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1. 

The introduction of structural components made of advanced composite materials
such as laminated beams and plates has assumed much importance in the design
of aerospace structures; as a consequence, a large number of publications on the
subject has appeared in recent years. Further, in order to control the resonant
amplitudes of vibration and thus extending service life of such structures under
periodic load/impact, the damping in the composite materials plays an important
role. For fibre reinforced composites, damping value is higher, in general,
compared to that of metallic structures, and it has been brought out in the
literature that the system loss factors depend on fibre and resin types, ply-angle,
lay-up, and thickness and aspect ratios.

Research on the damping analysis of laminated fibre reinforced composites is
not so extensive as that on the undamped free and forced vibration analysis.
Gibson and Plunkett [1], and Gibson [2] reviewed experimental and analytical
efforts to characterize the damping properties of fibre reinforced materials.
Important contributions are cited here. The analysis of vibration and damping of
fibre reinforced composite plates has been carried out by Alam and Asnani [3],
Malhotra et al. [4], and Koo and Lee [5]. Alam and Asnani [3] employed a solution
in the form of a series summation and the finite element procedure was adopted
by Malhotra et al. [4], and Koo and Lee [5]. They are all based on linear dynamic
analysis using the correspondence principle of linear visoelasticity. Even though
a large amount of work has been carried out on the non-linear dynamics of
continuum media, investigation into the damping behavior of the fibre reinforced
composite beams/plates using non-linear dynamic analysis has not received much
attention in the literature. Such studies are essential for the development of
structural design strategies.

In this paper, an attempt is made through non-linear dynamic analysis, to study
the influence of amplitude of vibrations on the damping behavior of reinforced
composite laminates using the finite elements developed recently based on shear
deformation theory, as outlined in the work of Touratier [6], Ganapathi et al. [7],
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and Beakou and Touratier [8]. The complex eigenvalue problem based on complex
elastic moduli is formulated and the geometric non-linearity due to moderately
large deformation has been included based on von Karman’s theory. The
non-linear governing equations obtained here are solved using a direct iteration
technique. The non-linear frequency values and in turn, system loss factors, are
obtained for various values of amplitudes.

2. 

The displacement field of rectangular shear deformable plates can be expressed
as

u(k)(x, y, z, t)= u(x, y, t)− z 1w/1x+[ f1(z)+ g(k)
1 (z)]go

1 + g(k)
2 (z)go

2 ,

v(k)(x, y, z, t)= v(x, y, t)− z 1w/1y+ g(k)
3 (z)go

1 + [ f2(z)+ g(k)
4 (z)]go

2 ,

w(k)(x, y, z, t)=w(x, y, t), (1)

where (uk, vk and wk) are the displacements in the kth layer along the (x, y, z)
co-ordinates, and (u, v, w) and (ux , uy ) are the displacements and rotations of a
point on the middle surfaces, respectively, and go

1 (=1w/1x+ ux ), go
2 (=1w/1y+ uy )

are the shear strains at z=0, and t is the time. Finally, the functions involved in
equation (1) for defining the kinematics are as follows:

f1(z)= h/p sin (pz/h)− h/pb55 cos (pz/h),

f2(z)= h/p sin (pz/h)− h/pb44 cos (pz/h),

g(k)
i = a(k)

i z+ d(k)
i , i=1, 2, 3, 4; k=1, 2, 3, . . . , N, (2)

where N is the number of layers of the multi-layered structure, p is equal to
3·141592, h is the total thickness of the plate and b44, b55, a(k)

i , d(k)
i are coefficients

to be determined from contact conditions for displacements and stresses between
the layers and from the boundary conditions on the top and bottom surfaces of
the plate. The details of the derivations of these coefficients can be found from
references [7, 8].

It can be noted here [6–8] that, unlike in the other theories, trigonometric
functions are introduced in the present displacement fields to approximate the
shear distribution through the thickness of the plate. The plate model requires only
five generalized displacement fields, and no shear correction factors, and it satisfies
the interlayer continuity requirements on displacements and stresses.

