applies the integral

1
U0 g

U0

0

· · · cos (hi,mq) dq, (15a)

the continuity of the sound pressure gives

[Ai,mH(1)
hi ,m

(kri )+Bi,mH(2)
hi ,m

(kri )]Ni,m = s
ne 0

[Ai+1,nH(1)
hi+1,n

(kri )+Bi+1,nH(2)
hi+1,n

(kri )]X(i)
m,n ,

(16a)

and the continuity of the radial particle velocity gives

[Ai,mH'(1)
hi ,m (kri )+Bi,mH'(2)

hi ,m (kri )]Ni,m = s
ne 0

[Ai+1,nH'(1)
hi+1,n (kri )+Bi+1,nH'(2)

hi+1,n (kri )]X(i)
m,n .

(17a)

Elimination of the Bi,m leads to

Ai,m [H(1)
hi ,m

(kri )H'(2)
hi ,m (kri )−H'(1)

hi ,m (kri )H(2)
hi ,m

(kri )]Ni,m

= s
ne 0

[Ai+1,n (H(1)
hi+1,n

(kri )H'(2)
hi ,m (kri )−H'(1)

hi+1,n (kri )H(2)
hi ,m

(kri ))

+Bi+1,n (H(2)
hi+1,n

(kri )H'(2)
hi ,m (kri )−H'(2)

hi+1,n (kri )H(2)
hi ,m

(kri ))]X(i)
m,n . (18)

With the Wronski determinant of Hankel functions

W(f1(z), f2(z))= f1(z)f'2 (z)− f'1 (z)f2(z), W(H(1)
n (z), H(2)

n (z))=−
4j
pz

, (19)

one gets the following systems of equations which are downwards recursive in i:

Ai,m =j
pkri

4Ni,m
s

ne 0

[Ai+1,n (H(1)
hi+1,n

(kri )H'(2)
hi ,m (kri )−H'(1)

hi+1,n (kri )H(2)
hi ,m

(kri ))

+ Bi+1,n (H(2)
hi+1,n

(kri )H'(2)
hi ,m (kri )−H'(2)

hi+1,n (kri )H(2)
hi ,m

(kri ))]X(i)
m,n , (20a)

Bi,m =−j
pkri

4Ni,m
s

ne 0

[Ai+1,n (H(1)
hi+1,n

(kri )H'(1)
hi ,m (kri )−H(1)

hi ,m
(kri )H'(1)

hi+1,n (kri ))

+ Bi+1,n (H(2)
hi+1,n

(kri )H'(1)
hi ,m (kri )−H(1)

hi ,m
(kri )H'(2)

hi+1,n (kri ))]X(i)
m,n . (21a)
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If instead of the integral (15a) one applies the integral

1
U0 g

U0

0

· · · cos (hi+1,mq) dq (15b)

on the sound pressure condition, one obtains

[Ai+1,mH(1)
hi+1,m

(kri )+Bi+1,mH(2)
hi+1,m

(kri )]Ni+1,m

= s
ne 0

[Ai,nH(1)
hi ,n

(kri )+Bi,nH(2)
hi ,n

(kri )]X(i)
n,m , (16b)

and on the radial particle velocity condition

[Ai+1,mH'(1)
hi+1,m (kri )+Bi+1,mH'(2)

hi+1,m (kri )]Ni+1,m

= s
ne 0

[Ai,nH'(1)
hi ,n (kri )+Bi,nH'(2)

hi ,n (kri )]X(i)
n,m . (17b)

Elimination of the Bi+1,m and use of the Wronski determinant yields the upwards
iterative system of equations

Ai+1,m =j
pkri

4Ni+1,m
s

ne 0

[Ai,n (H(1)
hi ,n

(kri )H'(2)
hi+1,m (kri )−H'(1)

hi ,n (kri )H(2)
hi+1,m

(kri ))

+ Bi,n (H(2)
hi ,n

(kri )H'(2)
hi+1,m (kri )−H'(2)

hi ,n (kri )H(2)
hi+1,m

(kri ))]X(i)
n,m , (20b)

