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This paper develops three approximate methods for the analysis of patch
damping designs. Undamped natural frequencies and modal loss factors are
calculated using the Rayleigh energy method and modal strain energy technique,
respectively, without explicitly solving high order differential equations or
complex eigenvalue problems. Approximate Method I is developed for sandwich
beams assuming that damped mode shapes are given by the Euler beam
eigenfunctions. The superposition principle is then used to accommodate any
arbitrary mode shape, which may be obtained from modal experiments or the
finite element method. In Method II, the formulation is further simplified with the
assumption of a very compliant viscoelastic core. Finally, Method III considers
a compact patch problem. The modal loss factor is then expressed as a product
of terms related to material properties, layer thickness, patch size and patch
performance. Approximate Methods II and III are also extended to rectangular
plates. Formulations are verified by conducting analogous modal measurements
and by comparing predictions with those obtained using the Rayleigh–Ritz
method (without making any of the above mentioned assumptions). Several
example cases are presented to demonstrate the validity and utility of approximate
methods for patch damping design concepts.

7 1999 Academic Press

1. INTRODUCTION

Patch damping design is an efficient and cost effective concept for solving noise
and vibration problems [1–4]. However, there is a limited body of scientific
literature on this topic and it therefore remains a somewhat ill-understood and
empirical technique. Single or double constrained layer patches have been
computationally examined by using higher order differential equation theory [3–7],
the Rayleigh–Ritz method [1–4, 8, 9], or a finite element procedure [10–12].
Experimental methods of investigation have included modal testing [1–4] and
structural intensity mapping [13]. The authors of this article have undertaken a
comprehensive study of this topic and have proposed a new computational
scheme, based on the Rayleigh–Ritz method, for beams and plates with
multiple patches of arbitrary properties [1, 2]. Our calculation methods have been
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verified by comparing results with measured modal data or those available in the
literature.

The current paper extends prior work [1, 2] by proposing three approximate
analytical methods. An attempt is being made to seek some insight into the patch
damping design process. Tractable formulations that identify the role of the
following parameters are developed: material properties, viscoelastic layer
thickness, patch size, number of patches and their locations. Like the previous
articles, cantilever beams and rectangular plates (with free–free or simply
supported edges) serve as prime examples, and experimental modal analysis and
the Rayleigh–Ritz method are used to examine the validity of each method. Key
assumptions which form the basis of each method are: (1) the damped mode
shapes of a sandwich beam may be described by the eigenfunctions of undamped
Euler’s beam [14], (2) the viscoelastic core layer is very compliant, and (3) only
a single compact patch is applied. The last two assumptions are also applied to
the plate example. Approximate methods are expected to be computationally
efficient and suitable for rapid parametric design studies.

2. APPROXIMATE METHOD I FOR SANDWICH BEAMS

2.1. E  

The structure of interest is an elastic beam (designated as layer 3) with Np

damping patches attached, as shown in Figure 1. Each patch p of length lpx is
located at xp, and has two layers: layer 1 is an elastic layer while layer 2 is made
of viscoelastic material. Note that each patch may be different in size, thickness
and material property. The analytical approach, to be developed in this section,
is called Approximate Method I since one assumption is made in addition to those
usually made for a sandwich beam [5]. Specifically, the kth damped mode shape

Figure 1. Beam with multiple constrained layer damping patches. Layer 1=constraining layer
(elastic), layer 2=constrained layer (viscoelastic), layer 3=base structure (elastic).
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T 1

Euler beam eigenfunction coefficients for selected boundary conditions

k lk ak bk ck dk

A. Simply-supported beam
1 3·1416 z2 0 0 0
2 6·2832 z2 0 0 0
3 9·4248 z2 0 0 0
4 12·5664 z2 0 0 0
···

···
···

···
···

···
n np z2 0 0 0

B. Clamped–free beam
1 1·8751 0·7341 −1 −0·7341 1
2 4·6941 1·0185 −1 −1·0185 1
3 7·8548 0·9992 −1 −0·9992 1
4 10·9955 1·0000 −1 −1·0000 1
···

···
···

···
···

···
n (2n−1)p/2 1 −1 −1 1

C. Free–free beam
1 4·7300 −0·9825 1 −0·9825 1
2 7·8532 −1·0008 1 −1·0008 1
3 10·9956 −1·0000 1 −1·0000 1
4 14·1372 −1·0000 1 −1·0000 1
···

···
···

···
···

···
n (2n+1)p/2 −1 1 −1 1

of the sandwich beam is approximated by the eigenfunction (wk ) of an undamped
Euler beam that is described as follows where lk is the frequency parameter of
mode k and x̄= x/lx :

d4wk

dx̄4 = l4
kwk ,

wk (x̄)= ak sin (lkx̄)+ bk cos (lkx̄)+ ck sinh (lkx̄)+ dk cosh (lkx̄), (1a, b)

where ak , bk , ck and dk , are coefficients whose sample values for selected boundary
conditions are listed in Table 1, for the sake of completeness. Refer to reference
[15] for other cases.

Taking advantage of equation (1), the corresponding longitudinal (uk ) and shear
deformation (gk ) mode shapes will be derived in the next section. The Rayleigh
method along with modal strain energy technique are then used to explicitly obtain
the undamped natural frequency (vk ) and modal loss factor (hk ) without solving
for a complex eigenvalue problem.

2.2.  

