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The eigenvalue problem is considered for the Laplacian on regular polygons,
with either Dirichlet or Neumann boundary conditions, which will be related to
the unit circle by a conformal mapping. The polygonal problem is then equivalent
to a weighted eigenvalue problem on the circle with the same boundary conditions.
Upper bounds are found for the eigenvalues by the Rayleigh–Ritz method, where
the trial functions are the eigenfunctions of the unweighted problem on the circle.
These are products of Bessel and trigonometrical functions, and so the required
integrals simplify greatly, with a new recursion formula used to generate some
Bessel function integrals. Numerical results are given for the case of the hexagon
with Dirichlet conditions. Consideration of symmetry classes makes computations
more efficient, and gives as a byproduct the eigenvalues of a number of polygons,
such as trapezoids and diamonds, which result from disecting the hexagon.
Comparisons of the hexagon results are made with previous work.
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1. INTRODUCTION

The eigenvalue problem is considered for the Laplacian

DF+ lF=0 on R. (1)

It arises from separating the time variable out of the wave equation, and so occurs
in many applications. When R is a bounded region of the plane, equation (1) may
represent the propagation of a wave down a waveguide (electrical or acoustical),
with uniform cross-section R. The eigenvalue l= k2, where k is a cut-off
frequency, and F is a mode of propagation. Equation (1) may also represent the
vibration of an elastic membrane in the shape of R, with k proportional to a
vibrational frequency, and F in the shape of a vibrational mode. When R is a
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polygon, with boundary 1R consisting of straight line segments, equation (1) may
also represent the vibration of plates in the shape of R.

The boundary conditions considered are the Dirichlet condition

F=0 on 1R, (2)

or the Neumann condition

1F

1n
=0 on 1R. (3)

The Dirichlet condition which governs TM-propagation in an electrical
waveguide, is called a soft boundary in an acoustical waveguide, and governs fixed
membranes and simply-supported plates. The Neumann condition which governs
TE-propagation in electrical waveguides, is called a hard boundary in an
acoustical waveguide, and governs free membranes.

Regular polygons will be considered, which will be related to the unit circle by
a conformal mapping. Equation (1) is then equivalent to a weighted eigenvalue
problem on the circle with the same boundary conditions [1]. Upper bounds are
found for the eigenvalues by the Rayleigh–Ritz method [2], where the trial
functions are the eigenfunctions of the unweighted problem on the circle. These
are products of Bessel and trigonometrical functions, and so the required integrals
simplify greatly, with a new recursion formula used to generate some Bessel
function integrals.

The notion of using conformal mapping on a membrane/waveguide problem to
obtain a numerically more tractible problem is not new. It was used with good
effect in reference [3] to find the cut-off frequencies of a ridged waveguide.
However, it is a very useful method which does not seem to be employed as much
as it might be. The power of the method will be illustrated by using a well-known
conformal map which takes the circle to a regular polygon.

The regular polygons are a canonical and classical set of membrane/waveguide
shapes of enduring interest. The eigenvalues of equilateral triangles and squares
can be found analytically, but the eigenvalues of regular polygons with more than
four sides cannot, and even very accurate numerical approximations for the lowest
eigenvalues seem scarce. Irie et al. [4] gave results accurate to about three
significant figures for the first 14 eigenvalues of fixed regular polygons with three
through ten sides. Molinari [5] used the same conformal map that we do to get
rather rough estimates on the lowest eigenvalue of free regular polygonal
membranes of sides five, six and eight.

Numerical results will be given for the case of the hexagon with Dirichlet
conditions. This is the higher polygon which has been most studied, and for which
calculations exist that our numbers can be checked against. The hexagon with
Neumann conditions and other polygons, such as the octagon, will be reported
in subsequent work. Consideration of symmetry classes makes computations more
efficient, and gives as a byproduct the eigenvalues of a number of polygons, such
as trapezoids and diamonds, which result from disecting the hexagon.

Comparisons of the hexagon results are made with Bauer and Reiss [6], who
used finite-differences on an equilateral triangle mesh. Their results have been
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recomputed to correct a minor error, and they have been extended to finer mesh
sizes. Comparisons are also made with Irie et al. [4], who used Fourier series, and
with Jones [7], who used both finite-differences on a rectangular mesh and
point-matching.