The strain–displacement relations consisting of linear strain components, which
allow cosine variation of transverse shear strain with vanishing shear stresses at
the top and bottom of the plate, and non-linear strain components based on von
Karman’s theory, can be written as follows:

ox = ux − zwxx +[ f1(z)+ g(k)
1 (z)]gox

1 + g(k)
2 (z)gox

2 + (1/2)(wx)2,

oy = vy − zwyy + g(k)
3 (z)goy

1 + [ f2(z)+ g(k)
4 (z)]goy

2 + (1/2)(wy)2,
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gxy = uy + vx −2zwxy +[ f1(z)+ g(k)
1 (z)]goy

1 + g(k)
2 (z)goy

2

+ g(k)
3 (z)gox

1 + [ f2(z)+ g(k)
4 (z)]gox

2 + (wxwy),

gxz =[ f z
1 (z)+ g(k)z

1 (z)]go
1 + g(k)z

2 (z)go
2 ,

gyz = g(k)z
3 (z)go

1 + [ f z
2 (z)+ g(k)z

4 (z)]go
2 , (3)

where ox , oy and gxy are the inplane normal and shear strains. gxz , gyz are the
transverse shear strains respectively. The superscripts x, y, z denote the partial
derivative of the function with respect to x, y, z.

For a composite laminate of thickness hk (k=1, 2, 3, . . .), and the ply-angle fk

(k=1, 2, 3, . . .), the necessary expressions for computing the stiffness coefficients,
available in the literature [9], are used. For the damping analysis, the complex
moduli of an orthotropic material are defined, according to the elastic-viscoelastic
correspondence principle, as follows:

E*1 =ER
1 + iEI

1, E*2 =ER
2 + iEI

2, E*3 =ER
3 + iEI

3, G*12 =GR
12 + iGI

12,

G*23 =GR
23 + iGI

23, G*13 =GR
13 + iGI

13. (4)

Here, E* and G* are Young’s modulus and shear modulus, respectively. The
subscript 1 denotes longitudinal direction whereas 2 and 3 refer to the transverse
directions, with respect to the fibres. The superscripts R and I denote the real and
imaginary parts of the complex moduli. The material loss factors h1, h2, h3 under
tension-compression and h12, h23, h13 under shear are defined as

h1 =EI
1/ER

1 , h2 =EI
2/ER

2 , h3 =EI
3/ER

3 , h12 =GI
12/GR

12,

h23 =GI
23/GR

23, h13 =GI
13/GR

13. (5)

The strain energy of the laminate can be expressed in terms of the field variable
u, v, w, ux , uy , and their derivatives. The kinetic energy includes the effect of
in-plane and rotary inertia terms. Then, the governing equations are obtained by
using Lagrange’s equation of motion. These governing equations are solved using
the finite element approach based on C1 continuous elements developed recently
based on the above theory.

For the plate analysis, an eight-node rectangular element is employed. The
domain of the rectangular plate is divided into a number of elements. The element
has eight degrees of freedom per corner node, namely u, v, w, 1w/1x, 1w/1y, 12w/
1x 1y, ux , uy , and four degrees of freedom per mid-side node, namely u, v, ux , uy .
The shape functions employed to describe these field variables are the Hermite
cubic function for transverse displacement w, and the Serendipity quadratic
function for the in-plane displacements u, v and rotations ux , uy .

Similarly, for the beam problems, the three-node beam element used here is
based on Hermite cubic functions for w and quadratic functions for rotation, ux ,
and linear function for u. Further, the element needs four nodal degrees of freedom
u, w, w,x , ux at both ends of the three-noded beam element, whereas the center node
has one degree of freedom ux .
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Using equation (3) and following the standard procedure given in reference [10],
the finite element equations are derived as

[M]{d� }+[[K]+ (1/2)[N1]+ (1/3)[N2]]{d}= {0}, (6)

where [K] is the linear stiffness matrix, and [N1] and [N2] are non-linear stiffness
matrices. The stiffness matrices are of the complex form. {d} is the vector of the
degrees of freedom associated with the displacement field in a finite element
discretization. Substituting characteristics of the time function at the point of
reversal of the motion

{d� }max =−l*{d}max (7)

in equation (6), will lead to the following non-linear algebraic equation of the form

[[K]+ (1/2)[N1]+ (1/3)[N2]]{d}− l*[M]{d}= {0}. (8)

The complex eigenvalues of the form l*= (lR +ilI)= (v*)2 where
v*= (vR +ivI) are obtained for the above equation by using direct iteration
technique, suitably modified for the eigenvalue problems based on the QR
algorithm. The resonance frequencies v and the system loss factors h are calculated
from the eigenvalues, corresponding to different amplitudes of vibration level as:

v=vR =(lR)1/2, h= lI/lR. (9)

3.  