Other deformation variables are longitudinal shapes up
1,k and u3,k of layers 1 and

3, and shear deformation shape gp
2,k of layer 2 for p=1 · · · Np . To express these
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in terms of the flexural shape wk , some kinematic relationships must be used. First,
the relationship between up

1,k and u3,k can be written by extending the integrated
form of the weak core assumption [1]:

up
3,k =−epu1,k + sp

k , (2)

where

ep =
Ep

1hp
1

E3h3
; p=1, . . . , Np . (3)

Note that sp
k is the constant that relates deformation shape up

1,k to the corresponding
u3,k for each patch p. Second, by observing Figure 2, the relationship between the
shear deformation shape gp

2,k and longitudinal displacements up
1,k and u3,k is

gp
2,k =

1
h2 0up

1,k − u3,k +
Cp

lx
dwk

dx̄ 1, (4)

where Cp =(hp
1 +2hp

2 + h3)/2 (see Appendix B for detailed derivations). Also, from
equations (2) and (4), gp

2,k can be expressed as

gp
2,k =

1
h2 0(1+ ep)u1,k +

Cp

lx
dwk

dx̄
− sp

k1. (5)

Figure 2. Undeformed and deformed segments, with variables in all layers. Key as for Figure 1.
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Figure 3. Axial force and shear stress relationships for a segment of the sandwich beam. Key as
for Figure 1.

Finally, consider the free body diagram of a beam section of length dx̄ as
illustrated in Figure 3. Relationships between the axial force Fx1,k , longitudinal
displacement up

1,k , and the shear stress tp
2,k and strain gp

2,k are

tp
2,klxdx̄=dFx1,k ; Fx1,k =Ep

1hp
1
dup

1,k

l dx̄
; tp

2,k =G2g
p
2,k . (6a–c)

Combining equations (5) and (6), a differential equation in terms of u3,k is found
to be

d2up
1,k

dx̄2 =
Gp

2 l2x
Ep

1hp
1hp

2 $(ep +1)up
1,k +

Cp

lx
dwk

dx̄
− sp

k%. (7)

Corresponding shapes are derived in the next two sections using equations (5)
and (7).

2.3.   

To solve the second order differential equation (7) in terms of up
1,k , ignore

constant sp
k for the sake of simplification. This assumption is reasonable since it

does not affect the longitudinal strain energy. Equation (7) is rewritten as

d2up
1,k

dx̄2 −Ypup
1,k =

YpCp

lx (ep +1)
dwk

dx̄
, Yp =Gp

2 l2x (ep +1)/E p
1hp

1hp
2 . (8a, b)

Taking advantage of equation (1), the solution to equation (8) is obtained as

up
1,k (x̄)=Ap

k sinh (zYpx̄)+Bp
k cosh (zYpx̄)+ mp

kYp dwk

1x̄
+ mp

k
d3wk

dx̄3 , (9)
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where

mp
k =

CpYp

lx (ep +1)[l4
k −(Yp)2]

. (10a, b)

Constants Ap
k and Bp

k of equation (9) must be determined in accordance with the
longitudinal boundary conditions of layer 1. For a damping patch with free ends
at x̄p

a = x̄p −0·5l� px and x̄p
b = x̄p +0·5l� px , Ap

k and Bp
k can be calculated as follows by

applying boundary conditions du3(x̄p
a )/dx̄=0 and du3(x̄p

b )/dx̄=0 to equation (9):

$Ap
k

Bp
k%=−

mp
k

zYp $cosh (x̄p
a ) sinh (x̄p

a )
cosh (x̄p

b ) sinh (x̄p
b )%

−1
Yp d2wk

1x̄2 (x̄p
a )+ (lk )4wk (x̄p

a )

Yp d2wk

1x̄2 (x̄p
b )+ (lk )4wk (x̄p

b )

. (11)G
G

G

K

k

G
G

G

L

l
Now given the expression of up

1,k , the longitudinal shape u3,k of layer 3 may also
be obtained from equation (2).

2.4.    

Recall equation (5) where the relationship between longitudinal and shear
deformations is defined. Since up

1,k is available now, the only unknown left is the
constant sp

k . Note that because sp
k affects the shear strain energy, it is of importance

here and it should be obtained from the energy viewpoint. The shear strain energy
Up

g2,k of patch p in layer 2 is as follows where integration is carried out over the
patch length from x̄p

a to x̄p
b :

Up
g2,k = 1

2G2hp
2 lxly gp

(gp
2,k )2 dx̄, (12)

where G2 is the shear modulus of layer 2, and ly is the width of the beam. Substitute
equations (5) and (9) into equation (12), minimize Up

g2,k by setting 1Up
g2,k /1sp

k =0
and subsequently find sp

k as

sp
k =

(ep +1)
l� px 6 Ap

k

zYp
[cosh (zYpx̄p

b )− cosh (zYpx̄p
a )]

+
Bp

k

zYp
[sinh (zYpx̄p

b )− sinh (zYpx̄p
a )]

+ 0 Cp

lx (ep +1)
+ mp

kYp1[wk (x̄p
b )−wk (x̄p

a )]

+ mp
k$d3wk (x̄p

b )
dx̄3 −

d3wk (x̄p
a )

dx̄3 %7. (13)

Now, the corresponding shear strain gp
2,k of layer 2 is also available by combining

equations (5) and (13).
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2.5.       