2. THE EQUIVALENT PROBLEM

A conformal mapping from the unit circle C in the z-plane, =z=Q 1, to a regular
N-gon in the w-plane [8, p. 196] is given by

w=g
z

0

ds
(1− sN)2/N.

The side length of the N-gon is

S=
21−4/N

N
G 2(1/2−1/N)
G(1−2/N)

.

When the eigenvalues of the N-gon of side S are multiplied by S2, they are
converted to the eigenvalues of the unit-sided N-gon.

The problem

DF+ lF=0

on the N-gon of side S is equivalent, under the correspondence f(z)=F(w), to
the problem

DF+ ls2f=0

on C, with the same boundary conditions, where

s= bdw
dz b= =1− zN=−2/N.

The quantity s2 may be thought of as a variable density on C.

3. THE RAYLEIGH–RITZ UPPER BOUNDS

The Rayleigh quotient [3] for the problem on C is

D(f, f)
ffC s2f2 dx dy

,

where

D(f, c)0ggC $1f

1x
1c

1x
+

1f

1y
1c

1y% dx dy.
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Upper bounds for the eigenvalues are obtained by choosing trial functions
f1, f2, . . . , fM and solving the M×M relative matrix eigenproblem

[D(fm , fn )]= m$ggC

s2fmfn dx dy%. (4)

The trial functions fn used are the eigenfunctions for (1) on C, which are

Jk ( jk,pr)6cos ku,
sin ku,

k=0, 1, 2, . . . , p=1, 2, . . . ,

where jk,p is the pth root of the kth Bessel function of the first type,

Jk ( jk,p )=0,

in the case of Dirichlet boundary conditions. For Neumann boundary conditions
j'k,p is used, where

J'k ( j'k,p )=0.

One advantage of these trial functions is that they are orthogonal in the D inner
product,

D(Jk ( jk,pr) cos ku, Jl ( jl,qr) cos lu)=0,

unless k= l and p= q. (The same is true with sin functions replacing cos
functions.) When k= l and p= q, the value is pj2k,p times

g
1

0

[Jk ( jk,pr)]2r dr= 1
2[Jk+1( jk,p )]2,

for the case of Dirichlet boundary conditions, or pj'2k,p times

g
1

0

[Jk ( j'k,pr)]2r dr= 1
2[1− (k/j'k,p )2][Jk ( jk,p )]2,

for Neumann boundary conditions (see, e.g., reference [19, equation 11.4.5]).
When k=0, there is an extra factor of 2.

Thus, the matrix on the left side of equation (4) is diagonal, so after appropriate
scaling equation (4) becomes a standard eigenvalue problem for m−1. The only
difficult part of the analysis is the computation of the integrals on the right side
of equation (4).

4. COMPUTING THE INTEGRALS

Using the binomial expansion,

(1− zN)−2/N = s
a

k=0

akzNk,
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where a0 =1 and

ak = ak−1[1− (1−2/N)/k], k=1, 2, . . . ,

then

s2 = s
a

k,l=0

akalzNkz̄Nl = s
a

k,l=0

akalrN(k+ l) eiNu(k− l)

= 2 s
a

n=0

' cos Nnu s
a

l=0

alal+ nrN(2l+ n) 0 s
a

n=0

An (r) cos Nnu, (5)

where the prime indicates that the term for n=0 has a factor of 1/2 on it. This
defines the functions An (r) for a particular value of N.

Thus, the integrals on the right side of equation (4) to be calculated are of the
form

s
a

n=0 g
1

0

Jk (jk,pr)Jl (jl,qr)An (r)r dr g
p

−p

cos Nnu6cos ku

sin ku76cos lu
sin lu7 du.

Since cos is even and sin is odd, only the integrals of cos with cos and sin with
sin are non-zero. Also,

cos Nnu cos ku cos lu= 1
4[cos (Nn+ k+ l)u+cos (Nn+ k− l)u

+cos (Nn− k+ l)u+cos (Nn− k− l)u],

cos Nnu sin ku sin lu= 1
4[−cos (Nn+ k+ l)u+cos (Nn+ k− l)u

+cos (Nn− k+ l)u−cos (Nn− k− l)u].