Since the element is derived based on the field consistency approach, an exact
numerical integration scheme is employed to evaluate all the strain energy terms.
Also, there is no need to use the shear correction factor here, as the transverse
strain is represented by a cosine function, which is of higher order in nature. Thus,
the present development can be verified numerically by comparing the results
based on different models, which are used for studying the thin and thick
laminates. Such comparisons were made through linear and non-linear dynamic
analysis, wherever possible, for the frequency values of composite laminates and
excellent agreement was observed. For the sake of brevity, these results are not
presented here. In this section, the system loss factors, as obtained from this work,
will be discussed. Furthermore, based on progressive mesh refinement, 16 elements
idealization and an 8×8 grid size are found to be adequate to model the
laminated beams and plates, respectively, for the flexural/bending damping
analysis. The damping factors obtained using linear analysis by 16 elements
idealization for the beam and an 8×8 mesh size for the plate, are depicted in
Table 1, and they are found to be in very good agreement with the available
analytical/numerical solutions [5, 11].

The materials considered here are [12] as follows: GFRP(Glass/DX-210):
ER

1 =37·78 GPa, ER
2 =10·90 GPa, ER

3 =10·90 GPa, GR
12 =4·91 GPa, GR

23 =4·91
GPa, GR

13 =4·91 GPa, n12 =0·30, h1 =13·8465×10−4, h2 = h3 =8·0373×10−3,
h12 = h23 = h13 =1·09976×10−2, r=1870 kg/m3; CFRP(HMS/DX-210):
ER

1 =172·70 GPa, ER
2 =7·20 GPa, ER

3 =7·20 GPa, GR
12 =3·76 GPa, GR

23 =3·76
GPa, GR

13 =3·76 GPa, n12 =0·30, h1 =7·16197×10−4, h2 = h3 =6·71634×10−3,
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h12 = h23 = h13 =1·12204×10−2, r=1566 kg/m3. n12 and r are Poisson’s ratio and
mass density, respectively.

Numerical results are evaluated using eigenvalue formulation based on the QR
algorithm. To solve the non-linear eigenvalue problem, an iterative procedure is
used. The iteration starts from a corresponding initial mode shape obtained from
linear analysis, with amplitude scaled up by a factor. This gives the initial value
denoted by di . Based on this initial mode shape, the non-linear stiffness matrices
are formed, and an eigenvalue and its corresponding vector are evaluated. This
eigenvector is then scaled up again and the iteration continues until the
frequency/damping factor and the eigenvector obtained from the subsequent two
iterations satisfy the required convergence criteria suggested by Bergan and
Clough [13] within the tolerance of 0·01%.

The numerical experiments are conducted for analyzing the non-linear damping
behavior of immovable, simply supported cross-ply laminates. The beam assumed
here is made of glass fibre reinforced plastic material (GFRP), whereas carbon
fibre reinforced plastic material (CFRP) is considered for the plate analysis. The
results, concerning the first resonant mode, are presented in Tables 2 and 3 for
beams and plates, respectively.

It is evident from these tables that, in general, a decrease in the system loss factor
ratio (hNL /hL ; hL , hNL are the system loss factors obtained from linear and
non-linear analysis) is seen with the increase in the amplitude of vibration (w/rg

or w/h; rg is the radius of gyration of the beam) of the laminates. This effect is
increased when the aspect ratio is smaller. Also, it can be seen that the rate of
decrease of the damping ratio is lower, with respect to the amplitudes, with an
increase in the aspect ratio. This type of trend in the damping behavior arises from
a change in the shear energy due to shear of the laminates, and it depends not
only on the aspect ratio, but also on the level of vibration amplitudes. It is also
inferred from these tables that the value of the loss factor ratio changes with the
number of layers in the laminates, as highlighted in reference [5]. However, for the
laminated plates with a smaller number of layers, the results could not be obtained
for cases with higher amplitudes of vibration due to the convergence problem. It
is hoped that this study will be useful for the designers/engineers while designing
the composite laminate for the flexural response under dynamic situations.
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