With the availability of all deformation shapes, an energy formulation is used
to estimate modal parameters of the sandwich beam for the kth mode of interest.
The modal loss factor hk is obtained as follows by using the modal strain energy
method

hk =

s
Np

p=1

hp
m,2Up

g2,k

Utotal,k
(14)

where hp
m,2 is the material loss factor of the viscoelastic core of patch p and Utotal,k

is the total modal strain energy that is approximated as

Utotal,k =Uw3,k + s
Np

p=1

(Up
w1,k +Up

u13,k +Up
g2,k ). (15)

Note that

Uw3,k =
1
2l3x g

1

0

E3I30d2wk

dx̄21
2

dx̄, Up
w1,k =

1
2l3x gp

Ep
1Ip

10d2wk

dx̄21
2

dx̄ (16, 17)

are strain energies of layers 1 and 3 due to flexural motion, and

Up
u13,k =

1
2lx

Ep
1hp

1 ly (1+ ep) gp 0dup
1,k

dx̄ 1
2

dx̄ (18)

is the strain energy of layers 1 and 3 due to longitudinal motions. In addition, the
undamped natural frequency is obtained by using the Rayleigh method:

vk =zUtotal,k /Ttotal,k , (19)

where Ttotal,k is the total kinetic energy of mode k. Again, Ttotal,k is approximated
based on flexural motion of all layers as

Ttotal,k 1Tw,k = 1
2lx g

1

0

r3I3(wk )2 dx̄+ 1
2lx s

Np

p=1 gp

(rp
1Ip

1 + rp
2Ip

2 )(wk )2 dx̄. (20)

3. EXAMINATION OF APPROXIMATE METHOD I

3.1.       

A practical beam structure may have mode shapes that differ from the ideal
Euler beam eigenfunctions of section 2.1 due to non-classical boundary conditions,
non-uniform geometry, and mass loading effects introduced by damping patches.
In such cases, predicted (say from a finite element code) or measured flexural mode
shapes of a sandwich beam may be obtained and then discreet spatial data are
curve-fitted to yield a continuous function fw,k (x̄). In order to apply our method
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to arbitrary mode shapes, fw,k (x̄) is approximated by a superposition of undamped
Euler beam eigenfunctions wr (x̄) which are obtained by satisfying appropriate
boundary conditions:

fw,k (x̄)= q1w1(x̄)+ q2w2(x̄)+ · · · qrwr (x̄)+ · · ·1 s
N

r=1

qrwr (x̄), (21)

where N is the number of eigenfunctions included and qr is the curve-fit coefficient.
Taking advantage of the orthogonality relationships of Euler eigenfunctions, qr is
obtained as

qr =
f1
0 fw,kwr dx̄

f1
0 (wr )2 dx̄

. (22)

Following the superposition principle, the longitudinal fu1,k and shear fg2,k

deformation are obtained as follows using equations (9) and (5):

fp
u1,k (x̄)= s

N

r=1

qrup
1,r (x̄), fp

g2,k (x̄)= s
N

r=1

qrg
p
2,r (x̄). (23, 24)

Replacing wk , up
1,k and gp

2,k with fw,k , fp
u1,k and fp

g2,k respectively in the energy
equations (12, 16–18, 20), the natural frequency vk and modal loss factor hk

associated with a specific mode shape fw,k are obtained by using equations (14)
and (19).

3.2. 

A cantilever beam is used as an example to verify Approximate Method I in
comparison with the analytical Rayleigh–Ritz method described earlier by the
current authors in reference [1]. The beam and damping material parameters are
summarized in Table 2. First, the full coverage case of Figure 4(a) is examined.
The first five Euler beam eigenfunctions are assumed for the flexural
displacements. Corresponding longitudinal and shear displacements are found,
and modal strain and kinetic energies are obtained. Natural frequencies vk and
modal loss factors hk are then calculated using Approximate Method I. Predictions

T 2

System parameters for the beam example

Layer 1 Layer 2 Layer 3

Material Steel Viscoelastic Steel
Stiffness (N/m2) E1 =180×109 G2 =0·25×106 E3 =180×109

Density (kg/m3) r1 =7720 r2 =2000 r3 =7350
Material loss factor hm,1�hm,2 hm,2 = 0·1 hm,3�hm,2

Dimensions
Length (mm) Varies Varies l=177·8
Thickness (mm) h1 =0·79 h2 =0·051 h3 =1·47
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Figure 4. Cantilever beam examples: (a) full coverage, (b) partial coverage (x̄p =0·2, l� p =0·14).
Refer to Table 2 for parameters.

are listed in Table 3 in comparison with those obtained from the Rayleigh–Ritz
method. It is seen that discrepancies are very small especially for higher modes.
Discrepancies in modes 1 and 2 are larger because the actual mode shapes are
different from the Euler beam eigenfunctions; this information can be found in
Figure 16 of reference [1]. Thus, this method yields a good prediction only when
the mode shape is correct.

Next, the same cantilever beam with a single patch of length l� p =0·14
(Figure 4(b)) is examined and results are compared in Table 4. Due to the mass
loading effect, actual mode shapes are expected to deviate more from the Euler
beam eigenfunctions than those observed in the full coverage case. Therefore,
larger discrepancies are observed. Finally the mode shapes are corrected by
incorporating the mass loading effect and by expressing each mode as a
superposition of the first 10 Euler beam eigenfunctions, using the formulation in

T 3

Comparison between Rayleigh–Ritz method and Approxi-
mate Method I for the full coverage case. See Table 2 for

parameters

Modal loss factor (%)
ZXXXXXXXXCXXXXXXXXV

Approximation I
(with Euler beam mode Rayleigh–Ritz

description) Method

Mode 1 12·9 10·7
Mode 2 27·2 26·6
Mode 3 23·4 23·3
Mode 4 17·5 17·4
Mode 5 15·5 15·5
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T 4

Comparison between Rayleigh–Ritz method and Approximate
Method I for the partial coverage (14%) case using only one damping

patch. See Table 2 for parameters

Modal loss factor (%)
ZXXXXXXXXXXXCXXXXXXXXXXXV

Approximate Method I
ZXXXXXXXCXXXXXXXV
With Euler beam With corrected Rayleigh–Ritz
mode description mode shape* Method

Mode 1 0·20 0·16 0·16
Mode 2 0·01 0·01 0·01
Mode 3 0·22 0·25 0·26
Mode 4 0·74 0·72 0·72
Mode 5 0·88 0·73 0·73

* Superposition of Euler beam modes.

section 3.1; see Table 5 for typical values of curve-fit coefficients. Approximate
Method I is now in excellent agreement with the Rayleigh–Ritz method, as evident
from Table 4.