Since

g
p

−p

cos pu du=0

unless p=0, the u integral vanishes unless one of

Nn+ k+ l, Nn+ k− l, Nn− k+ l, Nn− k− l

is zero. This can only happen for

k02l (mod N).

Furthermore, at most two terms of the sum on n are non-zero.
This splits the trial functions into mutually orthogonal sets called symmetry

classes. The notation Cl will be used for the symmetry class consisting of the span
of the set of functions

{Jk (jk,pr) cos ku: k02l(mod N), p=1, 2, . . . },
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for l=0, 1, 2, . . . , [N/2], respectively. Sl will be used when the product is with
sin ku.

This orthogonal splitting permits the calculation of the eigenvalues of equation
(4) to be efficiently done for each symmetry class separately. Furthermore,
geometrical insights are gained and eigenvalues of subregions are obtained as
byproducts.

The calculation of the integrals has now been reduced to determining

g
1

0

Jk ( jk,pr)Jl ( jl,qr)An (r)r dr,

where An (r) is the series in r defined by equation (5), or, since the series must be
truncated for computation, a large-order polynomial. The series typically
converges so slowly that 4000 or so terms are needed to get satisfactory precision,
so computing these integrals by a direct quadrature is very time-consuming.
Hence, a recursion formula was developed for integrals of the form

I00(m)0g
1

0

Jk ( jk,pr)Jl ( jl,qr)rm−1 dr.

The recursion is on m for fixed values of k, l, p, q. Details are in Appendix A. This
not only makes calculation of the required integrals faster, but also very accurate.

5. THE FIXED HEXAGON

Up to this point, the discussion has been for a general regular N-gon, with either
fixed or free boundary conditions. Now we focus on the case of a fixed hexagon.
In future work, results for free hexagons, and for other regular polygons such as
the octagon will be reported.

The eigenfunctions of a region possessing symmetry can be partitioned into
classes according to that symmetry. If x=0 is an axis of mirror symmetry for S,
and F is an eigenfunction of S with eigenvalue l, so are

F(x, y)2F(−x, y),

if non-zero. Thus, every eigenfunction of such a region may be assumed to be
either even (symmetric) or odd (antisymmetric) about the axis. The axis is a nodal
line of the odd eigenfunctions and an anti-nodal line of the even eigenfunctions.
Eigenfunctions in one symmetry class are orthogonal to those in the other.
Regions with more than one axis of symmetry may have their eigenfunctions
further partitioned.

The fixed hexagon has eight symmetry classes, C0, C1, C2, C3, S0, S1, S2, S3
as defined in the previous section and with the patterns of evenness and oddness
shown in Figure 1. Dashed lines indicate a line of symmetry and solid lines indicate
a line of antisymmetry. C0 is the class of fully symmetric functions, for which every
diagonal connecting opposite vertices or the midpoints of opposite sides is a line
of symmetry. S0 is the class of functions for which these diagonals are lines of
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anti-symmetry. C3 has diagonals connecting opposite vertices as lines of
symmetry, and diagonals connecting midpoints of opposite sides as lines of
anti-symmetry. S3 reverses these roles. C1 are those functions odd in x and even
in y which are not in C3, while S1 are those functions even in x and odd in y which
are not in S3. Finally, C2 are those functions even in x and y, but not in C0, while
S2 are those functions odd in x and y, but not in S0.

The eigenvalues corresponding to two of these classes are known exactly. The
eigenvalues of S3 are those eigenvalues of the equilateral triangle which correspond
to eigenfunctions symmetric about a line from a vertex to the midpoint of the side
opposite. Eigenvalues of S0 are equilateral triangle eigenvalues corresponding to
eigenfunctions odd about such a line, i.e., eigenvalues of the 30°–60°–90° triangle.
These were first discovered by Lamé [10]. The equilateral triangle was re-examined
by Pinsky [11], where, unfortunately, a misleading formula was given for the
eigenvalues, which was also perpetuated in reference [3]. We take this opportunity
to clarify this formula. The eigenvalues for a fixed equilateral triangle with unit
sides are

16p2

9
(l2 + lm+m2), (6)

where in S3 the integers, l, m satisfy 0Q lEm, and in S0, 0Q lQm (see Table 1).
There is a careful discussion of the eigenfunctions and eigenvalues of the
equilateral triangle by Jones [7].

