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In most turbofan engine intakes, the acoustically lined region consists of several
liner segments which are separated by longitudinal hard-walled intercostal strips
or splices. Measurements indicate that the duct modal spectrum can be
considerably altered by such circumferential variations in acoustic properties, with
energy being transferred from an incident mode to several others. To investigate
and quantify this phenomenon, a three-dimensional, frequency domain finite
element method has been developed. The computational domain represents a
length of infinite, hard-walled duct of circular cross-section fitted with a region
of longitudinally spliced liner. A modal coupling scheme is used, in which complex
modal input amplitudes are specified across a section at one end of the
computational duct domain and the amplitudes and phases of the transmitted
modes are captured at the other end. In addition, to model the convective effect
of flow in the duct, a uniform, unidirectional flow field is treated. The method is
verified by comparing predictions with analytical solutions and is then used to
analyze a liner with splices. It is demonstrated that incident modes are significantly
affected by the circumferential variations in impedance and as such, the influence
of liner splices on the transmitted acoustic field ought to be further investigated.
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1. INTRODUCTION

For convenience and cost of manufacturing, the acoustic liner installed in turbofan
engines consists of several segments, divided by longitudinal strips or splices which
are essentially hard-walled (see Figure 1). It has long been suspected that such
circumferential discontinuities of impedance might have a significant effect on the
radiated sound field, by causing incident modes to be scattered so that their energy
is transmitted into different modes. Unless this modulation of the transmitted
acoustic field is accounted for at the design stage of the turbofan intake liner, the
splices are likely to have an adverse affect on the liner noise attenuation
performance. Experimental investigations have indeed verified this to be the case.
In-flight measurements [1] of the circumferential modal spectra of hte Rolls-Royce
Tay 650 engine installed in the Fokker 100 aeroplane indicated that the sound field
radiating from the inlet was substantially affected by the presence of splices.
Further flight tests of the same engine fitted with a single piece liner demonstrated
a significantly attenuated noise field compared to the same engine with a
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Figure 1. Sketch of liner barrel with intercostal strips (longitudinal splices).

three-splice liner. Ohter experimental studies [2, 3] have since corroborated these
findings.

While single piece liner barrels are attractive as a means of improving
attenuation performance, in general this is not economically feasible because of
manufacturing and design constraints. It is therefore useful to develop analytical
tools to study and quantify the influence of intercostal strips. Such tools could then
be used for design purposes to predict the effect of the number of strips and their
width, layout and shape on a selection of incident modes, over a range of
frequencies and Mach numbers.

In this work, an existing three-dimensional finite element method is developed
to model the propagation of cross-sectional modes over a lined region of an infinite
duct in the presence of a uniform airflow (see Figure 2). The effect of the liner,
which is assumed to be locally reacting, is represented by specifying an impedance
on the inner duct wall over the lined region. The intercostal strips are assumed
to be acoustically hard-walled, which is equivalent to an infinite impedance
condition. Complex incident modal amplitudes are injected at an input

Figure 2. Incident, reflected and transmitted modes in numerical duct model.
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cross-section (the modal input plane) and the complex amplitudes of the reflected
an transmitted modes emerge as part of the solution. The amplitudes of the modes
that are excited by the scattering can therefore be determined from the transmitted
modal spectrum.

The computational cost of three-dimensional acoustic problems rapidly
becomes demanding as frequency is increased, since, when using the finite element
method, a minimum of five quadratic elements per wavelength is typically required
in each co-ordinate direction to accurately resolve the acoustic field [4, 5]. To
enable the solution of duct configurations at reasonable reduced frequencies by
using modest computing facilities, a preconditioned iterative solver is employed.
Drawing on past experience [4–6], an ILU(0) preconditioner is used in conjunction
with the biconjugate gradient iteration algorithm.

This paper is laid out as follows. The mathematical model, consisting of
governing equations, boundary conditions and treatment of the modal interface
is described. We then outline the formulation of the three-dimensional finite
element representation of the model and the iterative solution procedure. The
numerical model is then verified by comparing its predictions with analytical
solutions for two basic test case configurations. Further verification is achieved by
using a third configuration; an axisymmetric, axially varying liner, where
predictions are compared with semi-analytical solutions. Finally, the application
of the prediction method for realistic spliced arrangements is demonstrated by
analyzing the behaviour of a lined region of duct with two splices.