Bi+1,m =−j
pkri

4Ni+1,m
s

ne 0

[Ai,n (H(1)
hi ,n

(kri )H'(1)
hi+1,m (kri )−H(1)

hi+1,m
(kri )H'(1)

hi ,n (kri ))

+ Bi,n (H(2)
hi ,n

(kri )H'(1)
hi+1,m (kri )−H(1)

hi+1,m
(kri )H'(2)

hi ,n (kri ))]X(i)
n,m , (21b)

When one begins with i=1, only the A1,n are symbolic on the right-hand sides;
all other terms are numeric. This remains true when we iterate upwards through
i. Finally one comes to i= s−1: i.e., to the zone which is before the zone i= s
containing the source.

For the zone i= s one must make a special field formulation which subdivides
the zone into two sub-zones (s)= (1) with ri−1 E rQ rq and the sub-zone (s)= (2)
with rq Q rE ri :

p(s)
s (r, q)= s

me 0

[A(s)
s,mH(1)

hs ,m
(kr)+B(s)

s,mH(2)
hs ,m

(kr)] cos (hs,mq),

Z0v(s)
r,s =

jk
k0

s
me 0

[A(s)
s,mH'(1)

hs ,m (kr)+B(s)
s,mH'(2)

hs ,m (kr)] cos (hs,mq). (22)

Fitting the sound pressure at the limit r= rq of the sub-zones gives

A(1)
s,mH(1)

hs ,m
(krq )+B(1)

s,mH(2)
hs ,m

(krq )=A(2)
s,mH(1)

hs ,m
(krq )+B(2)

s,mH(2)
hs ,m

(krq ), (23)
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and the boundary condition for the radial particle velocity there requires

v(2)
r,s (rq +0)− v(1)

r,s (rq −0)=
!

F d(q− qq ), (24)

with the volume flow density F of the line source and the Dirac delta function
d(q− qq ). This can be expanded in wedge modes of the zone s:

d(q− qq )= s
ne 0

bnTs,n (q)= s
ne 0

bn cos (hs,nq)

1
U0 g

U0

0

d(q− qq )Ts,m (q) dq=
1
U0

Ts,m (qq )= bmNs,m , (25)

where bm =(Ts,m (qq))/(U0Ns,m ). With this, the boundary condition (24) gives

jk
k0

· {[A(2)
s,mH'(1)

hs ,m (krq )+B(2)
s,mH'(2)

hs ,m (krq )]− [A(1)
s,mH'(1)

hs ,m (krq )+B(1)
s,mH'(2)

hs ,m (krq )]}=Z0Fbm .

(26)
Together with the sound pressure condition one gets

A(1)
s,m −A(2)

s,m =
p

4
k0rqH(2)

hs ,m
(krq )Z0Fbm , (27a)

B(1)
s,m −B(2)

s,m =−
p

4
k0rqH(1)

hs ,m
(krq )Z0Fbm . (28a)

If one introduces the sound pressure pQ (0) which the line source would produce
in the free field at the corner position,

pQ (0)= 1
4k0rqZ0FH(2)

0 (krq ), (29)

one can write

A(2)
s,m =A(1)

s,m − pbmpQ (0)
H(2)

hs ,m
(krq )

H(2)
0 (krq )

, (27b)

B(2)
s,m =B(1)

s,m + pbmpQ (0)
H(1)

hs ,m
(krq )

H(2)
0 (krq )

. (28b)

Now one must distinguish two cases. In the first case the source is so far from
the corner that the admittance steps behind the source are negligible, i.e., one can
set A(2)

s,m =0 in equation (27) because no inward running reflections comes from
outside the source. When one sets A(1)

s,m =Ai+1,m with Ai+1,m the last result of the
iteration (20b), then one has in equations (27) an inhomogeneous linear system
of equations for the A1,m . After its solution all other amplitudes are obtained by
insertion. In the other case, when inward directed reflections must be considered
behind the source also, one begins the downward iteration (20a), (21a) at a
sufficiently large i= I, so that the AI+1,m can be neglected. These iterations contain
in their right-hand sides only the symbolic quantities BI+1,m . Upon ending the
downward iteration with i= s and with the identity Ai,m =A(2)

s,m and Bi,m =B(2)
s,m ,
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equations (27b) and (28b) are two systems of linear inhomogeneous equations for
the two sets of amplitudes A1,m and BI+1,m . After they are solved, all other
amplitudes are computed by insertion. Thus the task of the field computation with
a line source is solved.