The eigenvalues corresponding to C1 are exactly the same as the eigenvalues
corresponding to S1. This is because an eigenfunction in C1 can be converted to
one in S1 and vice versa. Take an eigenfunction in C1 and rotate it by 60°
positively. Also rotate it by 60° negatively. Subtract the two. The result is an
eigenfunction in S1 corresponding to the same eigenvalue. Go from S1 to C1 in
a similar fashion, but adding. Likewise, the eigenvalues corresponding to C2 are
exactly the same as those corresponding to S2.

Figure 1. The eight symmetry classes of the hexagon. Dashed lines are lines of even symmetry.
Solid lines are lines of odd symmetry. The eigenvalues in C1 and S1 are the same, and the eigenvalues
in C2 and S2 are the same. The eigenvalues in S0 and S3 are equilateral triangle eigenvalues and
are known exactly.
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T 1

Eigenvalues of the unit-side equilat-
eral triangle in S3. Those marked
with an * are also in S0. The first
column are the exact values to the
places shown from equation (6). The
second column shows the accuracy in

the extrapolation formula
equation (7)

Exact Extrapolation

52·63789014 52·63789024
122·8217437* 122·8217480
210·551561 210·551593
228·097524* 228·097582
333·37330* 333·37352
368·46523* 368·46565
473·74101 473·74182
491·2870* 491·2881
543·9249* 543·9269

Therefore, computations need only be done for the symmetry classes C0, C1,
C2, C3, since S0 and S3 are known, while S1 and S2 duplicate C1 and C2. The
results of these computations are given in Tables 2–5, where 160×160 matrices
were used for each class. The trial functions used in each class were ordered by
the size of the roots jk,p of the Bessel functions for k in each class. Incidentally,
no table with all of the roots needed could be found in the literature, so one was
constructed, using the software package MATLAB on a PC, with which all our
calculations were done. All that was required was the Bessel function routine and

T 2

Eigenvalues in C0

Our upper Extrapolation Jones’ lower Jones’ Jones’ upper
bounds fd bounds p-m fd bounds p-m

7·155339146 7·155339122 7·1553389 7·1553415 7·1553392
37·4913552 37·4913528 37·491264 37·4913494 37·491386
90·058447 90·058369 90·05782 90·058354 90·05858

120·86775 120·867572 120·86698 120·867596 120·86773
168·82123 168·82072 168·81961 168·82065 168·82117
219·9755 219·9732 219·9704 219·9728 219·9740
273·7238 273·7217 273·7198 273·7211 273·7221
322·946 322·9321 322·9256 322·9310 322·9335
360·93952 360·93901 360·93845 360·9377 360·93867
405·8197 405·8133
464·044 463·980
538·163 538·158
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T 3

Eigenvalues in C1, which are the same as the
eigenvalues in S1

Our upper Extrapolation Jones’
bounds fd fd

18·1316787 18·1316778 18·1316796
60·105163 60·105112 60·105102
94·32577 94·325561 94·325547

125·04619 125·045468 125·045399
152·66460 152·664052 152·664064
183·4393 183·43637 183·43614
217·4207 217·41734 217·41709
266·2942 266·28054 266·28006
282·9213 282·90867 282·90836
312·7073 312·7061 312·7055
336·358 336·3455 336·3439
376·743 376·696
410·909 410·844
426·224 426·206
475·181 475·138
484·307 484·247
534·91 534·59

a slight modification of the zero finding routine included in MATLAB. In
retrospect it is interesting to see how much difficulty early investigators had in
finding roots of Bessel functions (see, e.g., reference [12]). The table constructed
agrees with the numbers reported in references [9] and [13] for the first few Bessel
functions. A copy of this table is available from the authors.

