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1. 

The electromagnetic balancing regulator (EBR) is very special, for it makes of
non-contact electromagnetic force to drive the correction masses so as to generate
suitable correction weight. Its working principle, as well as the experiment on a
model fan with a rigid rotor, have been introduced in reference [1], and the
experimental result is satisfied. Furthermore, in reference [2] the application of the
EBR to the flexible rotor has also been studied, and an on-line automatic
balancing system with a flexible rotor is built. The experiment on it shows that
the EBR can efficiently reduce the vibration of the flexible rotor.

The EBR is a non-linear operator. During its working period, the
circumferential force and the radial force are probably generated simultaneously.
So it may influence the stability of the flexible rotor. Here the influence of the EBR
on the stability of the flexible rotor is studied. When the regulator is started, the
simulated instantaneous response of the rotor is also involved.

2.   

The electromagnetic force is the working basis of the EBR [1, 2]. When the
needed circumferential force is generated, the radial electromagnetic force will be
produced with the existence of the deviation caused by unbalance. The radial force
direction of the EBR is the same as that of the deviation, and the magnitude is
governed [3] by

F= m0AN2I202x
d3

0
+

3x3

d5
0 1 (1)

where A=cross-section area of a pole, m0 =permeability of the vacuum, N=turn
number of the coil, I=electric current fed in coil, d0 = equivalence gap between
stator and rotor, and x=deviation;

3.       

For an easy understanding, on the basis of the test rig in reference [2], a
JEFFCOTT rotor with an EBR and a working disk is constructed, in which the
span and the diameter of the shaft are 700 mm and 24 mm respectively, as shown
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in Figure 1. The weight of the disk is 5 kg, which is the reduced value of all disks
in reference [2]. The stiffness at the position of the working disk is calculated to
be k=5×105 N/m.

The JEFFCOTT rotor may be regarded as a single freedom vibration system.
If the EBR is off, the situation is a general one, which will not be mentioned here.
When the EBR is on, the motion equation without damping will be

mẍ+ kx− m0AN2I202x
d3

0
+

3x3

d5
0 1=0 (2)

or

ẍ+v'20 (x+ bx3)=0 (3)

where

v0 =zk/m

is the inherent frequency of the rotor system when the EBR is off;

v'0 =Xk−2m0AN2I2/d3
0

m
; b=−

(3m0AN2I2/d5
0)

v'20
.

From equation (3) it is found that when the EBR is on, the inherent frequency
will reduce because of the stiffness decrease.

In equation (3), in view of bQ 0, let −b= r2, then the singular points of the
conservation system represented by equation (3) are (0, 0), (1/r, 0) and (−1/r, 0).
According to the singular point theory [4], in the phase plane the phase tracks near
the point (0, 0) are all enclosed ones, and with the decrease of the whole system
potential energy, they converge to the stable center (0, 0). This indicates that this
time the vibration energy of the rotor system is weak, and the maximum
displacement of the rotor does not exceed 1/r, which is the normal working state
of the rotor. In comparison, the phase tracks near the point (1/r, 0) and point
(−1/r, 0) are not enclosed ones. This indicates that the vibration energy of the
rotor system increases to such an extent that the displacement of the rotor exceeds
1/r, which will make the vibration energy and the displacement increase further
and the vibration diverge. This is an unstable balancing status, which will lead to

Figure 1. JEFFCOTT rotor.
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the rotor destabilizing and the slide plate colliding with the stator. For this
JEFFCOTT rotor, 1/r=333 mm.

4.            

The instantaneous response in this section is subjected to a situation in which
the constructed JEFFCOTT rotor operates at the vicinity of the stable singular
point (0, 0), i.e. vibration displacement of the rotor is much smaller than 1/r, or
333 mm.

Before the EBR is started, the response of the rotor system is a harmonious
forced vibration, which should be the initial condition of the instantaneous
response. Hence it must be determined first. If the mass-radius product of the
unbalance emerges in the working disk is U, then the motion equation of the
JEFFCOTT rotor with damping in a transverse direction is

mẍ+ cẋ+ kx=Uv2 cos (vt) (4)

and the stable state solution is

x=
Uv2 cos (vt−8)

z(k−mv2)2 + (cv)2
8= tg−1 cv

k−mv2 . (5)

It is assumed that when the maximum displacement of the rotor occurs, the EBR
is started. Then the instantaneous response of the rotor with EBR should be
governed by

mẍ+ cẋ+ kx− m0AN2I202x
d3

0
+

3x3

d5
0 1=Uv2cos (vt). (6)

The initial condition is

8x=t=0 =
Uv2

z(k−mv2)2 + (cv)2

ẋ=t=0 =0.

(7)

Equation (6) can be rewritten as follows

ẍ+v'20 x= of(vt, x, ẋ) (8)

where

x=the displacement of the rotor;

f(vt, x, ẋ)=F cos (vt)−2sv'0 ẋ−v'20 x3;

v'0 =Xk−2m0AN2I2/d3
0

m
;

o=−
3m0AN2I2

d5
0v'20

×10−12 (small parameter)



   726

s=
jzkm
mov'0

;

j=
c

2zkm
(damping ratio of the rotor system);

F=
Uv2

mo
×106.