2. MATHEMATICAL MODEL

2.1.  

It is assumed that the fluid medium is inviscid and non-heat conducting with
constant specific heats, and that all acoustic processes are isentropic. Furthermore,
it is assumed that the airflow is uniform and unidirectional, with the flow being
aligned with the duct axis. Under these assumptions, the convected wave equation
governs acoustic propagation,

92p−
1
c2

D2p
Dt2 =0, (1)

where the total derivative is defined as:

D/Dt= 1/1t+M1/1x (2)

when the flow velocity is aligned with the x direction (a list of nomenclature is
given in the Appendix). The frequency domain version of the convective wave
equation is derived by assuming that the acoustic disturbances vary harmonically
with time dependence eivt. The resulting acoustic fluctuations then take the form

p(x, y, z, t):p(x, y, z) eivt (3)
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and the convected wave equation reduces to

92p−
1
c2 0iv+M

1

1x1
2

p=0, (4)

which, upon expanding, can be expressed as

(1−M2)
12p
1x2 −2ikM

1p
1x

+
12p
1y2 +

12p
1z2 + k2p=0. (5)

2.2.  

The intercostal strips on the liner surface can essentially be considered as
hard-walled. An acoustically hard surface is one which is totally reflective, and on
which the normal component of acoustic velocity is zero, so that

v · n=0, (6)

and therefore

9p · n=0. (7)

The influence of the liner can be represented by specifying an appropriate surface
impedance. The boundary condition at a compliant wall where the lining is locally
reacting has been derived by Ingard [7]. He has shown that a proper formulation
is based on the requirement of continuity of normal displacement, j(x, t). For a
wall which is parallel to the x co-ordinate, a natural boundary condition can be
derived as follows.

The normal component of velocity at the wall can be expressed in terms of the
convective derivative of the normal displacement

v · n=
1j

1t
+U

1j

1x
(8)

and pressure can be expressed in terms of impedance as

p=Z
1j

1t
. (9)

The momentum equation in the radial direction is

1

1t
(v · n)+U

1

1x
(v · n)=−

1
r0

1p
1n

. (10)

For harmonic excitations of the form eivt, equations (8)–(10) can be written as

v · n=iv 01− i
M
k

1

1x1j, p=ivZj, (11, 12)

1p/1n=−r0iv01− i
M
k

1

1x1v · n. (13)
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The boundary condition for a compliant surface thus emerges as

1p
1r

=−
ikr0c

Z 01− i
M
k

1

1x1
2

p. (14)

2.3.  

As illustrated in Figure 2, the cylindrical computational domain is bounded on
both ends by circular cross-sections. Since the computational domain is to be
treated as a finite length of an infinite duct, there must be no reflections at these
boundaries. Moreover, since a modal description of a duct pressure field is
desirable, the pressure field at these boundaries should be expressed in terms of
a weighted modal summation. At the hard-walled modal input plane, the modal
expression must allow for both incident and reflected modes, with amplitudes and
phases of the incident modes specified as an input. The pressure distribution at
this cross-section is therefore expressed in terms of M incident and M reflected
modes [8],

p= s
M

j=0

(A+
j Ej +A−

j Ej ), (15)

while at the hard-walled modal output plane

p= s
M

j=0

(TjEj ). (16)

Here, Ej are the hard-walled cross-sectional modes. A+
j and A−

j , which are complex
numbers, are respective modal amplitudes of the right- and left-travelling modes
at the modal input plane, while Tj are the modal amplitudes of the right-travelling
modes at the modal exit plane. For a circular modal input plane, these modes can
be expressed in terms of Bessel functions [9]:

Em,n (r, u)= J(kr,mnr)e−imu. (17)

Here n indicates the nth solution of the hard-walled boundary condition at the
duct wall:

Jḿ (kr,mna)=0. (18)