In the case of no zone reflections outside the source, i.e., A(2)
s,m =0, one can also

perform a downward iteration with equations (27b) and (28b) by setting
A(1)

s,m =Ai+1,m , B(1)
s,m =Bi+1,m and using equations (20a) and (21a) until i=1. The

Ai+1,m then are purely numerical; the Bi+1,m are mixed numeric-symbolic with
symbolic quantities B(2)

s,m . The final equations are the relations B1,m = r1,mA1,m with
the modal reflection factors r1,m of equation (14). If they are solved for the B(2)

s,m ,
then all other amplitudes are obtained by insertion. This downward iteration has
numerical advantages as the matrix of the final equations generally is better
conditioned than that of the upward iteration.

3. FIELD FORMULATION FOR AN INCIDENT PLANE WAVE

The incident plane wave is generated by letting go rq:a, and at the same time
one can set A(2)

s,m =0 (i.e., no inward reflections from behind the source). From
equations (27) it is deduced that the amplitudes A(1)

s,m are determined:

A(1)
s,m = pbmpQ (0)

H(2)
hs ,m

(krq )
H(2)

0 (krq )
= pbmpQ (0) ejhs ,mp/2, (30)

where for the last relation the asymptotic approximations for Hankel functions
are used, and the bm are given in equation (25). When one iterates equation (20b)
(with only symbolic A1,m on the right-hand side) up to i+1= s with s chosen
sufficiently high to avoid inward reflections from the limit to the zone s+1, setting
A(1)

s,m =Ai+1,m from the iteration, then one obtains with equation (30) a system of
linear inhomogeneous equations for the A1,m from which all other amplitudes
follow by insertion. (The implicit assumptions made here, that s is high enough
to avoid inward reflections from zone steps and rs is finite on one hand, but rq

within the zone s shall be infinite, can be realized by a very wide last zone i= s.)
A downward iteration is possible also in which Ai+1,m is taken from equation (30)
and Bi+1,m left symbolic. The final equations for these then again are furnished by
the relations B1,m = r1,mA1,m with the modal reflection factors r1,m of equation (14).

4. NUMERICAL EVALUATION

The numerical evaluation begins with the determination of a zone width Dr. It
can be referred to the radius r0 = a of the inner cylinder and called s=Dr/a. The
ratio of the zone admittance Gi (r) in equation (1) to the flank admittance G can
be written (i=1, 2, . . .) as

Gi (r)
G

=
1

r/a
s

ln01+
s

1+ (i−1)s1
=

1
r/a

Fi (s), Fi (s)=
s

ln0 s
1+ (i−1)s1

,

(31)
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Figure 2. Computed ratios Gi (r)/G for Dr/a=1 and ihi =6 (solid line), Dr/a=0·5 and ihi =12
(long dashes), Dr/a=0·25 and ihi =24 (short dashes).

and the right-hand side of the characteristic equation (8) becomes jU0k0aGFi (s).
The limit of Fi (s) for s:0 is Fi (s):1. A power series expansion of Fi (s) at s=0
begins with

Fi (s)1 1+ (i−1/2)s−(1/12)s2 + {(i−1/2)/12}s3. (32)

The factor Fi (s) is about linear in i and in s for sQ 1. Figure 2 shows the
admittance ratio Gi (r)/G for three step widths: s=1 (solid line); 0·5 (long dashes);
0·25 (short dashes). A step width s=Dr/a=1 seems to be a maximum value. Even
then the model admittance Gi (r) steps at the first step i=1 only from about 0·75G
to about 1·25G. With s=0·5 or smaller the steps between the zones may become
negligible for r/aq 7.