Equation (8) is a non-linear one, and may be solved with the asymptotic method
[4]. The basic rationale of this method is to seek the series solution with asymptotic
property according to the approximate harmony character of the vibration of the
weak non-linear system. In the light of asymptotic method, the solution of
equation (8) is

x= a cos 8+
1
32

oa3 cos 38+
oF

v'20 −v2 cos vt

a= a0e− osv'0t (9)

8=v'0t−
3
16

1
s

a2
0 (e−2osv'0t −1)+80

where a0 and 80 are determined by the initial condition (14).
In the instantaneous response represented by equation (9), there are free

vibration term a cos 8, forced vibration term oF/(v'20 −v2) cos vt and triplex
basic frequency term (1/32)oa3 cos 38. Other terms are neglected for they are too
small comparatively. From equation (9), it is noted that if there is no damping
in the rotor system, none of the terms will decline; but, if there is, so long as the
declining time is long enough, all the parts except the forced vibration will vanish
gradually.

For the JEFFCOTT rotor in this paper, it is suggested that the rotating speed
by 2700 rpm, and the mass-radius product of the unbalance mr in rotor to be
1·252×10−4 kg.m, which will produce 10 N unbalance exciting force. The
instantaneous response curves solved from equations (7) and (9) with a damping
ratio j from 0 to 0·02 are shown in Figure 2. From Figure 2 it is noted that when
the EBR is off, the rotor keeps a stable harmonic vibration. As the dampings in
the rotor system are relatively small, and the amplitudes of the harmonic vibration
are very close to each other with a value of 98 mm, which means that the initial
displacement of the instantaneous is 98 mm.

In Figure 2, it is found that the rotor system is disturbed at the EBR’s start.
And whether there is damping or not, the vibration amplitude will increase, which
is harmful to the rotor system (especially, when the amplitude exceeds 333 mm
determined by the unstable singular points (2 1/r,0), the rotor may be out of
stability, which must be avoided in design and practice). If there is no damping,
the vibration of the rotor will maintain all the time, the free vibration part will
not decline, and the amplitude will be always much bigger than the initial one.
On the contrary, while there is damping in the rotor system, the free vibration term
will weaken gradually, and the bigger the damping ratio is, the faster the vibration
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Figure 2. The instantaneous responses with different damping ratios. j=(a) 0; (b) 0·001; (c) 0·002;
(d) 0·005; (e) 0·01; (f) 0·02.

will attenuate. Therefore there must be suitable damping in the rotor system to
decrease the instantaneous free vibration amplitude which is caused by the EBR
and may be quite considerable.

From Figure 2 it is also noted that the rotor system will retain a low vibration
level if there is damping in the system and the operating time of the EBR is long
enough. This condition is due to the stiffness reduction of the rotor at the EBR’s
start. For the JEFFCOTT rotor in this paper, the stiffness reduction causes the
working rotating to be further from the critical rotating speed. As a result, the
vibration amplitude reduces, which is shown in Figure 3. In Figure 3 when the
EBR is not started, the BODE curve of the rotor is curve A, whose critical rotating
speed is 3000 rpm, the working rotating speed is 2700 rpm, so the working point
is Q. When the EBR is started, the BODE curve is changed to curve B with a
critical rotating speed of about 1442 rpm, but the working rotating speed is still
2700 rpm. The working point hence drifts to H, and the vibration of point H is
obviously smaller than that of point Q. The damping ratio in Figure 3 is j=0·02.
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Figure 3. BODE figure of the JEFFCOTT rotor system.

The condition in Figure 3 is a good one, in which, when the EBR is on, the
working frequency becomes further from the (reduced) inherent frequency, and the
amplitude of the forced vibration is lower than that without the EBR. But one
is reminded that another condition should be avoided, in which working frequency
is at the vicinity of the (reduced) inherent frequency otherwise, the amplitude of
the rotor may be very considerable. For example, in Figure 3 if the working
rotating speed is about 1450 rpm when the EBR is started, the vibration amplitude
will increase dramatically.

Lastly it must be pointed out that the working point’s drifting happens only
when the unbalance in the machine is so considerable that the EBR has to be
started to balance it. During the periods of the machine being switched on or off,
the EBR stops working and, so has no influence on the rotor.

5. 

In this paper, having studied the influence of the EBR on the stability of the
rotor system and the instantaneous response at the start of the EBR, the following
conclusions can be drawn.

(1) After EBR is installed on the rotor system, the inherent frequency of the
rotor is reduced because of the extra attachment mass of the EBR. Besides that,
when the EBR is in operation, the stiffness of the rotor will decrease further. As
a result, the inherent frequency will drop even more. So it is noted that the rotor
should not work at the vicinity of the rotating speed corresponding to the dropped
inherent frequency.

(2) During the operation of the EBR, the rotor system is in a state of local
stability. In its phase plane there are two unstable singular points, and at no time
should the displacement of the rotor exceed that corresponding to the singular
point otherwise the rotor will destabilize. The displacement will increase
dramatically, and the rotor will collide with the stator.

(3) At the moment that the EBR is started, the rotor is disturbed and the rotor
displacement increases. If there is damping in the rotor system, the increased rotor
displacement will decrease. And the greater the damping is, the faster the
displacement decreases.
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