This equation has an infinite number of solutions corresponding to kr,mn , where
the nth solution specifies the radial mode number for values in the range
n=[0, a]. The sequence of kr,mn values signifies the set of radial modes, where kr,mn

is the nth radial wavenumber and kx,mn is the corresponding axial wavenumber:

k2
r,mn = k2 + k2

x,mn (1−M2)−2kx,mnkM. (19)

The integer m corresponds to the angular mode number, which can be positive
or negative. Negative angular mode numbers correspond to clockwise spinning
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modes, and a positive m indicates a counter-clockwise spinning mode. It is
necessary to include both clockwise and counter-clockwise modes in the analysis
since the asymmetry of the liner will excite modes in both circumferential
directions. The M modes selected for an analysis should consist of all angular and
radial modes which are cut-on, and an additional few above cut-off. Therefore,
if the circumferential modal order ranges from −m̂ to+m̂ and the radial order
varies from 0 to a maximum of n̂, the total number of modes specified in the
analysis is

M=(2m̂+1)× n̂. (20)

The incoming modal amplitude is known a priori, but the amplitudes and phases
of the reflected modes must be determined as part of the solution. The axial
derivative, which will be used in the finite element derivation, can be expressed as

1p
1x

= s
M

j=0

(−ik+
xj A+

j Ej −ik−
xj A−

j Ej ). (21)

3. FINITE ELEMENT FORMULATION

3.1. 

Using a standard finite element Galerkin weighted residual procedure for
equation (5) yields

ggg
V
692p−M2 12p

1x2 7Wi dV+ggg
V
6k2p−2ikM

1p
1x7Wi dV=0. (22)

Upon application of the divergence theorem to the second order spatial derivative
terms in equation (22), an expression involving integrals over the computational
domain volume and its surface emerges:

ggg
V
6k2p−2ikM

1p
1x7Wi dV−ggg

V

9Wi · 09p− iM2 1p
1x1 dV

+gg
S

Wi09p− iM2 1p
1x1 · n dS=0. (23)

As with the previous surface integral expressions, the normal gradient of the
solution variable, the complex acoustic pressure (p), is used to implement the
aeroacoustic natural boundary conditions. The term i · n is zero on solid
boundaries, since in the domain treated here all solid surfaces in the computational
domain are aligned with the direction of uniform flow.
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3.2.  

For the case of a compliant wall [10], the boundary term is derived by using
equation (14), which yields

−ikcr0 gS

AWi01−
M2

k2

12

1x2 −2i
M
k

1

1x1p dS, (24)

where A, the reciprocal of the specific acoustic impedance, is the admittance. Upon
integrating the second order terms by parts this boundary integral term reduces
to

−ikr0c gS

AWip dS−2Mr0c gS

AWi
1p
1x

dS

−i
M2r0c

k gS

A
1Wi

1x
1p
1x

dS+i
M2r0c

k GC

AWi
1p
1x

nx dC. (25)

3.3.  

At the modal input plane, the modal expression for pressure (equation (15)) and
for its axial derivative (equation (21)) can be incorporated into the finite element
formulation through the surface integral boundary condition [8]:

−gS

Wi (1−M2)
1p
1x

dS. (26)

The negative sign indicates that the condition is directed into the surface, in the
opposite direction to the outward normal. The finite element equation can now
be expressed as

[K]{f}+[B−]{A−}=−[B+]{A+}, (27)

where

B2
ij =(1−M2) i gS

Wik2
xj

Ej dS. (28)

This equation set may now be under-determined because of the extra solution
unknowns—the reflected modal amplitudes. Equation (15) is used to yield the
necessary additional equation. Using a weighting function

Wi =i(1−M2)k−
xi
E*i , (29)

where E* is the complex conjugate of E,

E*m,n (r, u)= Jm (kr,mnr) eimu, (30)



.   . 866

and integrating over the duct cross-section where the boundary condition is
applied gives

gS

pWi dS=gS

i(1−M2)k−
xi
E*i Ej dSA+

j +gS

i(1−M2)k−
xi
E*i Ej dSA−

j . (31)

Following from previous axisymmetric work [8], it would appear logical to use E
in the weighting function (equation (29)). This is not appropriate for the
three-dimensional application, however, because the integral of the product EiEj

over a circular surface can be zero, which results in zero terms on the diagonal
of the system matrix as follows:

gS

Em,n (r, u)Em,n (r, u) dr du=g
2p

0 g
a

0

J2
m (kr,mnr) ei(−2m)u dr du=0, m$ 0. (32)