4. APPROXIMATE METHOD II FOR A COMPLIANT VISCOELASTIC CORE

4.1. 

In many practical damping treatments, the viscoelastic layer is often very
compliant compared with metallic layers (1 and 3). Consequently longitudinal
deformations of elastic layers become negligible and Approximate Method I may
be further simplified to yield Approximate Method II which calculates modal loss
factors for a sandwich beam given arbitrary mode shapes. Recall equation (5)

T 5

Curve-fit coefficients qr for expressing mode shapes of the partially covered beam of
Figure 4(b) in terms of superposition of the undamped Euler beam eigenfunctions

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

q1 1·0000 −0·0067 −0·0147 −0·0137 −0·0078
q2 −0·0007 0·9999 −0·0691 −0·0604 −0·0356
q3 0·0012 0·0082 0·9971 −0·1420 −0·0748
q4 0·0010 0·0026 0·0260 0·9874 −0·1294
q5 0·0005 0·0011 0·0042 0·0323 0·9877
q6 0·0002 0·0005 0·0009 0·0044 0·0287
q7 0·0000 0·0003 0·0009 0·0010 0·0042
q8 −0·0001 0·0001 0·0011 0·0014 0·0008
q9 −0·0001 0·0000 0·0008 0·0016 0·0008
q10 −0·0001 −0·0001 0·0003 0·0010 0·0011
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where gp
2,k is determined from up

1,k , wk , and sp
k . The effect of up

1,k on gp
2,k is small when

G2�E1, compared with that of wk . Note that sp
k still needs to be determined by

minimizing energy Up
g2,k irrespective of up

1,k . Then the shear deformation gp
2,k is

expressed in terms of wk :

gp
2,k =

Cp

hp
2 lx $dwk (x̄)

dx̄
−

1
l� px

wk (x̄p
b )+

1
l� px

wk (x̄p
a )%. (25)

For a beam with arbitrary mode shape fw,k , the shear deformation fp
g2,k is expressed

by using equations (21, 24, 25):

fp
g2,k =

Cp

hp
2 lx $dfw,k (x̄)

dx̄
−

1
l� px

fw,k (x̄p
b )+

1
l� px

fw,k (x̄p
a )%. (26)

Accordingly, the resulting shear strain energy is

Up
g2,k =

G2ly (Cp)2

2hp
2 lx gp 0dfw,k (x̄)

dx̄
−

1
l� px

fw,k (x̄p
b )+

1
l� px

fw,k (x̄p
a )1

2

dx̄. (27)

Replace wk of equation (16) with fw,k , ignore Up
u13,k in equation (15), and then apply

equations (19) and (14) again to yield vk and hk .

4.2. 

Approximate Method II is validated by re-examining examples of Table 2 and
Figure 4. For the full coverage case, loss factors for modes 2 and 3 are calculated
over a range of G2 values by using Methods I and II; comparisons are shown in
Figure 5. It is observed that modal loss factors obtained from both methods
coincide only when G2 is very small. For the second mode when G2 is greater than

Figure 5. Modal loss factor predictions as a function of G2 for the full coverage case. · · · ,
Approximate Method I; ——, Approximate Method II; w, mode 2; ×, mode 3.
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Figure 6. Loss factor predictions for mode 2 as a function of G2 for partial coverage cases. · · · ,
Approximate Method I; ——, Approximate Method II; w, patch size l� p=0·14; ×, patch size
l� p =0·02.

105 Pa, Method II starts to overestimate and finally the result asymptotically
reaches 0·1, which is equal to the material loss factor of layer 2. Conversely, the
lost factor prediction from Method I reaches a maximum value at
G2 =G2,opt =106 Pa and then reduces as G2 is increased. Note that G2,opt is
designated here as an optimum G2 value that results in the maximum possible loss
factor for a particular mode. Similar results are seen for mode 3 except that G2,opt

now is about 3×106 Pa and Method II is valid up to G2 1 3×106 Pa using a 10%
error criterion.

Next, consider the partial coverage case (l� p =0·14) of Figure 4(b). Loss factors
predicted for mode 2 are plotted in Figure 6. It is seen that G2,opt shifts to a higher
value and Method II is now valid up to G2 =5×106 Pa. This suggests that
Method II may be used up to higher G2 values for even smaller patches. Another
partial coverage case with a compact patch of l� p =0·02 applied at the same
location shows that Method II is indeed valid up to G2 =2×108 Pa. Consequently
the very compliant core assumption of Method II is not necessary when a very
compact patch is applied.

5. APPROXIMATE METHOD III FOR A COMPACT PATCH

5.1. 