The characteristic equation (8) with the mode solutions hi,m for rigid and
absorbing flanks is, with the abbreviation zi,m = hi,mU0 of the form

zi,m tan zi,m =jU0k0aGFi (s). (33)

It must be solved for a number of zones i=1, 2, . . . , ihi and a number of modes
m=0, 1, . . . , mhi . It is convenient to solve it iteratively over i for every m,
beginning with i=1 and F1(s)1 1+ s/2. A mode-safe algorithm [6] (safe against
inadvertent mode jumping during the solution) is used in the first step of the
iteration; in higher iterations the solutions from former steps are used as start
solutions. For large values of U0 and k0a it may be necessary to select a small value
for s. Figure 3(a) shows the first six solutions (m=0, . . . , 5) of hi,m in the complex
plane for U0 =270°, k0a=0·5 with i varying on the curves (indicated by the
sampling points) over i=1, . . . , 40 with a step s=0·5. The admittance of the
flank is G=1−j. The direction on the curves for increasing i is indicated. For
large values of i the sampling points lie tight; the surface admittances of neighbour
zones in the stepped admittance model become close to each other. In Figure 3(b)
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Figure 3. (a) Modal solutions hi,m of the modes m=0, . . . , 5 for increasing i=1, . . . , 40 with
Dr/a=0·5 and ka=0·5 for a corner with U0 =270° with normalized admittance G=1−j of the
flank. (b) As (a), but with flank admittance G=1+j, i.e., with a spring type reactance; the mode
m=1 is a surface wave.

only the flank admittance was changed to G=1+j (i.e., with a spring type
reactance). The second mode behaves quite differently from the other modes: it
is a surface wave; the special role of surface wave modes has been discussed in
reference [1]. The hi,m are the orders of the Hankel functions in the field
formulation. Figures 3(a, b) are typical in showing that—with the exception of the
surface wave mode and sometimes the lowest mode—the imaginary component
of the order hi,m is small compared to its real component.

The order of magnitude of the norms Ni,n is about 0·5 and therefore the norms
play no role in the convergence of the systems of equations, except the norm of
a surface wave mode which can assume very high values. The magnitude of the
coupling coefficients X(i)

m,n between modes of adjacent zones is easy to describe for
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Figure 4—(Caption on following page)

modes which are not the surface wave mode. When the steps of the zonal
admittance with increasing i become small, the modes of the neighbouring zones
more and more approach the behaviour of orthogonal modes; X(i)

m,n decreases with
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Figure 4. (a) Logarithm of the magnitude of the cross product which is the factor of the Ai,n in
equation (20b) for the Ai+1,m ; with kri =0·75; (b) as (a) but with kri =2·75; (c) as (a) but with
kri =5·25.

an increasing difference in m, n. Therefore the coupling coefficients X(i)
m,n produce

the convergence of the sums in the systems of equations. The coupling coefficients
X(i)

m,n become large (especially for high i) if one or both of the modes m, n is a surface
wave mode: i.e., when the surface admittance G of the flank has a positive
imaginary component. Whereas the sums in the systems of equations for regular
modes (not surface wave modes) have a dominant term m= n, the situation is not
so simple when a surface wave is involved (although the numerical situation is
alleviated because only the combination X(i)

m,n /Ni,m appears in equations (20a), (21a)
and X(i)

n,m /Ni+1,m in equation (20b), (21b)).
The main relations in the determination of the mode amplitudes are the upward

recursions (20b), (21b). As mentioned above they will have the shapes

Ai+1,m = s
ne 0

a(i)
m,nA1,n , Bi+1,m = s

ne 0

b(i)
m,nA1,n , (34)

where the a(i)
m,n , b(i)

m,n are numeric coefficients to the symbolic (i.e., unknown) A1,n .
The numerical factors a(i)