Using E* results in diagonal terms of the form

gS

E*m,n (r, u)Em,n (r,u) dr du=g
2p

0 g
a

0

J2
m (kr,mnr) dr du, (33)

where it can be seen that the exponential in u has been eliminated.
Equation (31) can be expressed as

[C]{p}+[D]{A−}=−[D]{A+}, (34)

where

Dij =−i(1−M2) gS

k−
xi
E*i Ej dS and Cij =i(1−M2) gS

k−
xi
E*i Nj dS. (35, 36)

For a hard-walled duct section, the modes are orthogonal so that only Dii terms
are non-zero, which results in a diagonal matrix.

The complete coupled system of equations can be expressed as

[K]
N×N

[B−]
N×M

{p}
N×1

[B+]
N×MG

K

k
G
L

l
G
K

k
G
L

l
G
K

k
G
L

l[C]
M×N

[D]
M×M

{A−}
M×1

=−
[D]

M×M

{A+}
M×1

. (37)

The size and form of the matrices is indicated here by the integer products. M is
the number of modes allocated for the analysis and N is the number of nodes in
the finite element model.

A second coupling procedure is used on the hard-walled modal exit plane. In
this case, however, only the transmitted modal amplitudes, T, arise in the finite
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element expression. The overall equation system, with modal coupling terms for
the incident, reflected and transmitted modes is

[K]
N×N

[B−]
N×M

[B−
2 ]

N×M
{p}
N×1

[B+]
N×M

[C]
M×N

[D]
M×M

[0]
M×M

{A−}
M×1

=− [D]
M×M

{A+}
M×1

, (38)G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l
[C2]
M×N

[0]
M×M

[D2]
M×M

[T]
M×N

[0]
M×M

where the subscript 2 indicates coupling matrices evaluated at the modal exit plane.
Here M is the total number of modes specified at both the inlet and outlet plane.

Since all possible modes can be accounted for by using this modal coupling
procedure, the modal boundaries can theoretically be specified at any hard-walled
section in the infinite duct. In practice, the number of modes is limited by including
all cut-on modes plus an additional few above cut-off and positioning the modal
boundary sufficiently distant from any duct non-uniformities so that the cut-off
modes have largely decayed.

4. SOLUTION PROCEDURE

The duct acoustic problems under consideration here can yield large systems of
equations for higher frequencies. The domain is three-dimensional and a certain
mesh density, typically at least five quadratic elements per wavelength, must be
maintained in each co-ordinate direction if acceptable solutions are to be obtained
[4, 5]. In this paper, 20 node hexahedral, serendipity, reduced integration elements
have been employed in all cases, with a minimum mesh density of five elements
per wavelength.

Traditionally, finite element schemes have used a variety of direct solution
methods. All direct solvers, however, generate fill-in terms as the solution
proceeds, so that the storage requirement is greatly increased over the size of the
original sparse system matrix. As a result, direct solution schemes cannot
effectively be used to solve for large systems because the storage demands become
prohibitively large. As an alternative, we avail ourselves of iterative solution
techniques to solve the finite element acoustic problems [4, 5]. Iterative solvers are
attractive because they only involve operations on the original system matrix, so
that throughout the solution procedure the storage requirement is restricted to the
non-zero matrix terms. To take full advantage of these storage savings, it is
necessary to implement a sparse storage scheme which only stores and operates
on these non-zero terms.

The primary weakness of applying iterative solvers to the current acoustic
problems is their lack of robustness. This difficulty is addressed by implementing
a preconditioner [11]. In this work we use a preconditioner based on incomplete
lower and upper triangular (ILU) decomposition. This is a two-parameter
ILUT(p, t) system [11] which allows the strength and associated cost of the
preconditioner to be adjusted for systems of varying difficulty. The first parameter
(p) limits the number of terms to be generated per row of the preconditioner
matrix, and the second (t) is a magnitude tolerance which determines which fill-in
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Figure 3. Circular duct configurations used for verification.

terms are to be dropped. To maximize computational efficiency, this procedure is
applied in conjuction with a sparse storage and operation routine.