Consider a compact patch of very small patch length l� px . Expand dfw,k (x̄)/dx̄
using the Taylor series in the vicinity of the patch center x̄p , and obtain the
following expression by ignoring higher order terms:

dfw,k (x̄)
dx̄

1 dfw,k (x̄p)
dx̄

+
d2fw,k (x̄p)

dx̄2 (x̄− x̄p). (28)
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Also, observe that

dfw,k (x̄p)
dx̄

1 1
l� p

[fw,k (x̄p
b )−fw,k (x̄p

a )]. (29)

Substituting equations (28) and (29) into (27), the resulting shear strain energy for
the kth mode is

Up
g2,k 1

G2ly (Cp)2

2hp
2 lx 0d2fw,k (x̄p)

dx̄2 1
2

g
x̄p
b

x̄p
a

(x̄− x̄p)2 dx̄

=
G2ly (Cp)2

2hp
2 lx 0d2fw,k (x̄p)

dx̄2 1
2 (l� px )3

12
. (30)

Similar to equation (14), the modal loss factor hp
k contributed by a compact patch

p is expressed by using the modal strain energy method:

hp
k = hp

m,2Up
g2,k /Utotal,k . (31)

Further approximate the total strain energy of equation (Utotal,k ) by the flexural
strain energy of the base beam (Uw3,k ). The modal loss factor hp

k is then evaluated
by using equations (30) and (31):

hp
k = hp

m,2GpHpLpP
 (x̄p), (32)

where

Gp =Gp
2 /E3 = relative stiffness term, (33a–f )

Hp =(Cp)2/(h3
3hp

2 )= thickness parameter,

Lp =(l� p)3 =patch size index, P(x̄)=0d2fw,k (x̄)
dx̄2 1

2

=patch performance index,

P
 (x̄)=
P(x̄)
P0

=normalized P(x̄), P0 =g
1

0 0d
2fw,k (x̄)
dx̄2 1

2

dx̄.

5.2.  

As described in the derivation of Method III, equations (31) and (32) can now
be used to conduct parametric design studies and to determine optimum patch
locations. The procedure is demonstrated here using the same beam example of
Table 2.

First, examine the second mode (Figure 7(a)) of the beam with simply supported
boundary conditions. The normalized patch index P
 is calculated for mode 2 as
a function of x̄ as shown in Figure 7(b). High values of P
 (x̄max =0·25 and
x̄max =0·75) suggest the best patch locations that should result in high modal
damping. This is in agreement with an empirical design concept: place damping
patches at anti-nodes. To verify this, a compact patch of length l� p =0·1 is placed
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Figure 7. Patch performance for the second mode of a simply supported beam when a compact
patch is placed at various x̄. (a) Mode shape, (b) l� p =0.1, (c) l� p =0.3). Here x̄max is the location that
yields maximum possible h̄2. ——, Normalized patch performance index P
 ; Q, predicted h̄2.

at various position x̄ along the beam. Modal loss factors are calculated using the
Rayleigh–Ritz method [1] and then normalized with respect to the full coverage
case. Observe excellent agreement between the patch performance index and the
Rayleigh–Ritz method. This demonstrates that the patch locations suggested by
Method III are appropriate. Further, apply a larger patch of length l� p =0·3 and
calculate normalized modal loss factors of the beam with varying patch location
using the Rayleigh–Ritz method. Figure 7(c) again shows excellent agreement
except for the case when the patch is placed at x̄min =0·5. This discrepancy is due
to the compact patch assumption of Method III and P
 (x̄min ) is virtually zero;
however, the modal loss factor is non-zero for a larger patch even when the patch
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is located at x̄min . Therefore, Method III should be viewed as an analytical tool
for initiating design.

Next, the second mode of the cantilever beam is examined, as shown in
Figure 8(a). The normalized patch index P
 is calculated for mode 2 as a function
of x̄, as shown in Figure 8(b). It is then compared with measured and predicted
(using Method I) h̄2 for the cantilever beam with a patch of length l� p =0·14 placed
at various positions x̄. Excellent agreement is again observed between Methods
I, III and modal measurements [1]. But note that the empirical design concept of
placing damping patches at anti-nodes is not exactly valid for this case. It is seen
in Figure 8(a) that the anti-node of mode 2 is located at x̄max =0·48. However,

Figure 8. Comparison between patch performance index and Rayleigh–Ritz predictions for the
second mode of a cantilever beam when a single patch of length l� p =0.14 is placed at various x̄.
(a) Mode shape, (b) comparison between Methods I, III, and experiment, (c) Rayleigh–Ritz
predictions. ——, Normalized patch performance index P
 ; q, measured h̄2; Q, predicted h̄2.
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according to the patch index, one of the relative maxima of P
 is at x̄max =0·53.
It is then verified by using the Rayleigh–Ritz method. The placement of the
damping patch at x̄=0·53 gives higher modal damping than at x̄=0·48
(Figure 8(c)). For higher modes, the high P
 point is closer to an anti-node since
such modes are less affected by the precise nature of boundary conditions. Hence,
insight based on simple supports may be a good starting point for design, but then
Method I or II may be used for detailed studies. Also note that another relative
maximum at x̄max =0 is observed in Figure 8(b). Since it is impossible to place a
patch of finite length l� p at x̄=0 without exceeding the beam, the patch may be
located near the root to obtain high damping performance.

6. APPROXIMATE METHODS FOR RECTANGULAR PLATES

6.1.         