As a byproduct of consideration of the symmetry classes, eigenvalues of a
number of subregions of the hexagon have been found (see Figure 2). The full
hexagon has eigenvalues (including multiple eigenvalues), which are the ordered
union of those in all eight classes C0, C1, C2, C3, S0, S1, S2, S3. If the hexagon
is bisected along a line from a vertex to the opposite vertex, 60°–120°–120°–60°
trapezoids are formed, whose eigenvalues are the ordered union of S0, S1, S2, S3.
If the hexagon is bisected along a line from the midpoint of a side to the midpoint
of the opposite side, 90°–120°–120°–120°–90° pentagons are formed, whose
eigenvalues are the ordered union of S0, C1, S2, C3. Bisecting either the trapezoid
or the pentagon along their axes of symmetry produces 90°–60°–120°–90°
quadrilaterals, whose eigenvalues are the ordered union of S0 and S2, the classes
common to the trapezoid and the pentagon. Trisecting the trapezoid gives
equilateral triangles, whose eigenvalues are known and are the unions of S0 and
S3. Trisecting the pentagon gives 60°–90°–120°–90° diamonds (kites), with
eigenvalues the union of S0 and C3. Finally, the 30°–60°–90° triangle is common
to all and has the known eigenvalues of S0, the class common to all.
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T 4

Eigenvalues in C2, which are the same as the
eigenvalues in S2

Our upper Extrapolation Jones’
bounds fd fd

32·4518631 32·4518574 32·4518554
70·14046 70·140364 70·140357
87·53205 87·531946 87·531929

145·4836 145·48164 145·48147
165·5154 165·51454 165·51440
187·34276 187·34216 187·34191
235·659 235·64521 235·64491
263·5765 263·57572 263·57523
274·8664 274·8634 274·8626
314·535 314·5198 314·5189
356·84 356·78181 356·78110
402·216 402·208
420·563 420·519
430·628 430·600
475·24 475·14
501·87 501·71
541·236 541·205

6. COMPARISONS WITH PREVIOUS RESULTS

Bauer and Reiss [6] approximated the eigenvalues of a regular hexagon of unit
side by using finite-differences on an equilateral triangular mesh. When the mesh
width h is the reciprocal of an integer, the mesh exactly fits the boundary of the
hexagon. They then used Richardson extrapolation to get an improved estimate
for the true eigenvalues from the finite-difference estimates for several different
mesh widths (see, e.g., reference [3] for a discussion of this technique).
Unfortunately, they assumed that because no interpolation is needed at the

T 5

Eigenvalues in C3

Our upper Extrapolation Jones’ lower Jones’ Jones’ upper
bounds fd bounds p-m fd bounds p-m

47·629373 47·6293655 47·629354 47·6293634 47·629370
110·35488 110·35474 110·35404 110·35460 110·35496
189·5153 189·51382 189·5113 189·51349 189·5146
224·67500 224·67482 224·67447 224·67462 224·67486
296·7995 296·79250 296·7809 296·79192 296·7940
363·4967 363·4902 363·4868 363·4891 363·4910
427·324 427·300
482·836 482·820
535·284 535·263
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Figure 2. Polygons obtained by disecting the hexagon into symmetry classes, whose eigenvalues
are also found.

boundary, the asymptotic relation between the jth difference eigenvalue lj (h) and
the true jth eigenvalue lj is

lj (h)= lj + ajh2 + bjh4 + cjh6 +higher terms.

Then by neglecting the higher terms, lj as well as aj , bj , cj can be estimated from
lj (h) for four different values of h. They used h=1/14, 1/16, 1/18, 1/20 for the
results they reported. However, because the hexagon eigenfunctions have
singularities in their derivatives at the vertices (except when they are eigenfunctions
of the equilateral triangle, which are analytic in the whole plane), the correct
asymptotic relation includes a cubic term and is

lj (h)= lj + ajh2 + bjh3 + cjh4 +higher terms. (7)

(Again, refer to reference [3].)
We have reproduced the results of Bauer and Reiss, verified that indeed this term

was omitted, corrected the estimate by using the asymptotic formula (7), and
extended the calculations to much finer meshes. Bauer and Reiss reported the
wavenumber k=zl for the first 21 eigenvalues to five digits past the decimal
point. Their omitted term turned out to be not particularly serious, as it affected
only the last digit of some of their reported results. Had they used formula (7),
they would have been exact to the number of digits reported.