Having conducted extensive studies [4, 5] to determine the optimal combination
of iterative solver and preconditioner for solving the Helmholtz equation, we
found that the biconjugate gradient [12] method combined with a basic ILU(0)
preconditioner, where the L and U matrices assume the same structure as K,
generally ensures reasonable convergence for the three-dimensional duct acoustic
problems under consideration here.

5. VERIFICATION

Extensive verification studies [4, 5] have already been performed on the current
finite element method by comparing predictions with known analytical solutions.
In these tests the effect of mesh density on pressure amplitude and phase was
determined. To verify the new double modal coupling condition and the compliant
wall boundary condition, a series of simple duct test cases are now examined.
Three fundamental cylindrical duct test configurations, as illustrated in Figure 3,
are used for this verification. Configuration 1 consist of an infinite hard-walled
duct with uniform flow; Configuration 2 is a semi-infinite hard-walled duct with
uniform flow and one end closed by an acoustically hard-walled termination;
Configuration 3 is an infinite duct with uniform flow and a finite uniformly lined
region. We note here that because we have specified a negative reactance in some
of the verification configurations, unstable surface modes [13, 14] can theoretically
arise. For most practical applications, however, these surface modes are generally
of minor importance [14].
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Figure 4. Numerical prediction of real pressure contours for mode (0, 1) in Configuration 1 and
corresponding exact waveform solutions, M=−0·5, ka=5·0.

5.1.  1  2:   

Configuration 1 is used to verify the predictions for the case of an incident mode
at the modal input plane and its transmission at the modal exit plane. All cut-on
modes, plus a few above cut-off, are included in the modal coupling procedure,
and a cut-on modal amplitude and phase are specified at the modal input plane.
At the modal exit plane, the modal amplitude ought to be unchanged, and the
phase shift should be as indicated by the analytical solution. All other modal
transmisson amplitudes should be zero. The numerical model was verified for this
configuration for a large variety of modes, over a range of different frequencies
and Mach numbers. An example is illustrated in Figure 4 for a length of an infinite

Figure 5. Comparison of numerical predictions and semi-analytical solutions of real pressure
distribution for mode (0, 0) in Configuration 2; M=−0·5, ka=2·41. – – –, Incident wave; ----,
reflected wave; ——, semi-analytical solution; q, finite element solution.
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T 1

Configuration 3: parameter sets used in compliant
wall test cases

Case Z/r0c Mach No. Mode ka

1 (1, −2) 0·0 (0, 0) 1·5
2 (1, −2) −0·3 (0, 0) 1·5
3 (2, −1) −0·3 (0, 2) 7·4
4 (3, 0) −0·3 (5, 0) 7·4

cylindrical duct, where the finite element prediction of real pressure contours and
corresponding analytical waveforms for mode (0, 1) are shown.

Although a uniform flow field in a closed duct is physically unrealistic, it
provides a useful test case for verification purposes. The semi-infinite, closed duct
of Configuration 2 is used to verify the correct prediction of reflected modal
amplitudes at the modal input plane. Specifying the amplitude of one incident
cut-on mode should result in a reflected modal amplitude of the same magnitude,
with an appropriate phase shift. Again, this test was performed for many different
modes over a range of frequencies and Mach numbers. A typical result for this
configuration is shown in Figure 5, where finite element and analytical solutions
of real pressure distributions for mode (0, 0) are compared. Analytically, for this
test case the ratio of incident to reflected modal amplitudes is

A−/A+ =z(1−M)2/(1+M)2 =3. (39)

To five decimal places, the predicted reflected modal amplitude was 3·0 for the
plane wave and 0·0 for all others.

5.2.  3:  

Configuration 3 is an appropriate test case, since from a numerical point of view
the longitudinal step change in impedance in this arrangement is analogous to a
circumferential step change. If the three-dimensional finite element method can
correctly model the effect of the axial variation, it is a good indication that it
should also be able to treat the circumferential variation present in a spliced liner.
In addition to proving the modal coupling scheme at both the modal input and
exit planes, this configuration also tests the impedance boundary condition.