Approximate Method II for beams with a compliant core layer assumption (as
presented in section 4) is now extended to a 2-D case. The structure of interest
is a rectangular plate with multiple damping patches, as illustrated in Figure 9.
Assume that the measured or computed mode shape fw,k (x̄, ȳ) is available. The
shear strain fp

gx2,k in the xz plane of layer 2 is approximated as follows when
longitudinal motion is ignored

fp
gx2,k =

Cp

h2lx $dfw,k (x̄, ȳ)
dx̄

−
1

l� pxl� py gg
p

dfw,k (x̄, ȳ)
dx

dx̄ dȳ%. (34)

Then the strain energy Up
gx2,k due to fp

gx2,k is obtained as

Up
gx2,k =

Gp
2 ly (Cp)2

2hp
2 lx 6gg

p
$dfw,k (x̄, ȳ)

dx̄ %
2

dx̄ dȳ−
1

l� pxl� py $gg
p

dfw,k (x̄, ȳ)
dx̄

dx̄ dȳ%
2

7.
(35)

Figure 9. Multiple constrained layer damping patches for a rectangular plate.
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Similarly, the shear strain fp
gy2,k in the yz plane of layer 2 and its resulting strain

energy Up
gy2,k are

fp
gx2,k =

Cp

hp
2 ly $dfw,k (x̄, ȳ)

dȳ
−

1
l� pxl� py gg

p

dfw,k (x̄, ȳ)
dȳ

dx̄ dȳ%,
Up

gy2,k =
G2lx (Cp

y )2

2hp
2 ly 6gg

p
$dfw,k (x̄, ȳ)

dȳ %
2

dx̄ dȳ−
1

l� pxl� py $gg
p

dfw,k (x̄, ȳ)
dȳ

dx̄ dȳ%
2

7.
(36)

Again, the total strain energy Utotal,k is approximated as

Utotal,k =Uw3,k + s
Np

p=1

(Up
w1,k +Up

gx2,k +Up
gy2,k ), (37)

where Up
w1,k and Uw3,k are strain energies due to the flexural motion, defined as

Up
w1,k = 1

2lxly
Ep

1 (hp
1 )3

12[1− (np
1 )2] gg

p
$1l4x 0d2fw,k

dx̄2 1
2

+
1
l4y 0d2fw,k

dȳ2 1
2

+
2np

1

l2xl2y 0d2fw,k

dx̄2 10d2fw,k

dȳ2 1+
2(1− np

1 )
l2xl2y 0d2fw,k

dx̄ dȳ1
2

% dx̄ dȳ, (38)

Up
w3,k = 1

2lxly
E3(h3)3

12[1− (n3)2] g
1

0 g
1

0 $1l4x 0d
2fw,k

dx̄2 1
2

+
1
l4y 0d2fw,k

dȳ2 1
2

+
2n3

l2xl2y 0d2fw,k

dx̄2 10d2fw,k

dȳ2 1+
2(1− n3)

l2xl2y 0d2fw,k

dx̄ dȳ1
2

% dx̄ dȳ. (39)

Finally, hk is obtained by using the modal strain energy method per equation (14).

6.2.   

Similar to the discussion of section 5.1, compact patches of very small lengths
l� px and widths l� py are assumed, and dfw,k (x̄, ȳ)/dx̄ is again expanded using the Taylor
series where the third and higher order terms are ignored:

dfw,k (x̄, ȳ)
dx̄

1 dfw,k (x̄p, ȳ)
dx̄

+
d2fw,k (x̄p, ȳ)

dx̄2 (x̄− x̄p). (40)

Also observing that

dfw,k (x̄p, ȳ)
dx̄

1 1
l� pxl� py gg

p

dfw,k (x̄, ȳ)
dx̄

dx̄ dȳ, (41)
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the resulting shear strain energy Up
gx2,k is approximated as

Up
gx2,k =

Gp
2 ly (Cp)2

2hp
2 lx $d2fw,k (x̄p, ȳp)

dx̄2 %
2 l� py (l� px )3

12
. (42)

Similarly, shear strain energy Up
gy2,k is approximated as

Up
gy2,k =

Gp
2 lx (Cp)2

2hp
2 ly $d2fw,k (x̄p, ȳp)

dȳ2 %
2 l� px (l� py )3

12
. (43)

Ignoring flexural strain energy due to the damping patch, a general expression of
the loss factor like equation (31) for beams is proposed as

hp
k = hp

m,2GpHp[Lp
xP
 x (x̄p, ȳp)+Lp

yP
 y (x̄p, ȳp)], (44)

where Lp
x is the patch size index, and P
 x is the normalized patch performance

index associated with shear strains fp
gx2,k . Similarly indices Lp

y and P
 y are
associated with shear strains fp

gx2,k . In addition, the thickness parameter
Hp =(Cp)2/(h3

3hp
2 ) is the same as in section 5.1 while the relative stiffness Gp term

is now equal to Gp
2 (1− n2

3 )/E3. The patch size indices, Lp
x and Lp

y , are obtained as

Lp
x = l� py (l� px )3, Lp

y = l� px (l� py )3. (45)

Patch performance indices and their normalized forms are

Px (x̄, ȳ)=0d2fw,k (x̄, ȳ)
l2x dx̄2 1

2

; Py (x̄, ȳ)=0d2fw,k (x̄, ȳ)
l2y dȳ2 1

2

,

P
 x (x̄, ȳ)=
Px (x̄, ȳ)

P0
; P
 y (x̄, ȳ)=

Py (x̄, ȳ)
P0

, (46a–d)

T 6

System parameters for the rectangular plate example

Layer 1* Layer 2* Layer 3

Material
Stiffness (N/m2) E1 =180×109 G2 =0·25×106 E3 =180×109

Poisson’s ratio n1 =0·3 n2 =0·45 n3 =0·3
Density (kg/m3) r1 =7720 r2 =2000 r3 =7350
Material loss factor hm,1�hm,2 hm,2 = 0·8 hm,3�hm,2