m,n , b(i)
m,n are made up of cross products of Hankel

functions. They play a key role in the numerical evaluation. These cross products
are not favourable in their magnitude for the convergence of the systems of
equations. For small i they may assume large magnitudes outside the main
diagonal m= n, as Figure 4(a) illustrates with i=1: i.e., kri =0·75, for the
logarithm of the factor of Ai,n in equation (20b) for Ai+1,m . This improves for larger
i, as Figure 4(b) shows for i=9, i.e., kri =2·75, and Figure 4(c) for i=19, i.e.,
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Figure 5—(Caption on following page)

kri =5·25. Figure 5(a–c) show the corresponding factors of Bi,n in equation (20b)
for i=1, 9, 19, respectively. The other parameters in these diagrams are
k0a=0·5, Dr/a=0·5, U0 =270°, G=1−j.
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Figure 5. (a) Logarithm of the magnitude of the cross product which is the factor of the Bi,n in
equation (20b) for the Ai+1,m , with kri =0·75; (b) as (a) but with kri =2·75; (c) as (a) but with
kri =5·25.

For a distant line source, i.e., A(2)
s,m =0 in equation (27b), the first relation (with

i+1= s) forms the final system of equations for the A1,n (with m=0, 1, . . .):

A(1)
s,m =As,m = s

ne 0

a(s−1)
m,n A1,n = p

cos (hs,mqq )
U0Ns,m

H(2)
hs ,m

(krq )
H(2)

0 (krq)
pQ (0). (35)

If the a(i)
m,n , b(i)

m,n are saved during the iteration, the amplitudes Ai+1,m , Bi+1,m follow
by insertion with known solutions A1,n of equation (35) (and similarly for
downward iterations). All mode amplitudes are proportional to the arbitrary value
of pQ (0), which therefore is set to pq (0)=1. The procedure of the mixed numeric
and symbolic iteration (which easily can be performed with symbolic-numeric
programs like Mathematica7) has the important advantage that no matrices must
be inverted or intermediate systems of equations must be solved during the
iteration; the numerical errors remain small, therefore.

The question up to which limits ihi , mhi the zone and mode indices should be
applied could be discussed analytically if no surface wave mode is implied;
however it is easier to find the limits by numerical experiments. The limit mhi is
delicate: if it taken too low, then the mode sums do not yet represent the true field
(see examples below); if it is taken too high, then numerical errors in the Hankel
functions can make the matrix of the system of equations badly conditioned. The
main computational steps are, first, the solution of the characteristic equation for
ihi times mhi +1 mode solutions; this can be done within a few minutes. Next, the
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Figure 6—(Caption on following page)

evaluation of the norms Ni,m and of the coupling coefficients X(i)
m,n can be performed

also in a short time. And also the mixed numeric-symbolic iteration of the
amplitude equations, the solution of the final system of equations and the insertion
of the numeric A1,m into the mixed expressions for Ai+1,m , Bi+1,m is finished within
some minutes. The longest computing time is consumed by the evaluation of the
Hankel functions H(1),(2)

hi ,m
(kr) with complex orders for the field representation; this

may take hours (in the computations of this paper the built-in Bessel and
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Figure 6. Sound pressure level field around a corner with wedge angle U0 =270° and flank
admittance G=1−j with an absorbing cylinder of k0a=1 and surface admittance Gc =1+0·5j
for plane wave incidence with qq =240° (in downward iteration), computed with mode order limit
mhi =4 in ihi =10 zones with relative width s=Dr/a=0·5; (b) as (a) but computed with mode order
limit mhi =8; (c) as (a), (b) but computed with mode order limit mhi =12.

Neumann functions in Mathematica8 were applied which are for complex orders
also). The recursive relations for Bessel functions cannot be applied for the fast
generation of mode sets of these functions because the orders hi,m are not sequences
of either integers or simple rationals.