To validate the finite model for this compliant wall arrangement, predictions for
four test cases based on Configuration 3 (see Table 1) are compared with solutions
from a semi-analytical code [15] which was developed at the National Aerospace
Laboratory (NLR), The Netherlands. The NLR method is an extension of
techniques developed by Rienstra [13, 16]. Modes are input at one end of the duct,
where a modal amplitude distribution is specified; the boundary at the input end
is assumed transparent to reflected modes, and the other end of the duct is also
anechoic. The computational domain, representing a finite length of the infinite
duct, consists of a cylinder of length 1·0 m and radius 0·2 m, with a region of the
duct wall, between x=0·3 and x=0·7, which is compliant. To model the
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Figure 6. Comparison of numerical predictions and semi-analytical solutions of transmitted
modal amplitudes for Configuration 3 for different input modes. q, finite element; ,
semi-analytical.

compliant wall, an appropriate impedance is specified, as shown in Table 1.
Solutions are predicted at reduced frequencies of ka=1·5 and ka=7·4.

Computed values for the transmitted, normalized modal amplitudes of the
energized mode in each test case are compared in Figure 6. It can be seen that
there is close agreement between the numerical and semi-analytical predictions. In
Figure 7, field results are plotted as contours of the amplitude of the computed
complex pressure, P. Again, there is close agreement between the finite element
and semi-analytical predictions. For direct comparison purposes the contours

Figure 7. Comparison of numerical predictions and semi-analytical solutions of duct pressure
amplitude contours for Configuration 3. M=−0·3, ka=7·4, mode (0, 2), l/a=0·4.
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Figure 8. Numerical solution of duct pressure (plotted using all nodal points) for Configuration
3. Parameter values as Figure 7.

plotted in Figures 7(a) and (b) were bi-linearly interpolated from discrete values
on a coarse grid (x/a=1, 2, 3, 4, 5 and r/a=0·0, 0·1, . . . , 0·9, 1·0). Apart from
giving a jagged appearance to the contours, the pattern is misleading, as shown
in Figure 8, where the ‘‘true’’ finite element solution is replotted using all the nodal
points employed in the solution process.

It is encouraging that the finite element semi-analytical solutions agree closely
for the case of a liner with a longitudinal step change in impedance. In light of

Figure 9. Configuration 4 and 5: test for infinite duct with region of longitudinally-spliced liner.
For Configuration 4, c=0·75, l/a=2, L/a=5; for configuration 5 c=0·15, l/a=0·6, L/a=1·5.
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Figure 10. Comparison of numerical predictions of transmitted modal amplitudes for uniform
liner and for two-splice liner at ka=2·2 (Configurations 3 and 4). , Uniform liner (Configuration
3); q, spliced liner (Configuration 4).

these test results, we now proceed to investigate the effect of longitudinal splices
in a lined duct.

6. APPLICATION

6.1.  4

The method is now applied to a duct with a two-splice liner. Liner Configuration
4, which contains two hard-walled splices, is illustrated in Figure 9. The splices
are diametrically opposed and each extends circumferentially over an angle of
0·75 rad. The lined region of the infinite duct is 0·4 m long, and is located at the
centre of the test domain, which consists of a cylinder, 1 m long, 0·4 m diameter.
For a Mach number of zero, the non-dimensional impedance of the liner is
specified as follows: a resistance of 1·5, a mass reactance of 0·01k and a cavity
reactance of −cot (0·016k). Thus

Z/r0c=1·5+ i(0·01k−cot (0·016k)). (40)

To investigate the effect of the liner splices, a single incident mode is injected and
the resulting transmitted modal spectrum is calculated. These spectra are
compared with the transmitted field produced by a uniform homogeneous liner
modelled under the same conditions (Configuration 3). In ever case, all transmitted
modal amplitudes are normalized with respect to the amplitude of the single
energized incident mode.