Dimensions
Length (mm) Varies Varies lx =342·9
Width (mm) Varies Varies ly =266·7
Thickness (mm) h1 =0·79 h2 =0·051 h3 =2·4

* Material provided by the Wolverine Gasket Company; Code: WXP-1828.
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Figure 10. Deformation shape of mode (2, 1) of a rectangular plate with free boundaries. Dotted
lines represent nodal lines. (a) 2-D plot, (b) 3-D plot.

where

P0 =g
1

0 g
1

0 $1l4x 0d
2fw,k

dx̄2 1
2

+
1
l4y 0d2fw,k

dȳ2 1
2

+
2n3

l2xl2y 0d2fw,k

dx̄2 10d2fw,k

dȳ2 1+
2(1− n3)

l2xl2y 0d2fw,k

dx̄ dȳ1
2

% dx̄ dȳ. (47)
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Finally, define the combined patch performance index P and its normalized value
P
 as follows to quantify the global effect of damping but only for a specific mode,
over the entire surface of vibrating plate:

P(x̄, ȳ)=Px (x̄, ȳ)+Py (x̄, ȳ), P
 (x̄, ȳ)=P
 x (x̄, ȳ)+P
 y (x̄, ȳ). (48a, b)

Figure 11. The (2, 1) mode shape and corresponding patch performance indices for the plate
example of Table 6 with free boundaries. (a) Flexural mode fw , (b) Px , (c) Py , (d) P.
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Figure 12. Damping patch configurations studied for the rectangular plate example of Table 6
with free boundaries. (a) Pattern A, (b) Pattern B, (c) Pattern C.

7. EXAMINATION OF PLATE FORMULATIONS

7.1.  

A rectangular plate with free boundary at all edges is considered here for
experimental verification. System parameters of the plate and the damping patches
are summarized in Table 6. The undamped mode shapes are calculated using a
Rayleigh–Ritz method [2] prior to the application of Method III. In particular,
mode (2, 1), as shown in Figure 10 is considered for the sake of illustration. As
seen in Figures 11(a) and (b), the patch performance indices Px and Py are
calculated over the plate surface respectively from the undamped mode shape.
Note that the dark areas imply high Px or Py values; these suggest locations that
should result in high damping performance. Since Px is about one order of
magnitude higher than Py , the combined index P of Figure 11(c) is dominated
by Px . Consider a preliminary design: cover the dark areas of P by applying two
identical damping patches of l� px =0·4 and l� py =0·25 and locate them at
(x̄, ȳ)= (0·5, 0·125) and (0·5, 0·875), as shown in Figure 12(a). This configuration
is designated as Pattern A. Two alternate configurations, designated as Patterns
B and C, are also considered in Figures 12(b) and (c), respectively. Predicted modal
loss factors for all three cases are then obtained using Approximate Methods II
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Comparison between measured and predicted modal loss factors for the rectangular
plate of Figure 10 with free boundaries. See Table 6 for parameters

Loss factor for mode (2, 1) (%)
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

Theory
ZXXXXXXXXXXCXXXXXXXXXXV

Damping Rayleigh–Ritz Approximate Approximate
patch Experiment Method Method II Method III

Pattern A 1·9 1·5 1·7 2·0
Pattern B 1·3 1·2 1·4 0·0
Pattern C 0·7 0·7 0·9 0·0

Figure 13. Effect of patch dimensions for the rectangular plate of Table 6 with free boundaries.
(a) Varying patch length, (b) varying patch width. ——W , Prediction, ---, asymptote.
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Figure 14. Effect of patch dimensions for the rectangular plate of Table 6 with simply supported
edges. (a) Varying patch length, (b) varying patch width. ——W , Prediction, ---, asymptote.

and III. These are compared with modal measurements [2] and Rayleigh–Ritz
predictions in Table 7. Results indicate that Pattern A indeed yields the highest
system damping for this particular mode. Observe an excellent agreement between
theory and experiment which confirms the utility of Method II. Also note that
Table 7 suggests that modal loss factors for Patterns B and C are zero only when
Method III is used for prediction. This is because both Px and Py are zero for
patches located along the line of l� y =0·5; this is similar to the discussion of
P
 (x̄min )=0 in section 5.2.

7.2.  

Effects of patch lengths and widths are investigated next by using Approximate
Method II. Consider only one patch and locate it at (x̄, ȳ)= (0·5, 0·125). Fix width
as l� py =0·25 and vary axial length l� px from 0 to 1. It is seen from Figure 13(a) that
the loss factor for mode (2, 1) increases as the patch length is increased and the
relationship gradually becomes linear as the asymptotic curve suggests. Then, fix
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Figure 15. Possible patch locations on the rectangular plate with free boundaries for a detailed
parametric study.

length l� px =0·4 and vary the patch width l� py from 0 to 1. Figure 13(b) shows that
h varies linearly first, then settles down when l� py is greater than 0·3, and finally
increases for l� py q 0·7. Three asymptotic lines approximate the curve rather well.
The flat asymptotic line also reflects the low P region of Figure 11(c) at the center
of the plate; this is an inefficient location for a damping patch.