The sparse matrix capability of MATLAB was used to do these calculations,
which were carried out for mesh widths as fine as 1/36. Beyond this, roundoff
seems to limit further precision. The first 104 eigenvalues of the hexagon obtained
by extrapolating using equation (7) and mesh widths of h=1/30, 1/32, 1/34, 1/36
are sorted into their symmetry classes and shown in Tables 1–5. In Table 1, from
the equilateral triangle eigenvalues which are known exactly, the number of correct
decimal places can be seen in the extrapolated values. Presumably, adjacent
extrapolated values have a similar accuracy. These extrapolated finite-difference
eigenvalues are in every instance below the Ritz upper bounds of Tables 2–5, and
appear to be one or two digits more accurate.
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Irie et al. [4] used a truncated Fourier series method to estimate the eigenvalues
of fixed regular polygonal membranes with three to ten sides. The normalization
of the eigenvalues stated in the paper is apparently not what is in fact reported.
Since they compared their hexagon results with Bauer and Reiss [6], their actual
normalization can be backed out of the truncated numbers they cited from Bauer
and Reiss. If their hexagon numbers are multiplied by p/2 and squared, they can
be compared with our tables, and are then seen to be a bit high in the third
significant figure.

Jones [7] approximated the eigenvalues of the regular hexagon by two methods,
finite-differences and point-matching (or collocation). In his finite-difference
scheme he used a rectangular mesh with widths z3/2N and 1/2N for integer N.
This will also fit the boundary with no interpolation required. The largest value
of N he used was 100. Since his mesh widths are unequal and he did not
extrapolate, the errors in his results are probably comparable to the extrapolated
equilateral triangular mesh difference eigenvalues on the much coarser mesh.
Jones’ finite-difference results are also shown in Tables 2–5.

He also used point-matching on a 30°–60°–90° triangle to approximate the
eigenvalues in C0 and C3. This amounts to finding the roots k (l= k2) of

det [Ji (krj ) cos iuj ]=0.

For C0, i=0, 6, 12, . . . , 6(N−1), and for C3, i=3, 9, 15, . . . , 6N−3. The
collocation points (rj cos uj , rj sin uj ) were equally spaced along the short side of
the 30°–60°–90° triangle. When the side was divided into N equal intervals and
the collocation points were the centers of the intervals, Jones discovered that the
roots increased with N. When the collocation points were placed on the ends of
the intervals, the roots decreased with N. Jones quite reasonably inferred that the
former are providing lower bounds for the eigenvalues, while the latter give upper
bounds. He used N=20 for most results, but N=70 for the first C0 eigenvalue
and N=50 for the first C3 eigenvalue. Jones’ point-matching results are shown
in Tables 2 and 5. Jones reports k. We have squared his numbers to show l.

As previously mentioned, Jones also has a very complete discussion of the exact
equilateral triangle eigenfunctions and eigenvectors. He also has pictures of the
level curves and nodal lines of the eigenfunctions for the first 69 eigenvalues of
the hexagon.

7. CONCLUSION

A further example has been presented of the powerful method of using a
conformal map to turn the problem of finding the eigenvalues of a homogeneous
membrane of complicated shape into the problem of finding the eigenvalues of a
membrane of variable density, but simple shape. This latter problem is generally
easier to handle numerically. This example related regular polygons to
inhomogeneous circles. The eigenvalues of the inhomogeneous circles were then
estimated by the classical Rayleigh–Ritz method using the homogeneous circle
eigenfunctions as trial functions. The resulting integrals required for the matrix
elements were found using some Bessel function identities of some interest in
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themselves. The results of calculations for the fixed hexagon have been presented,
a case where comparisons can be made with earlier investigations showing the
precision of the method. As a byproduct of symmetry considerations (which
simplified the calculations), the eigenvalues of subpolygons of the hexagon
resulting from its disection were also obtained. Future work will cover the free
hexagon and other regular polygons such as the octagon.
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APPENDIX A: THE BESSEL FUNCTION INTEGRAL ITERATION

For fixed integers m and n, and fixed roots a of Jm and b of Jn such that

Jm (a)=0, Jn (b)=0,

define, for k=1, 2, . . . ,

I00(k)0g
1

0

Jm (ax)Jn (bx)xk−1 dx, I10(k)0g
1

0

d
dx

[Jm (ax)]Jn (bx)xk dx,
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I01(k)0g
1

0

Jm (ax)
d
dx

[Jn (bx)]xk dx,

I11(k)0g
1

0

d
dx

[Jm (ax)]
d
dx

[Jn (bx)xk+1 dx.