The first set of calculations are performed at 600 Hz, which corresponds to a
ka value of 2·2. At this frequency, only modes (−1, 0), (0, 0) and (1, 0) are cut-on,
so that the effect of the scattering on a single incident mode should be easy to
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isolate. Exciting the incident mode (1, 0) and solving for both the uniform and
spliced configurations yields the transmitted spectra which are compared in
Figure 10. The transmitted amplitude for the spliced arrangement is larger than
for the uniform liner, which is to be expected, since the latter has a greater lined
surface area. Also, scattering effects cause mode (−1, 0) to be excited and
transmitted. By analogy with rotor–stator interaction theory [17], the
circumferential order of the modes which are excited by the scattering can be
specified by the sequence

m=mI 2 lNS . (41)

Here mI is the circumferential order of the excited incident mode, l is an arbitrary
integer, and NS is the number of splices. Thus, if mode (1, 0) is excited as an
incident mode, and a liner with two splices is used, modes of circumferential order
−1 and 1 will also be excited, as correctly predicted by the numerical method for
this test case.

As a check on the influence of the incident mode phase on the transmitted
spectrum, the tests were re-run for a range of different phases. No noticeable
difference in the transmitted amplitudes was observed.

A second test was conducted at 1830 Hz, corresponding to a wavenumber
ka=6·8. This frequency was chosen to demonstrate the behaviour described by
equation (41) over a broader range of circumferential modal orders. In this case,
all zero-order radial modes of circumferential order less than six are cut-on, in
addition to first-order radial modes of circumferential order less than three. In
Figure 11, it can be seen that only modes of first circumferential order are
transmitted when a uniform liner is used. This behaviour is to be expected, since
for an axisymmetric duct there is no mechanism to generate modes of other
circumferential orders. However, as evident in Figure 12, a spliced liner scatters

Figure 11. Numerical prediction of transmitted modal amplitudes for uniform liner and incident
mode (1, 0) at ka=6·8; Configuration 3.



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.45

0.40

1

0–4 –3 –2 –1 0 1 2 3 4 5

–5

Circumferential mode order (m) R
ad

ia
l m

od
e 

or
de

r 
(n

)

|T
m

,n
|

|A
+

(1
,0

)|

2.5

0.5

1.0

1.5

2.0

0.0
–20 –15 –10 –5 0 5 10 15 20

m

( 
  

T
m

/ 
  

I 1
7)

10
4

  -  875

Figure 12. Numerical predication of transmitted modal amplitudes for two-splice liner (c=0·75)
and incident mode (1, 0) at ka=6·8; Configuration 4.

the incident mode, causing modes of several circumferential orders to be excited.
It can be seen that the excited modes follow the periodic pattern governed by
equation (41). Only cut-on modes of circumferential order
−5, −3,−1, +1, +3, +5 are observed in the transmitted spectrum.

Figure 13. Numerical prediction of transmitted modal amplitudes for two-splice liner (c=0·15)
and incident mode (17, 0) at ka=20·0; Configuration 5. , Two-splice liner; q, uniform liner.
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6.2.  5

In a real turbofan engine inlet, splices are narrower and frequencies are
considerably higher than those just considered. To demonstrate the ability of the
numerical method to treat a realistic configuration, a periodic two-splice liner
(Z/r0c=(2, −1), c=0·15, l/D=0·3) is analyzed. For a single incident mode
(m=17, n=0), the solutions are computed at ka=20·0 with M=−0·3 for both
the uniform and spliced liners. In Figure 13, the transmitted modal spectra are
compared. Results are presented in terms of the transmitted acoustic power of each
modal order, normalised with respect to the power of the single incident mode.
For this frequency, modes of circumferential order greater than 18 are cut-off. As
before, the presence of liner splices cause cut-on modal orders to be excited in the
sequence described by equation (41) with the amplitudes of even order modes
calculated as zero to a precision of seven significant figures. The splices result in
the transfer of energy to lower order modes which are less well attenuated, and
because of this, the insertion loss for the spliced liner is far smaller than that of
the uniform equivalent. Indeed, 40 times (16 dB) more power is transmitted by the
spliced liner. However, for these conditions, both the uniform and spliced liners
have relatively large insertion losses (27·0 and 43·0 dB respectively) because mode
(17, 0) is close to cut-off and thus well attenuated. Overall, the influence of the
splices is not particularly important, and the power transfer due to scattering by
the splices is seen to be negliglible, with (PTm /PI17 Q 10−3).