Such asymptotic results are rather problem specific, as evident from yet another
example of Figure 14 where a simply supported square plate is considered.
Material properties of the patches and plate of Table 6 are the same as the previous

Figure 16. The 3-D loss factor map for mode (2, 1) of the rectangular plate of Table 6 and Figure
15 with free boundaries.
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plate with free boundaries. The loss factor of mode (3, 3) is calculated using
Method II when the patch width l� py is fixed at 0·2 and the axial length l� px is varying
from 0 to 1. It is seen in Figure 14(a) that the loss factor increases with some
fluctuations when l� px is increased. Similar results are seen in Figure 14(b) when l� px
is fixed at 0·2 and l� py is varying from 0 to 1. Again, these fluctuations can be
explained using the patch performance index P or the anti-node design concept.

The final parametric study is used to verify the patch performance index that
suggests the best patch location(s). Once again consider the plate with free
boundaries. Figure 15 shows the possible locations for a patch of size l� px =0·4 and
l� py =0·25. Method II is again used to calculate the loss factor for mode (2, 1) over
the region of possible patch locations. The 3-D loss factor map of Figure 16 shows
that (x̄, ȳ)= (0·5, 0·125) and (0·5, 0·875) are indeed the best locations for damping
patch of the size mentioned above. But locations (x̄, ȳ)= (0·2, 0·5) and (0·8, 0·5)
may also be considered as candidates when four damping patches are to be
applied. Similar studies may be carried out for other modes, using Methods II and
III.

8. CONCLUSION

This paper has developed, examined, and validated three approximate methods
for damping patch design studies. Given eigenfunctions of an undamped Euler
beam, Method I avoids solving complex eigenvalue problems but still yields
accurate results. Also, it is more than 50 times faster than the Rayleigh–Ritz
methods [1] depending on the number of trial functions used. Method II further
assumes a very compliant core and is computationally much faster than Method
I. Method III is limited to a single compact patch application and the resulting
patch index calculation is based on only one algebraic equation. Finally, Methods
II and III are successfully extended to rectangular plates and the advantage in
computational speed over the Rayleigh–Ritz method [2] is even more significant.

Based on the material presented in this article, the following design procedure
is suggested.

(1) Select a particular mode of a beam or plate. Predict and plot patch
performance indices using Method III over the entire surface. Place a
damping patch at or near anti-nodes as a starting point. Choose a
preliminary design concept including the number of patches and their
locations in accordance with predictions.

(2) Using Method II for a plate and Method I or II for a beam, perform
parametric design studies on the best possible locations for preliminary
patches.

(3) Modify the design if necessary and perform parametric studies to achieve
a desirable damping value for a given mode of interest.

(4) Apply these procedures for other modes of interest and determine the best
design, using these methods iteratively, that provides the maximum possible
damping over the frequency range of interest.

(5) Use the Rayleigh–Ritz method to confirm the final design concept. Validate
the design by conducting modal or vibro-acoustic measurements.
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The chief contribution of this article is the development of analytically simpler
formulations that yield reasonable accurate results, in a computationally efficient
manner, while providing much insight into the damping patch design concepts.
Future work may include the development of an optimization scheme that
considers several modes. Dynamic scaling issues for viscoelastically damped
structures will also be addressed using the explicit form of the modal loss factor,
as described by Method III.
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APPENDIX A: LIST OF SYMBOLS

a, b, c, d coefficients
C thickness parameter (h1 +2h2 + h3)/2
E Young’s modulus
e elasticity ratio E1h1/E3h3

F axial force
f frequency (Hz)
G relative stiffness
G shear modulus
H patch thickness index
h thickness
I area moment of inertia
L patch size parameter
l length or width
Np total number of patches
N total number of shape functions
P patch performance index
q coefficient
r trial eigenfunction number
s spatial constant
T kinetic energy
u in-plane or longitudinal displacement
U potential or strain energy
w flexural displacement
x, y, z spatial co-ordinates
Y a stiffness and dimension parameter
f shape function
g shear deformation
hk modal loss factor of mode k
hm,2 material loss factor of layer 2
hp modal loss factor contributed by patch p
l frequency parameter
m a constant related to stiffness, dimensions and frequency parameter
n Poisson’s ratio
r mass density
t shear stress

Operators
d differential operator

Superscripts
¯ non-dimensionalized value
ˆ normalized quantity
p patch number
k modal index

Subscripts
a, b patch ends
0 reference value for normalization
1 layer 1 (elastic constraining layer)
2 layer 2 (viscoelastic constrained layer)
3 layer 3 (base structure)
max maximum
min minimum
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opt optimum value
total total value
u in-plane motion
x, y spatial co-ordinates
w flexural motion
g shear deformation

APPENDIX B: DERIVATION OF THE SHEAR STRAIN TERM

Equation (4) may be derived by observing a segment of the deformed beam
(Figure 2). Since rotation angles (cp

xz,1 cp
xz,2 and cxz,3) are small, the longitudinal

distance between the centers of layers 1 and 3 is given below in terms of rotations
and layer thickness (hp

1 , hp
2 and h3):

u3 − up
1 =cp

xz,1
hp

1

2
+cp

xz,2hp
2 +cxz,3

h3

2
. (B1)

Further, rotations of all layers are expressed in terms of the shear angles and the
derivative of flexural displacement w with respect to x̄; note that shear angles in
layers 1 and 3 are ignored:

cp
xz,1 =

dw
lx dx̄

; cp
xz,2 =

dw
lx dx̄

− gp
2 ; cxz,3 =

dw
lx dx̄

. (B2a–c)

Eliminating rotations by combining equations (B1) and (B2), the shear strain of
layer 2 is obtained as

gp
2hp

2 = up
1 − u3 + 1

2(h
p
1 +2hp

2 + h3)
dw

lx dx̄
. (B3)

Equation (B3) is the equation (4) of section 2.2.
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