If one starts with the expression

g
1

0

d
dx

[Jm (ax)Jn (bx)]xk dx,

on the one hand one can differentiate directly, and on the other hand one can
integrate by parts, using the fact that a and b are roots, to get the identity

I10(k)+ I01(k)+ kI00(k)=0. (A1)

One can do a similar thing, starting with

g
1

0

d
dx 6 d

dx
[Jm (ax)]Jn (bx)7xk+1 dx,

and using the Bessel equation

d2

dx2 Jm (ax)+
1
x

d
dx

Jm (ax)+0a2 −
m2

x21Jm (ax)=0,

to get (after some rearranging)

m2I00(k)+ kI10(k)+ I11(k)= a2I00(k+2). (A2)

Similarly, interchanging m and n, a and b,

n2I00(k)+ kI01(k)+ I11(k)= b2I00(k+2). (A3)

Finally, starting with

g
1

0

d
dx 6 d

dx
[Jm (ax)]

d
dx

[Jn (bx)]7xk+2 dx,

leads to

n2I10(k)+m2I01(k)+ kI11(k)= b2I10(k+2)+ a2I01(k+2)+ abJ'm (a)J'n (b).

(A4)

We have not been able to find these identities in the Bessel function literature
for general m and n. The special cases of 0 and 1 are on pp. 262–263 of reference
[14].
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Equations (A1)–(A4) may be used for either an upward or a downward
iteration. Both iterations become unstable at small values of k (depending on m,
n, a and b). The downward iteration is used here. Several remarks may be made
on the iteration. For large values of k, the downward iteration is very stable, so
the initial values of I can be anything (we just use zero), and after a few iterations
the values will be correct to full precision. We are only interested in I00, so equation
(A4) can be used to eliminate I11 from equations (A2) and (A3), and the values
of I01 and I10 may be overwritten at each step. Thus, define

RS= b2I10 + a2I01 + abJ'm (a)J'n (b),

where I10 and I01 are the values at k+2. Then the values of I10 and I01 at k are
given by

$I10

I01%=
1

(k2 −m2 − n2)2 −4m2n2 $k2 −m2 − n2

2n2

2m2

k2 −m2 − n2%
×$a2kI00(k+2)−RS

b2kI00(k+2)−RS%, (A5)

and then

I00(k)=−
1
k

(I10 + I01).

Further, the values of I00(k) are only needed for k even, so the iteration can be
specialized to this case. Also, in the particular situation when a= b (implying that
m= n also), the iteration simplifies.

To determine the minimum value kM for which the iteration is stable, let the
error E00(k) be the difference between the true value of I00(k) and the calculated
value, and similarly for E10 and E01. Then the errors satisfy the same equations
(A1)–(A4), except the term abJ'm (a)J'n (b) is not present. To simplify the error
analysis, let

o=max (=E10=, =E01=).

Now

E00(k+2)=−
1

k+2
(E10(k+2)+E01(k+2)),

from which follows the simple estimate

=E00(k+2)=E 2
k

o,
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which put into (A5), when k2 em2 + n2, gives

$E10(k)
E01(k)%E 1

(k2 −m2 − n2)2 −4m2n2 $k2 −m2 − n2

2n2

2m2

k2 −m2 − n2%
×$(3a2 + b2)o

(a2 +3b2)o%.
Thus, a sufficient condition for the ratio of the new value of o to the old one to
be no larger than one is

(k2 −m2 − n2)(3a2 + b2)+2m2(a2 +3b2)
(k2 −m2 − n2)2 −4m2n2 E 1,

(k2 −m2 − n2)(a2 +3b2)+2n2(3a2 + b2)
(k2 −m2 − n2)2 −4m2n2 E 1.

These are quadratic inequalities in k2, and solving gives

k2 em2 + n2 + 1
2(3a2 + b2)+z4m2n2 + 1

4(3a2 + b2)2 +2m2(a2 +3b2),

in the first case, with a similar inequality with m and n, a and b reversed in the
second case. Hence, k2

M is the maximum of these expressions.
Now the integrals we want to compute are of the form

g
1

0

Jm (ax)Jn (bx) s
L

k=1

p(k)xk−1 dx,

which we write as

g
1

0

Jm (ax)Jn (bx) s
kM −1

k=1

p(k)xk−1 dx+ s
L

k= kM

p(k)I00(k),

and we know I00(k) for k down to kM from the recursion above, while we compute
the first term using a quadrature formula.
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