The series of the three-dimensional sound pressure level plots 20 lg =p(kx, ky)/
pQ (0)= in dB of Figure 6(a–c) show the influence of the applied mode numbers mhi

in the field computation. The plots are for mhi =4, mhi =8, mhi =12, respectively.
The field becomes stationary for about mhi 1 10. The examples are results of
downward iterations with a plane wave incident from qq =240° on a right-angled
corner, U0 =270°, with a normalized surface admittance G=1−j of one flank
(at kx=0; the other flank at q=0, i.e., ky=0 being rigid) and a cylinder with
ka=1 having a normalized surface admittance Gc =1+0·5j around the corner.
The number of zones is ihi =10 with Dr/a=0·5. The plots are shown with angular
steps Dq=15° and three radial values (ri−1, 0·5(ri−1 + ri ), ri ) in each zone. The
small field gaps between the zones, visible for low mhi , diminish with increasing
mhi . This observation is normal for a Fourier synthesis with low numbers of
Fourier components. The number of modes in Figure 6(a) with mhi =4 evidently
is too small; interference maxima exists in the shadow area of the corner. A higher
number of modes, like mhi =12 in Figure 6(c), is necessary to synthesize the
monotonic slope of the level profile in the shadow area near the rigid flank both
in the radial and in the azimuthal directions. As Figure 6(c) indicates and
computations with larger kr range confirm, interference variations appear in the
shadow at larger radial distances from the corner and larger azimuthal distances
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Figure 7. Sound pressure level field in an acute-angled wedge-shaped space with angle U0 =30°
and flank admittance G=1−1·25j, with an absorbing cylinder of k0a=1 and surface admittance
Gc =1+0·5j, for plane wave incidence with qq =0° (in downward iteration), computed with modes
of order m=0, 1 in ihi =20 zones with relative width s=Dr/a=0·5; (b) as (a) but with flank
admittance G=1+1·25j.
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from the rigid flank. These interference variations are the main difference in the
level profile produced by the absorption of one flank as compared to two rigid
flanks, if the wedge is obtuse-angled. The surface wave mode—although
exceptional in its mode wave number—plays no important role in wide wedge
spaces, it is only weakly excited there.

The final numerical examples belong to acute-angled wedge spaces with
U0 =30°. In Figures 7(a, b) (which differ only in the sign of the reactance of
G=12 1·25j) a plane wave is incident with qq =0, i.e., parallel to the rigid flank
towards the wedge apex, which is covered by a cylinder with k0a=1 and a surface
admittance Gc =1+0·5j. Only the wedge modes m=0, 1 can be used. Higher
modes in the computation lead to a badly conditioned matrix in the final system
of equations. The acoustical reasoning for this finding is as follows: with a (rather)
soft flank, i.e., =G= high, the higher modes directed to the apex run through zones
with mode cut-off; the errors in the mode fitting between zones would become
large. Whereas in Figure 7(a) the mode m=1 is dominant for kxq 5, it is
practically absent for kxE 2·5. In Figure 7(b) with the spring type reactance of
the absorbing flank, G=1+1·25j, the mode m=1 is a surface wave. Near the
wedge apex it is dominent; it produces the steep level slope towards the absorbing
flank (which is required by the fit of the field admittance to the flank admittance).
Both diagrams show that in acute-angled wedge spaces with an absorbing flank
the value of the wall admittance may drastically change the field pattern.

5. CONCLUSION

The method described above for a modal analysis in wedge-shaped spaces with
absorbing flanks has the advantage that it is applicable in the full range of the
wedge angle U0. However it is numerically tedious. Not only the computation of
Bessel and Neumann functions with complex orders is time consuming, but also
the right number of the modes involved must be determined by numerical tests.
The upward and the downward iterations through the ring-shaped zones of the
model generally produce equivalent results. The influence of a finite flank
admittance with the obtuse-angled wedges (e.g., building corners or screens) as
compared to both flanks rigid mostly is not very pronounced; the sound field in
the shadow area shows more variations with absorption than without. This
changes for acute-angled wedges; there a finite flank admittance causes zones of
cut-off for higher modes, and the sound field pattern accordingly may change
rather drastically.
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