These test cases have demonstrated the usefulness of this numerical approach
in analyzing the scattering effect of splices in a liner. Moreover, it is encouraging
that the numerical predictions show expected trends and characteristics. On the
bases of these results, it is clear that liner splices can significantly influence the
transmitted acoustic field and the need for further investigation is evident. Since
the method is fully three-dimensional, it is applicable also to non-circular ducts
and to liner layouts of arbitrary shape and impedance property distributions. A
logical next stage would be to study and to quantify the effect of splice
configuration on the transmitted spectrum, examining aspects such as splice
number, spacing, width and shape. Such a study may well indicate how best to
reduce any adverse scattering effects

7. CONCLUSIONS

In this paper we have described the development of a three-dimensional finite
element technique which can model the effect of longitudinal linear splices on the
transmitted acoustic field in a duct. The theoretical model considered here consists
of a length of liner installed in an infinite cylindrical duct with a uniform,
unidirectional flow. The liner is represented by an impedance boundary condition,
and since the method enables arbitrary surface impedance distributions to be
treated, a liner consisting of several segments divided by hard-walled intercostal
strips is investigated. By expressing the cross-sectional pressure distribution as a
weighted summation of duct modes, modal coupling conditions are implemented
at both ends of the computational domain to enfore anechoic radiation conditions.
With this technique, incident modes of a specified amplitude and phase are injected
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at one end of the domain and the transmitted amplitudes and phases are predicted
at the other boundary.

The technique was verified by using a series of fundamental duct configurations.
To compare predictions with known analytical solutions, simple hard-walled
configurations were used to test the modal coupling schemes. For the case of a
cylindrical duct with a uniform axisymmetric length of liner, numerical predictions
were compared with solutions from a semi-analytical method. Since, from a
numerical perspective, a longitudinal step change in impedance is analogous to a
circumferential step change, this test is a good indication of the ability of the
method to model a spliced liner. To demonstrate the potential and usefulness of
this simulation procedure, we compared predictions for the transmitted modal
spectra of a duct containing a uniform liner with that of a duct containing a
two-splice liner. The scattering effect of the splices was clearly demonstrated in the
transmitted modal spectrum with the appearance of circumferential modes of
orders different from that of the excitation mode. An expresssion relating the
circumferential order of excited modes to the incident modal order and the number
of splices was presented, and it was shown that the transmitted modal spectra in
all test cases was governed by this equation. Interestingly, when realistically sized
splices were considered at ka=20, the overall effect of liner non-uniformities on
the transmitted power was insignificant for the incident mode (17, 0). Nevertheless,
these results demonstrate the potential influence of liner non-uniformities on
transmitted modes and indicate the need for further investigation.
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APPENDIX: NOMENCLATURE

A acoustic admittance
A+ complex amplitude of input mode
A− complex amplitude of reflected mode
a duct radius
Bij finite element modal coupling matrix
C boundary of surface S
Cij finite element modal coupling matrix
c speed of sound
Dij finite element modal coupling matrix
E duct cross-sectional mode
i unit normal vector in the x direction
i z−1
J Bessel function
Kij finite element system matrix
k wavenumber
k2

x axial wavenumber in the (+x) or (−x) direction
kr radial wavenumber
l length of lined region; arbitrary integer
L lower decomposed component of matrix; length of duct computational domain
M number of duct modes included in analysis; Mach number
m circumferential modal order
m̂ maximum circumferential modal order
mI circumferential order of the excited incident mode
N number of nodes in finite element model
Ni , Nj finite element shape functions
NS number of liner splices
n radial modal order
n̂ maximum radial modal order
n unit vector in the outward surface normal direction
nx direction cosine between surface normal and x direction
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p acoustic pressure
S surface of computational volume
T amplitude of transmitted mode
U uniform steady flowfield velocity; upper decomposed form of matrix
v acoustic velocity vector
W finite element weighting function
Z specific acoustic impedance
c circumferential angle subtended by intercostal strip
j normal displacement of compliant surface
PIm total incident modal power of all modes of circumferential order m
PTm total transmitted modal power of all modes of circumferential order m
r0 steady fluid density
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